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Abstract— In this study, we introduce quaternionic type-2 Harmonic Curvatures and General Helices according to Frenet 

frame in 4-dimensional Euclidean Space 𝐸⁴ and investigate its properties for two cases. In the first case; we use a constant 

angle 𝜙 between a unit and fixed direction vector field 𝑈 and the first relatively Frenet frame vector field  𝑉₁ of the curve, 

that is, 

𝐻 ( 𝑉₁, 𝑈 ) = 𝑐𝑜𝑠 𝜙 = 𝑐𝑜𝑛𝑠𝑡. 

where ℎ (𝑉₁, 𝑈) is the real quaternion inner product. Since the relatively Frenet  frame vector field 𝑉₁ of the curve makes a 

constant angle with the unit and fixed direction vector field U, we call this curve as a General helix in 4-dimensional 

Euclidean Space 𝐸⁴. And then, in the other case, we define new type-2 harmonic curvature functions and we give a vector 

field 𝐷 which we call Darboux vector field for General helix. And then we obtain some characterizations for General helix in 

terms of type-2 harmonic curvature functions and the Darboux vector field 𝐷.  

Keywords— Euclidean spaces, General helix, type-2 harmonic curvatures, Quaternion algebra, Quaternionic frame. 

I. INTRODUCTION 

The curves are a part of our lives are the indispensable. For example, heart chest film with X-ray curve, how to act is     

important to us. Curves give the movements of the particle in Physics. 

Helical curves are very important type of curves. Because, helices are among the simplest objects in the art, molecular 

structures, nature, etc. For example, the path, arroused by the climbing of beans and the orbit where the progressing of the 

screw are a helix curves. Also, in medicine DNA molecule is formed as two intertwined helices and many proteins have 

helical structures, known as alpha helices. So, such curves are very important for understand to nature. Therefore, lots of 

author interested in the helices and they published many papers in Euclidean 3 and 4 - space [1-2],]. 

  Helix curve is defined by the property that the tangent vector field makes a constant angle with a fixed direction. In 1802, 

M. A. Lancert first proposed a theorem and in 1845, B. de Saint Venant first proved this theorem: "A necessary and sufficient 

condition that a curve be a general helix is that the ratio of curvature to torsion be constant" [3-5]. 

 In 1987, The Serret-Frenet formulae for quaternionic curves in ℝ³ are introduced by K. Bharathi and M. Nagaraj. Moreover, 

they obtained the Serret-Frenet formulae for the quaternionic curves in ℝ⁴ by the formulae in ℝ³ , [6]. Then, lots of studies 

have been published by using this study. One of them is A. C. Çöken and A. Tuna's study [7] which they gave Serret-Frenet 

formulas, inclined curves, harmonic curvatures and some characterizations for a quaternionic curve in the semi- Euclidean 

spaces 𝐸1
3 and 𝐸2

4 . 

 In this work, we give quaternionic type-2 Harmonic Curvatures and General Helices according to Frenet frame in 4-

dimensional Euclidean Space 𝐸⁴ and investigate its properties. We use a constant angle 𝜙 between a unit and fixed direction 

vector field 𝑈 and the first relatively Frenet frame vector field 𝑉₁ of the curve, that is, 

𝐻 (𝑉₁, 𝑈) = 𝑐𝑜𝑠 𝜙 = 𝑐𝑜𝑛𝑠𝑡. 

where ℎ(𝑉₁, 𝑈) is the real quaternion inner product. Since the relatively Frenet frame vector field 𝑉₁ of the curve makes a 

constant angle with the unit and fixed direction vector field 𝑈, we call this curve as a 𝐺𝑒𝑛𝑒𝑟𝑎𝑙 ℎ𝑒𝑙𝑖𝑥 in 4-dimensional 

Euclidean Space 𝐸⁴. And then, we define new 𝑡𝑦𝑝𝑒 − 2 harmonic curvature functions and we give a vector field 𝐷 which we 

call Darboux vector field for General helix. And then we obtain some characterizations for General helix in terms of type-2 

harmonic curvature functions and the Darboux vector field 𝐷.  
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II. PRELIMINARIES 

Let 𝑄𝐻  be the four-dimensional vector space over a field H whose characteristic greater than 2. Let 𝑒𝑖  ( 1≤ i ≤ 4 ) be a basis 

for the vector space. Let the rule of multiplication on 𝑄𝐻   be defined on   𝑒𝑖  and extended to the whole of the vector space 

distributivity as follows [6]: 

A real quaternion is defined by 𝑞 = 𝑎𝑒₁ + 𝑏𝑒₂ + 𝑐𝑒₃ + 𝑑 ( or 𝑆𝑞 = 𝑑 and 𝑉𝑞 = 𝑎𝑒₁ + 𝑏𝑒₂ + 𝑐𝑒₃). Then a quaternion 𝑞 can 

now write as 𝑞 = 𝑆𝑞 + 𝑉𝑞 , where  𝑆𝑞  and 𝑉𝑞  are the scalar part and vectorial part of q, respectively. we define the set of all 

real quaternions by 

𝑄𝐻 =  𝑞   𝑞 = 𝑎𝑒1 + 𝑏𝑒2 + 𝑐𝑒3 + 𝑑 ; 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅 𝑎𝑛𝑑 𝑒1, 𝑒2, 𝑒3 ∈ 𝑅3  . 

Using these basic products we can now expand the product of two quaternions to give 

𝑝 × 𝑞 = 𝑆𝑝𝑆𝑞 + 〈  𝑉𝑝  , 𝑉𝑞  〉 + 𝑆𝑝𝑉𝑞  + 𝑆𝑞  𝑉𝑝 +  𝑉𝑝 ∧ 𝑉𝑞   for every 𝑝, 𝑞 ∈ 𝑄𝐻 . 

where we have used the dot and cross products in Euclidean space 𝐸⁴. We see that the quaternionic product contains all the 

products of Euclidean space 𝐸⁴. There is a unique involutory antiautomorphism of the quaternion algebra, denoted by the 

symbol 𝛾 and defined as follows: 

𝛾𝑞 = −𝑎𝑒₁ − 𝑏𝑒₂ − 𝑐𝑒₃ for every 𝑞 = 𝑎𝑒₁ + 𝑏𝑒₂ + 𝑐𝑒₃ + 𝑑 ∈ 𝑄𝐻 . 

which is called the "Hamiltonian conjugation". This h-inner product of two quaternions is define by 

ℎ(𝑝, 𝑞) =
1

2
[(𝑝 × 𝛾𝑞) + (𝑞 × 𝛾𝑝)] 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑝, 𝑞 ∈ 𝑄𝐻  

where ℎ is the symmetric, non-degenerate, real valued and bilinear form. The norm of real quaternion 𝑞 is denoted by 

‖𝑞‖² = |ℎ_{𝑣}(𝑞, 𝑞)| = |(𝑞 × 𝛾𝑞)| = |𝑎²𝑏² + 𝑐² + 𝑑²| 

for 𝑝, 𝑞 ∈ 𝑄𝐻  where if ℎ(𝑝, 𝑞) = 0 then p and q are called h-orthogonal. 

The concept of a spatial quaternion will be made use throughout our work. 𝑞 is called a spatial quaternion whenever 

 𝑞 + 𝛾𝑞 = 0 [6, 7].  

III. SERRET-FRENET FORMULAE FOR QUATERNIONIC CURVES EUCLIDEAN SPACE 

Definition . The four-dimensional Euclidean spaces in 𝐸⁴ are identified with the spaces of unit quaternions. Let 

𝛼 ∶  𝐼 ⊂ ℝ → 𝑄𝑉  

𝑠  →  𝛼(𝑠) =   𝛼𝑖(𝑠)𝑒𝑖 , 1 ≤ 𝑖 ≤ 4, 𝑒₄ = 1                          

4

𝑖=1

 

be a smooth curve in 𝐸⁴ . Let the parameter s be chosen such that the tangent 𝑉₁(𝑠) =  𝛼´(𝑠) has unit magnitude. Let 

{𝑉₁; 𝑉₂; 𝑉₃; 𝑉₄} be the Frenet apparatus of the differentiable Euclidean space curve in the Euclidean spaces 𝐸⁴. Then Frenet 

formulas are given by 

 

𝑉₁′(𝑠)   =  𝜅(𝑠)𝑉₂(𝑠)  

 𝑉₂′(𝑠)   =  𝜏(𝑠)𝑉₃(𝑠) − 𝜅(𝑠)𝑉₁(𝑠)

𝑉₃′(𝑠)   =  −𝜏(𝑠)𝑉₂(𝑠) + 𝜎(𝑠)𝑉₄(𝑠)

𝑉₄′(𝑠)   =  −𝜎(𝑠)𝑉₃(𝑠)

             (1) 

    We may express Frenet formulae of the Frenet trihedron in the matrix form: 

 
 
 
 
𝑉1

′

𝑉2
′

𝑉3
′

𝑉4
′  
 
 
 

= 

0 κ 0 0
−κ 0 τ 0
0 −τ 0 σ
0 0 −σ 0

  

𝑉1

𝑉2

𝑉3

𝑉4

               (2) 
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IV. TYPE-2 HARMONIC CURVATURES AND GENERAL HEICES IN EUCLIDEAN SPACE E⁴ 

Definition . Let 𝛼(𝑠) be a quaternionic curve in 𝐸⁴ with arc-length parameter s. The type-2 harmonic curvatures of 𝛼 are the 

functions, such that 

𝐺𝑖 : 𝐼 → 𝑅, 1 ≤ 𝑖 ≤ 4 

𝐺𝑖 =  

1
0

κ/τ

(1/σ)G₃′

𝑖 = 1
 𝑖 = 2
𝑖 = 3
𝑖 = 4

      

and satisfying the condition 

𝑑𝐺₄

𝑑𝑠
= −𝜎𝐺₃ 

Theorem. Let 𝛼 = 𝛼(𝑠) be a quaternionic curves in Euclidean space 𝐸⁴ with arc-length parameter s.  Let {𝑉₁; 𝑉₂; 𝑉₃; 𝑉₄} and 

{𝐺₁; 𝐺₂; 𝐺₃; 𝐺₄} denote the Frenet frame and the type-2 harmonic curvatures of curve, respectively. Then 𝛼 is a general helix 

if and only if the functions 

𝐺₁² + 𝐺₂² = 𝑐 

is constant. 

Proof.  Let 𝛼 = 𝛼(𝑠) be general helix in Euclidean space 𝐸⁴. Let 𝑈 be the direction with which 𝑉₁ makes a constant angle 𝜙 

and, without loss of generality, we suppose that < 𝑈, 𝑈 >= 1. 

𝑈 = 𝜆₁𝑉₁ + 𝜆₂𝑉₂ + 𝜆₃𝑉₃ + 𝜆₄𝑉₄                       (3) 

that is, 

 

𝜆₁ =< 𝑉₁, 𝑈 >= 𝑐𝑜𝑠𝜙 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝜆₂ =< 𝑉₂, 𝑈 > 
𝜆₃ =< 𝑉₃, 𝑈 >

𝜆4 =< 𝑉4, 𝑈 >

                 (4) 

 By taking the derivate of (3) with respect to s and using the Frenet formula, we have 

𝜆₁′(𝑠) = 𝜅(𝑠) < 𝑉₂(𝑠), 𝑈(𝑠) >= 𝜅(𝑠)𝜆₂(𝑠) = 0.           (5) 

Then 𝜆₂ = 0 and therefore, 

𝑈 = 𝜆₁𝑉₁ + 𝜆₃𝑉₃ + 𝜆₄𝑉₄ 

The differentiation of (5) gives, 

(𝜅𝜆₁ − 𝜏𝜆₃)𝑉₂ + (𝜆₃′ − 𝜎𝜆₄)𝑉₃ + (𝜆₄′ + 𝜎𝜆₃)𝑉₄ = 0 

which implies  

 
𝜅𝜆₁ − 𝜏𝜆₃ = 0
𝜆₃′ − 𝜎𝜆₄ = 0
𝜆₄′ + 𝜎𝜆₃ = 0.

                           (6) 

Define the function 𝐺𝑖 = 𝐺𝑖(𝑠) as follows 

𝜆𝑖 𝑠 = 𝐺𝑖 𝑠 𝜆₁, 3 ≤ 𝑖 ≤ 4.           (7) 
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We point out that 𝜆₁ ≠ 0: on the contrary, (6) gives 𝜆𝑖 = 0, for 3 ≤ 𝑖 ≤ 4 and so, 𝑈 = 0 contradiction. From the equation 

(1), we get 

 
𝐺₃ = (𝜅/𝜏)

𝐺₄ = (1/𝜎)𝐺₃′.
                 (8) 

The last equation  of (6) leads to the following condition: 

𝐺₄′ + 𝜎𝐺₃ = 0.          (9) 

In particular, and from last equation of (8) 

𝐺₃′ + 𝜎𝐺₄ = 0.           (10) 

If we take derivative of (9) and use the last equation, we get the second order differential equation 

 

𝐺₄′′ + 𝜎′𝐺₃ + 𝜎𝐺₃′ = 0
𝐺₄′′ + 𝜎′(−(1/𝜎)𝐺₄′) + 𝜎(𝜎𝐺₄) = 0

𝐺₄′′ − ((𝜎′)/𝜎)𝐺₄′ + 𝜎²𝐺₄ = 0.
           (11) 

We do change of variables: 

𝑡 𝑠 =  𝜎 𝑠 𝑑𝑠

𝑠

,    
𝑑𝑡

𝑑𝑠
= 𝜎(𝑠). 

Then the equation (11) becomes 

𝐺₄′′(𝑡) + 𝐺₄(𝑡) = 0. 

The general solution of this equation is obtained as 

𝐺₄(𝑡(𝑠)) = 𝐴𝑐𝑜𝑠  𝜎 𝑠 𝑑𝑠
𝑠

+ 𝐵𝑠𝑖𝑛  𝜎 𝑠 𝑑𝑠
𝑠

       (12) 

where A and B are constants. From equation (9), the function G₃ is given by 

 =

𝐺₄(𝑡 𝑠 ) = −(1/𝜎)𝐺₄′

−(1/𝜎)(−(1/𝜎)𝐴𝑐𝑜𝑠  𝜎 𝑠 𝑑𝑠
𝑠

+ (1/𝜎)𝐵𝑠𝑖𝑛  𝜎 𝑠 𝑑𝑠
𝑠

𝐴𝑠𝑖𝑛  𝜎 𝑠 𝑑𝑠
𝑠

− 𝐵𝑐𝑜𝑠  𝜎 𝑠 𝑑𝑠
𝑠

.

       (13). 

From equations (12) and (13), we hawe 

𝐺₃² + 𝐺₄² = 𝐴² + 𝐵² = 𝑐. 

Conversly, assume that the condition (2) is satisfied for a curve 𝛼. Define the unit vector 𝑈 by 

𝑈 = (𝑉₁ + 𝐺₃𝑉₃ + 𝐺₄𝑉₄)𝑐𝑜𝑠𝜙. 

By taking (8), (9) and (10), a differentiation of 𝑈 given that 

𝑑𝑈

𝑑𝑠
= [(𝜅 − 𝐺₃𝜏)𝑉₂ + (𝐺₃′ − 𝐺₄𝜎)𝑉₃ + (𝐺₄′ + 𝐺₃𝜎)𝑉₄]𝑐𝑜𝑠𝜙 = 0 

which it means that 𝑈 is a constant vectors. On the other hand, the inner product between the unit tangent vector 𝑉₁ with 𝑈 is 

< 𝑉₁, 𝑈 >= 𝑐𝑜𝑠𝜙. 

Thus 𝛼 is a general helix curve and the proof is completed. 
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Lemma.  Let 𝛼(𝑠) be a unit speed general helix in Euclidean space E⁴. Let {𝑉₁; 𝑉₂; 𝑉₃; 𝑉₄} and {𝐺₁; 𝐺₂; 𝐺₃; 𝐺₄} denote the 

Frenet frame and the type-2 harmonic curvatures of curve, respectively. Then, the following equations holds: 

 

< 𝑉₁, 𝑈 >= 𝐺₁ < 𝑉₁, 𝑈 >

< 𝑉2, 𝑈 >= 𝐺2 < 𝑉1, 𝑈 >

< 𝑉3, 𝑈 >= 𝐺3 < 𝑉1, 𝑈 >

< 𝑉4, 𝑈 >= 𝐺4 < 𝑉1, 𝑈 >

            (14) 

where 𝑈 is an axis of the general helix 𝛼. By using the above Lemma, we have the following corollary: 

Corollary. If 𝑈 is an axis of the general helix 𝛼, then we can write 

𝑈 = (𝐺₁𝑉₁ + 𝐺₃𝑉₃ + 𝐺₄𝑉₄)𝑐𝑜𝑠𝜙. 

Definition. Let 𝛼(𝑠) be a non-degenerate unit speed curve in Euclidean space 𝐸⁴. Let {𝑉₁; 𝑉₂; 𝑉₃; 𝑉₄} and {𝐺₁; 𝐺₂; 𝐺₃; 𝐺₄} 

denote the Frenet frame and the type-2 harmonic curvatures of curve, respectively, the vector 

𝐷 = 𝐺₁𝑉₁ + 𝐺₂𝑉₂ + 𝐺₃𝑉₃ + 𝐺₄𝑉₄           (15) 

is called the type-2 Darboux vector of the curve 𝛼.Also, 

𝐷 = 𝐺₁𝑉₁ + 𝐺₃𝑉₃ + 𝐺₄𝑉₄ 

is an axis of the general helix α. 

Lemma. Let 𝛼(𝑠) be a non-degenerate unit speed curve in Euclidean space 𝐸⁴. Let {𝑉₁; 𝑉₂; 𝑉₃; 𝑉₄} and {𝐺₁; 𝐺₂; 𝐺₃; 𝐺₄} 

denote the Frenet frame and the type-2 harmonic curvatures of curve, respectively, then 𝛼 is a general helix if and only if 𝐷 is 

constant vector. 

Proof. Let 𝛼(𝑠) be a general helix in Euclidean space 𝐸⁴. From corollary 1, 

𝐷 = 𝐺₁𝑉₁ + 𝐺₃𝑉₃ + 𝐺₄𝑉₄. 

By differentiating the D with respect to s 

𝐷′ = (𝜅 − 𝐺₃𝜏)𝑉₂ + (𝐺₃′ − 𝐺₄𝜎)𝑉₃ + (𝐺₄′ + 𝐺₃𝜎)𝑉₄. 

By using equation (8),(9) and (10), we get 𝐷′ = 0. Therefore, 𝐷 is constant vector. 

Converaly, if D is constant vector. Then we can see that 

<  𝐷, 𝑉₁ >=< 𝑉₁ + 𝐺₃𝑉₃ + 𝐺₄𝑉₄, 𝑉₁ > 

<  𝐷, 𝑉₁ >=< 𝑉₁, 𝑉₁ >= 1. 

Thus we get 

𝑐𝑜𝑠𝜙 =
< 𝐷, 𝑉₁ >

‖𝐷‖‖𝑉₁‖
=

1

‖𝐷‖
 

where 𝜙 is constant angle between 𝐷 and 𝑉₁. In this case, we can define a unique axis of the general helix such that : 

𝑈 = 𝐷𝑐𝑜𝑠. From this equation 

< 𝑈, 𝑉₁ >=< 𝐷, 𝑉₁ > 𝑐𝑜𝑠𝜙 

= 𝑐𝑜𝑠𝜙=constant. 

Therefore, 𝑈 is a constant. So, this complete the proof. 
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Lemma. In three- dimensional Euclidean space, from equation (15), we can write the axis of a non-degenerate curve as: 

𝐷 = 𝐺₁𝑡 + 𝐺₂𝑛 + 𝐺₃𝑏 

= 𝐺₁𝑡 + 𝐺₃𝑏 

= 𝑡 + (𝜅/𝜏)𝑏 

where  {𝑡; 𝑛; 𝑏} and {𝜅; 𝜏} are the Frenet apparatus and  with non-zero curvatures in the Euclidean spaces 𝐸³,respectively. If 

we take derivative of 𝐷 along the curve, we get 

𝐷′ = 𝑡′ + ((𝜅/𝜏))′𝑏 + (𝜅/𝜏)𝑏′ 

= 𝜅𝑛 + ((𝜅/𝜏))′𝑏 + (𝜅/𝜏)(−𝜏𝑛) 

= ((𝜅/𝜏))′𝑏. 

Thus, from the equation, if the curve is a general helix, then from Lemma 2, we have 

𝐷′ = 0 

((𝜅/𝜏))′ = 0,  (𝜅/𝜏) is constant, therefore the curve is a general helix. 

Lemma. There are no general helices with non-zer constant curvatures (i.e., 𝑊-curve) in Euclidean space 𝐸⁴. 

Proof. In four-dimensional Euclidean space, from equation (15), we get 

𝐷 = 𝐺₁𝑉₁ + 𝐺₂𝑉₂ + 𝐺₃𝑉₃ + 𝐺₄𝑉₄ 

𝐷 = 𝑉₁ + (𝜅/𝜏)𝑉₃ + (1/𝜎)(𝜅/𝜏)𝑉₄ 

where 𝜅, 𝜏 and σ are curvatures of the curve. If all the curvatures of the curve are non-zero constants, then the curve is a 𝑊-

curve, then we get 

𝐷 = 𝑉₁ + (𝜅/𝜏)𝑉₃.           (16) 

If we take derivative of equation (16), we obtain 

𝐷′ = 𝜅𝑉₁ + (𝜅/𝜏)(−𝜏𝑉₂ + 𝜎𝑉₄) 

= (𝜅/𝜏)𝜎𝑉₄. 

So, we can easily see that 𝐷′ is not equal to zero, then 𝐷 is not constant vector. In this case, according to Lemma 2 the curve 

is not general helix. 

Lemma. There are no general helices with non-zero constant curvature rations (i.e., 𝐶𝐶𝑟-Curve) in 𝐸⁴. 

Proof. The proof of this Lemma is the same as the proof of Lemma 1. 
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