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Abstract—This work presents an improved genetic algorithm (IGA) for minimizing periodic preventive maintenance costs 

in series-parallel systems. The intrinsic properties of a repairable system, including the structure of reliability block 

diagrams and component maintenance priorities are considered by the proposed IGA. The proposed component importance 

measure considers these properties, identifies key components, and determines their maintenance priorities. The optimal 

maintenance periods of these important components are then determined to minimize total maintenance cost given the 

allowable worst reliability of a repairable system. An adjustment mechanism is established to solve the problem of 

chromosomes falling into infeasible areas. An elitist conservation strategy is applied to retain superior chromosomes in the 

iterative breeding process and to accelerate the approach toward the global optimum. A response surface methodology is 

further used to systematically determine crossover probability and mutation probability in the GA instead of using the 

conventional trial-and-error process. A case study demonstrates the effectiveness and practicality of the proposed IGA for 

optimizing the periodic preventive maintenance model in series-parallel systems. 

Keywords—genetic algorithms, importance measure, periodic preventive maintenance, reliability, response surface 

methodology. 

I. INTRODUCTION 

Maintenance and repair activities are essential for the safe and efficient operation of any equipment. Particularly, 

implementing appropriate maintenance to keep a system function properly is important during lifetime of equipment. 

Establishing a superior maintenance strategy for a complex repairable system requires that the maintenance priority of 

subsystems or components and their maintenance periods given limited maintenance resources be determined 

simultaneously. As preventive maintenance consumes human resources and time, and has associated costs, nonessential 

services or an inadequate maintenance schedule wastes the limited maintenance resources. Furthermore, to meet practical 

requirements, numerous studies have constructed maintenance models and optimization algorithms [13]. However, the 

complexity of optimizing a maintenance model in a series-parallel system increases significantly as the number of 

components in a system increases. In such situations, obtaining the exact global optimum using analytical approaches via 

mathematical inference is impractical. Therefore, meta-heuristic algorithms, such as a genetic algorithm [4] [15], ant colony 

optimization [19] and simulated annealing [13], are commonly employed to optimize these models and approach the global 

optimum. 

Meta-heuristic algorithms have three impediments to efficiently solving complex optimization problems [2] becoming 

trapped in local optimum, a limited cycle, and an inability to escape from a specific search region. These hindrances must be 

overcome when optimizing complex problems. Additionally, past studies [1] demonstrated that a superior initial population 

structure can significantly benefit the ability of meta-heuristic algorithm to approach the global optimum. Hence, numerous 

studies [6] [20] have attempted to establish a superior initial population to enhance solving ability of current algorithms, 

particularly for solving complex problems. However, the idea regarding the establishment of the superior initial population in 

optimizing the preventive maintenance model for series-parallel systems has seldom been seen. 

Holland developed genetic algorithm (GA) in 1975. The search mechanism in a GA relies on chromosome evolution, 

comprising reproduction, crossover, and mutation, during a simutated breeding process. Goldberg [9] summarized the 

attributes of GAs as follows: ˂1˃ Genetic algorithm calculations are based on coded parameters, rather than the parameter 

values. ˂2˃ Genetic algorithm posses highly parallel search capability, avoiding becoming trapped in a local optimum. ˂3˃ 

Genetic algorithm has no complex mathematical formulas – only the fitness function must be calculated. ˂4˃ Genetic 
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algorithm has no specific rules for guiding the search direction for an optimum; rather, a random search mechanism uses the 

probability rule. Although capable of providing the above functions, GA is easily trapped in local areas when solving large 

and complex problems. Furthermore, a retrieval mechanism that prevents chromosomes from moving into infeasible areas of 

a constrained optimization model can benefit the optimized solutions for GA [7] [12] [18]. The limitations of conventional 

GA must be addressed to solve complex optimization problems. 

This study aims to propose an improved genetic algorithm (IGA) that efficiently optimizes the periodic preventive 

maintenance (PM) model for series-parallel systems. The improved mechanisms mainly overcome the weaknesses in 

conventional GA. Since the structure of a repairable series-parallel system markedly impacts system reliability, the properties 

of a preventive maintenance model in series-parallel systems subjecting to the allowable worst system reliability are 

considered to create the improvement mechanisms. The proposed IGA has two stages. The first stage identifies important 

components for a repairable series-parallel system. A novel importance measure of components is developed to overcome the 

drawbacks of past importance measures of components [3] [11] [8] and appropriately assess the importance of components in 

a PM model during mission duration. The second stage determines the optimal maintenance periods of important components 

using the IGA search mechanism. An adjustment mechanism is established to make the chromosomes move back to feasible 

area in case the chromosomes fall into infeasible area. Doing so can enhance the exploring ability of conventional GA. 

Furthermore, an elitist conservation strategy is applied to retain superior chromosomes and facilitate search toward the global 

optimum. The response surface methodology (RSM) [16] from the design of experiments is employed to systematically 

determine the crossover probability and mutation probability—instead of using the trial-and-error approach—to enhance IGA 

search capability. A case from the study by Bris et al. [4], subsequently applied by Samrout et al. [19], demonstrates the 

effectiveness and practicality of the proposed IGA in optimizing the periodic preventive maintenance model in series-parallel 

systems. 

II. LITERATURE 

2.1 Maintenance strategy of a series-parallel system 

Maintenance is defined as activities that retain or restore the operational status of a system. Normally, maintenance can be 

classified as e-maintenance [17], corrective maintenance (CM) and preventive maintenance [14]. E-maintenance is a new 

concept of maintenance. It contains predictive prognostics and condition-based monitor, and integrates existing 

telemaintenance principles with Web services and modern e-collaboration principles. CM includes minimal repairs and 

corrective replacement when a system fails. PM includes simple preventive maintenance and preventive replacement when a 

system is operating. The maintenance policies of a repairable deteriorating system are ˂1˃ age-dependent PM policy, ˂2˃ 

periodic PM policy, ˂3˃ failure limit policy, ˂4˃ sequential PM policy, ˂5˃ repair limit policy, and ˂6˃ repair number 

counting and reference time policy [23]. Periodic PM is widely used in practice simply because of its ease of implementation 

and management. This maintenance policy, applied in a series-parallel system with multiple components, received much 

attention. For example, Tsai, Wang, and Teng [21] developed a periodic PM schedule for a system with deteriorating electro-

mechanical components and optimized it using a GA. Leou [13] proposed a novel algorithm for determining a maintenance 

schedule for a power plant. This algorithm combines the GA with simulated annealing to optimize maintenance periods and 

minimize maintenance and operational cost. Tsai, Wang, and Tsai [22] also proposed a preventive maintenance policy for a 

multi-component system. Maintenance activities for components in each stage of PM were determined by maximizing the 

availability of the system for maintenance. Busacca, Marseguerra, and Zio [5] focused on a high-pressure injection system at 

a nuclear power plant to establish a multi-objective optimization model to obtain a maintenance strategy using GA. Bris et al. 

[4] proposed a periodic PM model that minimizes maintenance costs under the reliability constraint. The optimal 

maintenance period of each components after the first maintenance task for that component was determined using a GA. 

Samrout et al. [19] optimized the Bris’s case [4] using the same procedure, but the ant colony optimization was adopted to 

optimize the maintenance periods for all components. 

2.2 Importance measures 

The importance measures can be used for identifying design weaknesses, and evaluating the impact on proper functioning of 

a system in the case of the component failure. In general, most of the importance measures are based on specific time to 

evaluate the impact on system reliability at which whether the component is functioning properly or not. This section briefly 

describes the importance measures that are commonly used in practice, as follows. 
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2.2.1 Birnbaum importance measure 

The Birnbaum importance measure [3] is defined to be the probability that the ith component is critical to the functioning of 

the system at time t. It can be expressed as 
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where ( )i

BI t  is the Birnbaum’s importance measure of component i at time t; ( ( ))G q t  is the system unreliability at time t; 

( )iq t  is the unreliability of component i at time t; (1 , ( ))iG q t  is the unreliability of a system when the ith component fails; 

(0 , ( ))iG q t   is the unreliability of a system when the ith component is operating; If ( )i

BI t is large, a small change in the 

reliability of component i will result a large change in the system reliability at time t. 

2.2.2 Criticality importance measure 

The criticality importance measure [11] is based on the fact that it is more difficult to improve the more reliable components 

than to improve the less reliable components for enhancing system reliability. It is expressed as 
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where ( )i

CRI t  is the criticality importance measure of component i at time t; ( ( ))G q t  is the system unreliability at time t; 

( )iq t  is the unreliability of component i at time t. 

2.2.3 Fussell-Vesely importance measure 

The Fussell-Vesely importance measure [8] is the probability that at least one minimal cut that contains component i is failed 

at time t, given that the system is failed at time t. It can be expressed as 

( ( ))
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where ( )i

FVI t  is the Fussell-Vesely importance measure of component i at time t; ( ( ))iG q t  is the probability of component i 

contributing to cut set failure; ( ( ))G q t  is the system unreliability at time t. 

2.2.4 Improvement potential 

In some case it may be of interest to know how much the system reliability increases if component i is replaced by a perfect 

component. The difference is called the improvement potential with respect to component i  [11]. It can be expressed as 

( ) ( ) ( )i i

IP B iI t I t q t                                                                                   (4) 

where ( )i

IPI t  is the improvement potential of component i at time t; ( )i

BI t  is the Birnbaum’s importance measure of 

component i at time t; ( )iq t  is the unreliability of component i at time t. 

2.2.5 Ratio-criterion 

Bris et al. [4] proposed this index to prioritize components from both reliability and cost point of view. It can be expressed as 

( )
( )

( )
i i

B

C i
R t

I t
                                                                                        (5) 

where ( )iR t  is the ratio-criterion of component i at time t; ( )C i is cost of maintenance of i th component; ( )i

BI t  is the 

Birnbaum importance measure of component i at time t. The component with smallest value of index is determined the most 

important component. 
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These mentioned above measures hold some limitations or drawbacks in evaluation the effect of components on system 

reliability in the parallel system.  The criticality importance measures and Fussell-Vesely importance measures yield value of 

1 for evaluating the effect of each component on the parallel system. Similarly, the values of improvement potential of 

components are the same for identifying the effect of each component on a parallel system. Therefore, these three measures 

are inappropriately to determine the components importance in a series-parallel system. Although Birnbaum importance 

measure can discriminate the importance of components in a series-parallel system, the component with the highest 

reliability in a parallel system will be determined as the most importance component. This property makes this measure 

inappropriate use for optimizing a maintenance model of parallel system because the component with highest reliability will 

always be determined to conduct maintenance during the mission duration. The ratio-criterion is resulted from Birnbaum 

measure, and the maintenance cost is considered. Hence, its property is similar to Birnbaum measure when the differences of 

maintenance cost among the components are not extremely large. Additionally, these measures merely calculate the deviation 

in system reliability as the system state switches to a failed state from an operating state given a specific time. In practice, the 

failed/operating probabilities of components are directly related to their reliability, which is a function of time. In summary, 

the past developed importance measures of components can be further improved to extend their utilities. 

III. DEVELOPED IMPORTANCE MEASURES 

This work extends the underlying concept of the Birnbaum importance measure to a novel measure of component 

importance. The Birnbaum importance measure considers the adverse effects of failed components on system reliability. 

However, component failure/operational probabilities are directly related to the reliability of individual components, which is 

a function of time. Failure/operational probabilities vary over time. Therefore, the developed importance measure considers 

this probability by calculating the expected values of component effects on system reliability to assess the importance of 

components for PM. The calculation of the expected values of effects is as follows. 

( ) ( (1, ( )) ( )) ( ) ( ( ) (0, ( )) (1 ( ))j S j S j S S j jI t R r t R t r t R t R r t r t                                          (6) 

where ( )SR t  is the reliability of a system at time t; (1, ( ))S jR r t is the reliability of a system when the jth component is 

operating at time t; (0, ( ))S jR r t is the reliability of a system when the jth component fails at time t; ( )jr t  is the probability 

when the jth component is operating at time t; (1 ( ))jr t  is the probability when the jth component fails at time t; The value 

of ( (1, ( )) ( ))S j SR r t R t indicates the positive effect when the jth component is operating at time t; ( ( ) (0, ( ))S S jR t R r t  is the 

negative effect when the jth component is failed at time t; ( )jI t is the expected value of system effect at time t. The 

integration of ( )jI t  values over mission duration is determined as the importance measure of components for PM, as 

follows. 

 
0
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where T

jI  is the importance measure of the jth component during the mission duration T. The developed importance 

measures can be used in determining the maintenance priority of components for PM. 

IV. PROPOSED IGA 

The following sections describe the proposed IGA for minimizing periodic PM cost in series-parallel systems. 

4.1 Construction of periodic PM model of the series-parallel system 

The PM cost model is based on the work of Bris et al. [4], as follows. 

Minimize     
( , )

1 1 1

( ( , ))
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k i j
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Subject to      
0( )SR t R                                                                           (9) 
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where PMC  is total maintenance cost; ( , )e i k  is the ith component of the kth parallel subsystem; 
( , )e i kn is the total number 

of instances of maintenance of the ith component of the kth parallel subsystem; ( ( , ))jC e i k is the cost of the jth instance of 

maintenance of the ith component in the kth parallel subsystem; KE is the number of components in the given kth parallel 

subsystem; K is the number of parallel subsystems; 0R represents the allowable worst reliability value, and ( )SR t is the 

reliability of the system at time t. 

4.2 Construction of IGA 

This study adopts real encoding to represent maintenance periods. Hence, each gene represents the maintenance period for a 

component. A chromosome comprises the maintenance periods of all components. A different combination of maintenance 

periods of all components forms a different chromosome. The proposed IGA has the following two stages. 

Stage 1: Identify the combinations of important components 

The values of importance measure, 
T

jI , for all components are calculated using Eqs. (6) and (7). According, the importance 

sequence of components is determined as follows: 

1

{ }
n

i
i

s


S         (11) 

where is  is the i
th

 important component; n is the number of components in a system; and S   is a set of importance 

sequence of components. According to S  , the important components of a series-parallel system are determined in the 

following iteration procedure. 

1. Given the first one component in  S , optimize the periodic preventive maintenance model using the GA to obtain a 

total maintenance cost if feasible solutions exist. 

2. Add a component according to the importance priority in S  , optimize the periodic preventive maintenance model 

using the GA to obtain a total maintenance cost if feasible solutions exist. 

3. Repeat iteration 2 until all the components are involved when optimizing the periodic preventive maintenance 

model. 

The combination of components with the lowest total maintenance cost is identified as the important components of a series-

parallel system. The equation for identifying the important components can be expressed as 

( ) min ( ) ,  1,  2,  ...,  ,  ...,  PM m PM jC C j m n   S S                                                  (12) 

where  ( )PM jC S   is the optimized total maintenance cost given the first j components in S ;  ( )PM mC S  is the lowest 

maintenance cost of the first m components in S  , 1 m n  . These m important components are substituted in the second 

stage to establish initial GA population and thereby optimize their maintenance periods. The other unimportant components 

do not implement maintenance work for the mission duration.  

Additionally, this study employs RSM to systematically determine the optimal settings of crossover probability and mutation 

probability including the following steps.  

Step 1: Plan the RSM experiments for crossover and mutation probabilities 

The faced center cube central composite design (FCCD) from the RSM was adopted to plan experiments in which crossover 

probability and mutation probability are two experimental factors. In total, 13 experimental points involving 4 factorial 

points, 4 faced axial points, and 5 center points were designed. For further details of the central composite design, refer to 

Montgomery [16]. 
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Step 2: Conduct RSM experiments and record experimental observations 

The 13 planned FCCD experiments are conducted with various crossover and mutation probabilities, and the close-to-

optimal solutions for the total maintenance cost under experiments are recorded. 

Step 3: Establish the response surface model of total maintenance cost 

The response surface model for total maintenance cost on crossover probability and mutation probability is established based 

on experimental observations. The lack-of-fit test is utilized to determine the appropriateness of the model. Normally, p value 

of lack of fit test greater than   indicates the fitted model is appropriate at the significance level of . If a quadratic model is 

appropriate, the model can be expressed as follows:  

2 2

0 1 1 2 2 12 1 2 11 1 22 2y x x x x x x                                                             (13) 

where y  represents the total maintenance cost; 
1x   and 

2x  are the linear effects of crossover probability and mutation 

probability on the total maintenance cost, respectively; 21xx  indicates the interaction effects of crossover probability and 

mutation probability on the total maintenance cost; 
2

1x  and 
2

2x  are the quadratic effects of crossover probability and mutation 

probability on the total maintenance cost, respectively; 
0 , j , ij , and jj  are regression parameters;    is a random error 

term. 

Step 4: Determine the optimal combination of crossover probability and mutation probability 

The optimal combination of crossover probability and mutation probability is determined based on the established response 

surface model obtained by step 3. Accordingly, chromosome evolution through breeding is imitated. 

Stage 2: Optimize the maintenance periods. 

The combination of the first m important components and the optimal parameters of crossover probability and mutation 

probability obtained from stage 1 form the basis to optimize the maintenance periods of a periodic PM model, performed by 

the following steps. 

Step 1: Randomly generate maintenance periods of the first m important components to form initial population of 

chromosomes. 

Step 2: Reproduce the initial chromosome population 

The conventional roulette-wheel selection scheme is employed for reproductive and elimination procedures; the number of 

chromosome is the same as the initial population. 

Step 3: Apply the crossover procedure to chromosomes 

The uniform-crossover method was applied as the crossover procedure to generate offspring. 

Step 4: Apply the mutation procedure to chromosomes 

Step 5: Perform the adjustment mechanism 

An adjustment mechanism is established to make the chromosomes move back to feasible area in case the chromosomes fall 

into infeasible area. Doing so can enhance the exploring ability of conventional GA. In the constructed series-parallel 

maintenance model, the chromosomes with reliability lower than the allowable worst system reliability represent infeasible 

solutions. The proposed adjustment mechanism includes the following two procedures. 

˂1˃Shorten the maintenance periods of components 

The maintenance period of the component scheduled to be maintained at the time the occurrence of the lowest reliability is 

shortened to increase system reliability. 

˂2˃Determine if the reliability greater than allowable worst system reliability 

Recompute the system reliability after shortening the maintenance period of components. If the computed reliability does not 

meet the system minimum requirement, then repeat ˂1˃ and ˂2˃ until the reliability greater than system requirement, namely 

the chromosome moves back into feasible area. 
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Step 6: Perform elitist conservation strategy 

If the total maintenance cost during each generation is lower than a recorded best fitness value (namely, the elitism), the 

elitism is replaced by the champion; otherwise, the chromosome with highest total maintenance cost (namely, worst fitness 

value) in each generation is replaced by the elitism. 

Step 7: Terminate the IGA 

Terminate the IGA and output the optimized maintenance periods of all components if the total iterations surpass a 

predetermined value or the fitness does not improve in continually maximum iterations. 

V. CASE STUDY 

The PM model of a series-parallel system that was proposed by Bris et al. [4] is adopted herein to confirm the feasibility and 

practicality of the proposed algorithm. This system consists of four subsystems and 11 components. Components 1, 2, 3, 4 

and 5 constitute the first subsystem. Component 6 is the second subsystem, which has a single unit. Components 7, 8, and 9 

constitute the third subsystem. Components 10 and 11 consist of the fourth subsystem. Fig. 1 displays the reliability block 

diagram. Table 1 presents the component parameters, including the probability distribution, mean time to failure (MTTF), 

and maintenance cost for each component. The mission duration of 50 years is simulated. The allowable worst system 

reliability is 0.9. The goal is to optimize the maintenance times and minimize the maintenance cost during the mission 

duration. 

Via the proposed IGA, this case was optimized in a stage-by-stage manner as follows. 

Stage 1: Identify the combinations of important components. 

The importance measures of 11 components, T

jI  values, are computed to form the importance sequence S = {5, 6, 11, 3, 1, 2, 

10, 8, 9, 7, 4} using Eqs. (6) and (7). Table 2 lists the importance measures of all components for mission duration of 50 

years. According to the proposed iteration procedure, the conventional GA is then applied with 5 repetitions under an initial 

population of 200 chromosomes—crossover probability is 0.86 and mutation probability is 0.13 obtained from RSM—to 

identify the important components. The GA is terminated at 200 iterations. Hence, five total maintenance costs can be 

obtained to calculate the average total maintenance cost when feasible solutions exist. First, for the case involving the first 

important component, the fifth component, no feasible solution exists. For the case involving the first two components, 

components five and six, no feasible solution was found. This iteration procedure is performed by adding one component 

according to the importance priority in the importance sequence until all components are involved. Table 3 summarizes the 

optimized average total maintenance cost for all iterations. Via Eq. (12), the set of  , iteration seven, which has the lowest 

average total maintenance cost of 218.5, was identified as the combination of important components,  = {5, 6, 11, 3, 1, 2, 10}. 

These important components, components 1, 2, 3, 5, 6, 10 and 11, are then substituted into stage two to establish an initial 

population and thereby optimize their maintenance periods. The components that are not included in   do not implement 

maintenance works for the mission duration. 

Noticeably, the determination of GA with a crossover probability of 0.86 and mutation probability of 0.13 using RSM for 

this case is as following steps. 

Step 1: Plan the RSM experiments for crossover and mutation probabilities 

The crossover and mutation probabilities are set as two designed factors of RSM experiments for the maintenance cost.  

Table 4 shows the allocation of the factors levels. The FCCD is utilized to produce the designed points. In total, 13 designed 

points are generated using the experimental design software DESIGN EXPERT. 

Step 2: Conduct RSM experiments and record experimental observations 

Experimental observations, total maintenance cost, obtained by the GA are recorded. Table 5 shows the RSM experiments 

and corresponding maintenance cost. 
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FIGURE 1. RELIABILITY BLOCK DIAGRAM [4] 

TABLE 1 

COMPONENT PARAMETERS [4] 
Number of components Probability distribution MTTF (years) Maintenance cost 

1 exponential 12.059 4.1 

2 exponential 12.059 4.1 

3 exponential 12.2062 4.1 

4 exponential 2.014 5.5 

5 exponential 66.6667 14.2 

6 exponential 191.5197 19 

7 exponential 63.5146 6.5 

8 exponential 438.5965 6.2 

9 exponential 176.0426 5.4 

10 exponential 13.9802 14 

11 exponential 167.484 14 

 

TABLE 2 

IMPORTANCE MEASURES AND PRIORITY FOR =50 YEARS 
Number of components Importance measures Priority 

1 1.1957 5 

2 1.1957 5 

3 1.2268 4 

4 0.0039 11 

5 8.8588 1 

6 6.0445 2 

7 0.0948 10 

8 0.1538 8 

9 0.1359 9 

10 0.9415 7 

11 5.4180 3 

 

TABLE 3 

COMBINATIONS OF IMPORTANT COMPONENTS 

Iterations Sm
 The combinations The average total maintenance cost 

1 S1
 

5 No feasible solutions 

2 S2
 

5, 6 No feasible solutions 

3 S3
 

5, 6, 11 427.8 

4 S4
 

5, 6, 11, 3 280.3 

5 S5
 

5, 6, 11, 3, 1 241.2 

6 S6
 

5, 6, 11, 3, 1, 2 225.3 

7 S7
 

5, 6, 11, 3, 1, 2, 10 218.5 

8 S8
 

5, 6, 11, 3, 1, 2, 10, 8 226.8 

9 S9
 

5, 6, 11, 3, 1, 2, 10, 8, 9 235.5 

10 S10
 

5, 6, 11, 3, 1, 2, 10, 8, 9, 7 244.7 

11 S11
 

5, 6, 11, 3, 1, 2, 10, 8, 9, 7, 4 253.1 
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TABLE 4 

FACTORS LEVELS 

Factors Low level High level 

Crossover probability 0 1 

Mutation probability 0 1 

 

Step 3: Establish the response surface model of total maintenance cost 

According to the experiments, the response surface model of total maintenance cost was established. The p-value of lack-of-

fit test is 0.0701, revealing that a quadratic response model was appropriate (p>0.05). The fitted model is as follows. 

2 2

1 2 1 2 1 2
ˆ 283.9 178.9 53.8 60.0 98.2 46.2y x x x x x x                                      (14) 

where ŷ  is the predicted total maintenance cost; and 
1x  and 

2x are the crossover and mutation probabilities, respectively. 

The coefficient of determinant for this model is 2 0.933R  . Table 6 presents the analysis of variance (ANOVA) 

TABLE 5 

DESIGNED EXPERIMENTS AND TOTAL MAINTENANCE COST 
Experimental points Crossover probability Mutation probability Total maintenance cost 

1 0 0 290.5 

2 0 0.5 268.2 

3 0 1 270.1 

4 0.5 0 205.7 

5 0.5 0.5 227.8 

6 0.5 1 253.7 

7 1 0 210 

8 1 0.5 217.2 

9 1 1 249.6 

10 0.5 0.5 216.4 

11 0.5 0.5 220.2 

12 0.5 0.5 216.9 

13 0.5 0.5 213.2 

 

TABLE 6 

ANOVA TABLE FOR TOTAL MAINTENANCE COST 

Source Sum of Squares DF Mean   Square F Value P Value 

Model 8578.91 5 1715.78 19.47 0.0006 

A (Crossover probability) 3850.67 1 3850.67 43.69 0.0003 

B (Mutation probability) 752.64 1 752.64 8.54 0.0223 

A
2 

1664.37 1 1664.37 18.89 0.0034 

B
2 

368.34 1 368.34 4.18 0.0802 

AB 900.00 1 900.00 10.21 0.0152 

Residual 616.90 7 88.13   

Lack of Fit 493.26 3 164.42 5.32 0.0701 

Pure Error 123.64 4 30.91   

Cor Total 9195.81 12    

 

From ANOVA results, the linear and quadratic effects of crossover probability, and the linear effects of mutation probability 

on the solution of total maintenance cost are significant. Furthermore, the interaction effect between crossover probability 

and mutation probability is also significant. The significance level is 0.05. Fig. 2 shows the response surface diagram of the 

total maintenance cost solution for crossover probability and mutation probability. 
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FIGURE 2. RESPONSE SURFACE DIAGRAM OF TOTAL MAINTENANCE COST 

Step 4: Determine the optimal combination of crossover probability and mutation probability 

Via mathematical programming, the optimal crossover and mutation probabilities are 0.86 and 0.13, respectively. These 

optimal settings are then substituted into the GA breeding process to approach the global optimum of the total maintenance 

cost solution. 

Stage 2: Optimize maintenance periods 

The randomly generated maintenance periods of seven components obtained from stage one form an initial population of 

chromosomes with seven genes. Each gene is a maintenance period of a component. Thus, the initial population of 200 

chromosomes is established. The optimal settings of parameters obtained from RSM, including crossover probability is 0.86 

and mutation probability is 0.13, are then substituted into the IGA search mechanism to approach the global optimum of the 

total maintenance cost solution. The magnitude of the adjustment mechanism to heighten system reliability by shortening 

component maintenance periods is set to 0.1 in this case. The IGA is terminated at 200 iterations. The optimized total 

maintenance cost for this case is 178.1. Table 7 lists the optimal maintenance periods of components for mission duration of 

50 years. Fig. 3 shows the corresponding reliability curve. All reliability values exceed 0.9, satisfying the constraint of 

allowable worst reliability. 

TABLE 7 

OPTIMIZED MAINTENANCE PERIODS ( MT =50 years,  ( )SR t   0.9) 

Number of components 1 2 3 5 6 10 11 

Maintenance periods 21.47 17.08 9.63 25.78 13.40 32.04 11.24 

 

 

FIGURE 3. RELIABILITY CURVE ( MT =50 years, ( )SR t   0.9) 
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To verify the effectiveness of the retrieval mechanism for the GA, this case is optimized using a conventional GA and 

proposed IGA simultaneously. The conventional GA outputs an inferior total maintenance cost of 241.7. However, the IGA 

efficiently reduces total maintenance cost at 178.1. Therefore, the proposed IGA improves the solving ability of the 

conventional GA. The IGA optimization results are further compared to those obtained by Bris et al. [4] and Samrout et al. 

[19]. Table 8 summarizes comparison results. The optimized total maintenance cost in this study is reduced to 178.1 from 

238, which was obtained by Bris et al. [4]—resulting in a reduction of 59.9 for mission duration of 50 years. Compared with 

that acquired by Samrout et al. [19], the optimized total maintenance cost is reduced to 178.1 from 224.2, a reduction of 46.1 

for mission duration of 50 years. The proposed IGA outperforms the approaches developed by Bris et al. [4] and Samrout et 

al. [19]. Therefore, the effectiveness of the proposed IGA in optimizing periodic preventive maintenance models can be 

confirmed. 

TABLE 8 

COMPARISONS OF THE TOTAL MAINTENANCE COST IN MISSION DURATION OF 50 YEARS 

 
conventional 

GA 

Bris    

et al. 

[4] 

Samrout et 

al. 

[19] 

This 

study 

(IGA) 

Compare with 

conventional 

GA 

Compare 

with 

Bris et al. 

[4] 

Compare 

with 

Samrout et 

al. 

[19] 

 Reduction Reduction Reduction 

50MT 
 

241.7 238.0 224.2 178.1 63.6 59.9 46.1 

 

VI. CONCLUSIONS 

Some superior meta-heuristic algorithms and improved algorithms have been proposed to resolve large complex problems in 

recent years. However, due to the diversity of the problems, a customized algorithm typically outperforms a general 

algorithm in solving specific problems. This study proposes an improved GA to minimize total periodic PM cost. A novel 

importance measure of component is proposed for PM. Furthermore, an adjustment mechanism is established to move the 

chromosomes from infeasible to feasible areas in order to enhance the exploratory ability of conventional GA. A case 

adopted from a previous study demonstrates the problem solving efficacy of the proposed IGA. This algorithm can be 

extended to solve large problems with complex series-parallel systems comprised of many subsystems or components. 

Moreover, the proposed IGA can be modified for non-periodic maintenance and imperfect maintenance models. 
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