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Abstract— This article investigates the performance of the generator excitation loop equipped with a PID controlled AVR 

system, and of the dam automaton consisting of a PID controlled water flow regulation system in the southern interconnected 

grid (SIG) of the Cameroonian power system, when subjected to small perturbations, using linearized state-space models of 

the power plant. A fifth order model of the synchronous generator with a high gain excitation system and AVR is considered. 

A detailed formulation of equations comprising the mechanical and electrical swing dynamics of the turbine-generator unit 

and the load is realized; a multivariable state-space non linear model of the one area single machine system model is 

obtained. For small-signal performance analysis, the model is linearized around an operating point. The article also 

presents a state-space model of the water flow system. The effects of PID controlled AVR and water flow regulation systems 

are examined through performing of extensive MATLAB simulations to analyze the behavior of the proposed models 

following small disturbances. The simulation results presented in this paper are obtained using a MATLAB computer 

program developped by the authors; they provide useful insight into the dynamic behavior of the Cameroonian SIG, 

including stability, speed of response and steady-state accuracy. The paper establishes that the classical control systems do 

not have very good performance: long settling time, high overshoot, relativly slow response, and many damped oscillations. 

Keywords— AVR, excitation system, PID controller, state-space modeling, small-signal stability. 

I. INTRODUCTION 

Stability is one of the important issues of safe power system operation. Repeated global power outages due to power system 

instability reveal the importance of the issue [1]. Power system oscillations were first observed as soon as two or more 

synchronous generators were connected together to provide more generation capacity and reliability. Originally, the fairly 

closely connected synchronous generators were observed to swing against each other at low frequency; these spontaneous 

oscillations appeared in mechanical variables like rotor angle and speed [2]. Since synchronous generators are rotating 

electromechanical devices, mechanical oscillations of their rotor were transmitted by electromagnetic induction to electrical 

variables like bus voltages, line currents and power. The oscillations are initiated by variations in generation and custom 

loads, which act upon the systems as perturbations or disturbances. Because power systems have an almost continuously time 

varying nature – load and thus power demand vary in time, they always suffer from oscillations. Power system oscillations 

are therefore inevitable and are a characteristic of the system. The perturbations could be normal or abnormal. Normal 

perturbations are often of small magnitude, and abnormal perturbations like loss of a large generator or custom load, and 

short-circuit on a transmission line or in a substation are of large magnitude. Power system oscillations become much worse 

following a large disturbance. In some cases the low frequency growing oscillations cause loss of power supply to custom 

loads, loss of synchronism among generators, or they reduce transmission capability of long transmission lines; these are 

expressions of power system instability. Voltage oscillations in a power system indicate a high degree of its vulnerability, 

because a change in the condition of power system could easily lead to a progressive drop in voltage at all buses in the 

transmission network, and to voltage collapse. Distribution networks are practically exempted from this problem due to their 

passive nature. Over the last three decades, the problems of low frequency oscillations in power systems have assumed 

importance. 

The stability issue of power systems can thus be stated in three aspects [3], [4]: (i) rotor (or power) angle stability, (ii)  bus 

voltage stability and (iii) frequency stability. An upset in the balance between power generation and power demand can affect 

frequency stability; the frequency could no more be maintained within the stability limits. The inability of the power system 

to meet the demand for reactive power causes voltage instability. However, voltage instability does not always occur alone; 

often angle and voltage instabilities are associated. One may lead to the other and the distinction may not be clear. 
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Moreover, as power systems are nonlinear, their stability depends on both the initial conditions and the magnitude of a 

disturbance. Consequently, rotor angle and voltage stability can be divided into steady-state or small-signal stability and 

transient or large disturbance stability [1], [5]. A distinction between these two types of stability is important for 

understanding the underlying causes of the problems in order to develop appropriate controls and operating procedures. 

Under steady-state operating conditions, bus voltages and line currents of all the synchronous generators must have the same 

frequency and the rotor mechanical speed of each generator must be synchronized to this frequency: the generators are said 

to operate in synchronism. A perturbation on the power system that results in a change of the electrical torque could cause 

oscillations of the generator rotor around its equilibrium point due to insufficient damping torque component, or a steady 

increase in the rotor angle due to insufficient synchronizing torque component. A high magnitude of rotor oscillations or the 

angle drift of the generator rotor can entail loss of synchronism with the rest of the network and disconnection of certain 

generators; rotor angle instability is associated with slow loss of synchronism among generators. 

In the Cameroonian power system, considering the southern interconnected grid (SIG) consisting of two hydropower plants 

with 16 turbine-generator units and one gas plant, which supplies six regions of the country where almost 90% of economic 

and industrial activity in the country is concentrated, it constitutes the core of the Cameroonian power system, and provides 

the bulk of Cameroons’ electricity [6]. In the SIG, power generation is centralized and hydro-dominant; the three power 

generating stations are connected to a very high voltage transmission substation in Mangombe, and from there power is 

transmitted to the different load centers. In the past two decades the SIG suffered from instability which prevented the grid 

from beeing fully utilized, and from very poor power quality; it experienced many perturbations due to power imbalance – 

insufficient power generation and increased active or reactive power demand. Low frequency oscillations were observed in 

bus voltages and line currents; they often caused loss of power supply to custom loads in the nearby region, or reduced power 

transmission capability of long transmission lines like those from Mangombe to Yaounde and Bafoussam. The transmission 

network in the SIG also often experienced voltage drops and voltage oscillations during periods of high power demand. 

During dry seasons, perturbations were worsened due to insufficient water flow for production; power furniture could not 

meet demand and was frequently interrupted for hours or days – load shedding was often used to match power demand with 

power production. 

In power systems, a particular issue encountered at the generating plant level is to maintain stability under various operating 

conditions [3]. The problem of small-signal stability in generating plants is usually one of insufficient damping of their 

oscillations. The first solution to this problem was to realize damper windings on generators and turbines [7]. But with 

generators equipped with slow excitation systems (DC and AC excitations), the available synchronizing torque was weak. 

This weakness of the synchronizing torque was found to be causing system instability when power systems started operating 

close to their stability limits. To enhance the synchronizing torque, fast excitation systems (static excitations) were used [5]. 

To avoid this second problem, an automatic voltage regulator (AVR) was installed on the generators, so that it acted on their 

excitation system. The generator control is one of the basic control means of power systems; it incorporates also a speed 

governor for speed control. The AVR introduces a positive synchronizing torque component in excitation systems, and a 

negative damping torque component that reduces the damping of the system oscillations [3]. A poorly damped power system 

could be subjected to cascade failure after a variation of demand. The low frequency oscillations in power plants 

incorporating generators equipped with a static excitation system were traced to fast voltage regulation. The generators of the 

Song-Loulou power plant are equipped with static excitation systems; thus there is a risk that by greater amounts of power 

flowing across High Voltage or Very High Voltage long transmission lines an increasingly nefarious oscillatory instability 

factor be added compared to earlier situations, leading to low frequency oscillations in the SIG. 

To enhance the stability of power systems, Power System Stabilizers (PSSs) and Flexible Alternating Current Transmission 

Systems (FACTS) are being currently used as additional controllers. Although FACTS are quite effective on damping low 

frequency oscillations, they are merely used to enhance the capability of transmission lines, but they are not used in the SIG. 

The PSS is added to the AVR in the generator excitation system to enhance the damping of low frequency small-signal 

oscillations. The operation of the Cameroonian SIG equipped with classical AVR and PSS has been shown to be 

unsatisfactorily. Experience has shown that a classical power system stabilizer tuned for an operating point do not show good 

performance by perturbations in different operating points [8]. There is need for additional generator controllers which 

simultaneously increase the damping of power system oscillations and the synchronizing torque, in order to enhance the 

overall steady-state and dynamic stability (angle, voltage, and frequency) of the Cameroonian SIG. 
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Modern control theory with multivariate approach could offer some tools for this task. Until now, from the existing generator 

control systems none is the implementation of modern control theory [9], they were designed using frequency or root locus 

method, and they were designed to solve a single problem. It was seen that they helped solve one aspect of the problem, but 

to the detriment of another aspect. Control system design generally begins with the realization of an appropriate model for 

the dynamic system, which will be used to evaluate its overall performances. Power system operators and planners need 

effective tools to assess the overall stability of the system and take appropriate actions to enhance its stability over a wide 

range of operating conditions: the model simulation. Modeling of power plants and their loads is therefore fundamental to the 

evaluation of their performance by simulation and design of their control. 

Numerous research works have been done and published on modeling and simulation of power systems for small-signal 

stability studies. Demello and Concordia [4], Kundur et al. [11], and Chow et al. [12] developed a linearized model of 

synchronous generator and its excitation system connected to an infinite bus in the form of block diagram, in frequency 

domain. Baghani and Koochaki [8] developed a linearized state-space model of a synchronous generator and its excitation 

system. Their model was derived from the steady-state harmonic operation which is linear. Pedro Camilo de Oliveira e Silva 

et al. [13] developed a linearized state-space model of a complete power plant. 

For the Cameroonian SIG, state-space models of water flow system, turbine-generator unit, voltage control system, speed 

control system, and load connected at the generator terminals will be developed. Thank to the architecture of the SIG that is 

rather a radial than a meshed one, the SIG can be considered as simple, and will be modeled as a one area single machine 

system. The model must overcome some of the shortcomings of the aforementioned models. Thus, the turbine-generator unit 

model will be built by physical principles and put in state-space form. Small disturbances hypothesis permits the linearization 

of the system of equations and the application of all the wealth of the modern control theory. The other devices will be 

transformed from frequency representation form that is already linear, into state-space representation form. The performance 

of the integrated overall system will be assessed using MATLAB simulation. 

The rest of this paper is structured as follows: in section II the feedback control structure of the system is presented. In 

section III the detailed development of a linearized state-space model of the Cameroon SIG is realized; this linearized form is 

suitable for practical study of the classical control systems performance. Some illustrative simulation results are presented 

and discussed in section IV. In the final section of the paper some concluding remarks are mentioned. 

II. FEEDBACK CONTROL STRUCTURE OF THE POWER SYSTEM 

The Cameroonian SIG incorporates in reality many autonomous feedback control systems, each consisting of a generating 

unit (turbine and alternator), and the load. It can be modeled as a one area single machine system. 
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FIG. 1: FEEDBACK CONTROL STRUCTURE OF THE POWER PLANT 
 

The structure of the feedback control system of the SIG is shown in fig. 1 [14]. A generating unit incorporates three feedback 

control loops for the regulation of the three main variables influencing the power output. These variables include the flow 

rate of water impacting the turbine, the alternator rotor speed and the alternator armature voltage which determines the 

magnetic flux permeating the armature circuit. Each of these variables is maintained at a reference value by an appropriate 

feedback control loop. 
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III. STATE-SPACE MODELING OF THE POWER SYSTEM 

3.1 The Turbine-Alternator Sub-system 

From a system dynamics perspective, the alternator is the most complex component of the power system, due to the presence 

of several coils in armature and in rotor, which are mounted on separate geometrical axis and are magnetically mutually 

coupled. The alternators used in hydro electric power generating plants are salient poles synchronous machines. Their 

permeance varies across the air gap with respect to the pole axis (d-axis) of the polar wheel and to an axis at right angle to the 

pole axis, the quadrature axis (q-axis) [14]. As a logical consequence of this, an orthogonal system with d-q axis is 

introduced on the rotor, with the d-axis superimposed on the polar axis and the q-axis lagging the d-axis. The various 

inductances in the alternator are represented by six coils [3], [15]. The stator contains three coils mounted on three axis 

separated from each other by an angle of 120°. The inductor coil F is located on the rotor in the d-axis. The damping effect is 

represented by the short-circuited fictitious coils KD and KQ in the d- and q-axis respectively. Some inductances vary with 

the angular position of rotor with respect to the axis of armature reference coil  which in turn varies with time. This 

introduces considerable complexity in the machine differential equations whose coefficients are time variable. The 

elimination of the time dependency of the inductance terms is obtained by Park’s transformation [15]. Due to this 

transformation, the magnetizing effect of the three-phase armature currents is replaced by that of their components id(t) and 

iq(t) flowing in two imaginary coils located on the d- and q-axis of the rotor, and the magnetizing effect of the damping coils 

is due to the currents iKD(t) and iKQ(t) flowing in coils KD and KQ. 

3.1.1 Electrical State-Space Model of the Alternator 

The electrical state-space model of the three phase alternator in d-q-0 components is [14]: 
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where the zero-sequence voltage u0 and current i0 are zero, since the alternator operation is assumed to be in equilibrium. The 

system matrices  '
GA  and  '

GB  are independent of time and are defined in Appendix 1. 

3.1.2 Mechanical model of the Rotor of Alternator-Turbine Unit 

Assuming rigid coupling of turbine and alternator, the motion of the rotor is described by the following equation: 

 

emm
m

t TT
²dt

²d
J 


         (2) 

where, 

Jt = moment of inertia of all rotating elements 

Tm = mechanical torque produced by the turbine 

Tem = electrical torque opposing the motion of the rotor 

m  = mechanical angle 

In the Park transformed electrical model of the generator, the electromagnetic torque results from the interaction between the 

total flux linkages d and q with the fictitious windings in d- and q-axis, and the currents through these windings id and iq. 

It is expressed as follows [14], [15]: 
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 dqqdem iipT         (3) 

where, 

d and q = fluxes permeating the coils d and q, respectively 

di  and qi  = currents in the coils 

p = number of pairs of poles 

The expressions of d and q are given by [14], [15]: 
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The electromagnetic torque then has the detailed form: 
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Even at synchronous speed, the rotor oscillates and EMFs are then induced in the damping coils and in the rotor iron. The 

currents driven by the induced EMFs (eddy currents in the rotor iron) interact with the flux linkages of the damping coils and 

produce a torque which dampens the oscillations (Lenz’s law). The effects of eddy-currents in the rotor iron and of currents 

in the damper coils can be lumped into a damping torque. The second term in equation (5) is obviously the damping torque 

TD which is moreover proportional to the rate of change of the angle of polar wheel. It is described by the equation: 
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Substituting for Tem and TD in equation (2) results in the non-linear differential equation that describes the mechanical 

behavior of the generator rotor and the turbine: 
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3.1.3 Linearization of the mechanical model 

During stable and balanced operation of the alternator, the stator phase voltages are sinusoïdal of constant magnitude V̂ , 

they form a balanced three phase system. Applying the inverse Park transform to the system of phase voltages results in the 

components [14] : 
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When the system oscillates about an operating point (ud0, uq0, U0, p0) with the small variations U and p of the variables U 

and p respectively, the small variations of the components ud and uq can be approximated as: 
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Linearising equation (1) and ignoring the damping currents iKD and iKQ whose effect has already been taken into account by 

introduction of the damping torque TD, results in the following state equations of the three phase alternator: 
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where the system matrices  GA  and  GB  are given in appendix 1. Equation (7) can also be linearized by considering 

small variations about an operating point (id0, iq0, iF0, n0, Tm0, Pm0). The linearized version of this equation is of the form : 

   











































n
n2

P
P

n2

1

J

p
iiM

2

3

J

p

iiM
2

3
iLL

J

p
iiLL

J

p

dt

d

J

kp

dt

d

2
0

0m
m

0t
F0qFS

t

2

q0FFS0dqd
t

2

d0qqd
t

2
p

t

Dp


  (11) 

Combining the state equations (10) and (11), the state-space representation of the turbine-alternator sub-system is obtained in 

the form: 
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where the system matrices  TGA  and  TGB  are given in appendix 1. 

3.1.4 Model of the Hydraulic Turbine 

The water gate opening Y and the head Hf have a direct influence on the water velocity in the penstock and thus on the flow 

rate. In stability studies of power systems, if mechanical power Pm is the output variable and gate opening Y the input 

variable, the non ideal hydraulic turbine can be represented by a transfer function FTH as follows [3], [15] : 
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sTb1
K)s(F
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tTH




         (13) 

where, 

s= Laplace operator 

TW= hydraulic time constant for a given load level 

Kt= gain of hydraulic turbine 

ath1 and bth1= coefficients of transfer function 

The canonical state-space representation for small variations about a stable operating point, derived from the function (13) is 

of the form: 
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where the coefficients of the state-space model are represented in Appendix 2. 

3.2 State-Space Models of the Control Systems 

As shown in fig. 1, there are three control loops in the system –the flow, the speed and the voltage control systems. 

3.2.1 The Flow Control System 

The block diagram of the flow control system [16] is shown in fig. 2. 

FIG. 2 : BLOCK DIAGRAM OF THE FLOW CONTROL SYSTEM 

The system incorporates a PID controller. The variables and parameters in the block diagram are defined as follows: 

Q = water flow rate 

Qréf = reference water flow rate 

KP = proportional gain of the PID flow controller 

Td = rate time of the PID flow controller 

Ti = reset time of the PID flow controller 

Tf = filter time constant of the flow-head converter 

Kb = rate of slope 

The closed-loop transfer function of the system is of the form: 
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where the coefficients irba  and irbb  are represented in Appendix 3. The corresponding canonical controllable state-space 

representation is of the form: 
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3.2.2 The Speed Control System 

The block diagram of the speed control system is shown in fig. 3 [3], [17]. The system incorporates a PI controller. 

The variables and parameters in the block diagram are defined as follows: 

Y: Water gate opening 

n: Angular speed of the alternator 

P: Active power supplied to the load by the alternator 

nréf : Speed set point 

Préf : Active power set point 

Tn : Time constant 

Kc : Proportional gain of PI 

Ki : Integral gain of PI Controller 

Bl : gain of limiter 

Tx : Time constant 

Ks : Gain of the servo valve 

Ts and TV : Time constants of the servo valve and valve-wagon units respectively 

Bt : Transient droop 

Rp: Permanent droop 

Td : Minor loop Time constant 

In addition to the main speed control feedback loop, a subsidiary power feedback loop is applied to the system to limit the 

active power supplied during transient operation or in situations of overload. 

The closed-loop transfer function of the system is of the form: 
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where the coefficients airv, birvn and birvp are represented in Appendix 4. The canonical state-space representation, derived 

from the closed-loop transfer function, is of the form: 

 

FIG. 3: SPEED CONTROL SYSTEM 
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3.2.3 The Voltage Regulator 

The block diagram of the voltage regulator is shown in fig. 4. 

FIG. 4 : BLOCK DIAGRAM OF THE VOLTAGE CONTROL LOOP 

The parameters in the block diagram are defined as follows: 

Uréf : Armature voltage set point 

U : RMS value of armature voltages 

IF : Excitation current 

UF : Excitation voltage 

Ur : Voltage representing the RMS value of Armature coils voltages 

K1 : Gain of the voltage regulator 

1 : Time constant of the voltage regulator 

K2 : Gain of the reference voltage amplifier 

K3 : Slope of the thyristor characteristic 

K5 : Gain of the excitation voltage regulator 

f : Time constant of the excitation voltage 

K6 : Gain of the current regulator 

6 : Time Constant of the current regulator 
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K8 : Conductance of the armature voltage control chain 

8 : Time constant of the armature voltage control chain 

The canonical state-space representation, derived from the closed-loop transfer function is of the form: 
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where the coefficients airt and brt are represented in Appendix 5. 

3.2.4 The Power System Load 

The behavior of the power system load has great influence on its stability and that of the generating units. The multiplicity of 

loads and the diversity of their behavior make their modeling a difficult task. Traditionally, load models are classified in two 

broad categories: static and dynamic loads. Here we consider static loads whose voltage-frequency behavior can be described 

by exponential equations [3], [15] of the forms: 
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where : 

PL0 = initial value of active power in pu 

QL0 = initial value of reactive power in pu 

U0 = initial RMS value of armature voltages in pu 

U = RMS value of generator armature voltages in pu 

f = variation of the frequency in pu 

m, n = voltage exponent for active and reactive loads respectively 

Kpf = frequency sensitivity for active load 

Kqf = frequency sensitivity for reactive load 

The linearized version of equations (20) is then: 
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        (21) 

The small variation of the RMS value of the armature voltages in the reference frame of the alternator is of the form : 

fUUiRiRU fpqqdd          (22) 

where the coefficients Rd, Rq, U and Uf are represented in Appendix 6. 

3.3 State-Space Model of the Power System 

Combining the models of the constituent sub-systems, we obtain an 18
th

 order state-space model of the power system that is 

of the form: 
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where, 

 x  = 18x1 state vector 

 y  = 13x1 output vector 

 SA  = 18x18 matrix (the A-matrix) 

 SB  = 18x3 matrix (the B-matrix) 

 SC  = 13x18 matrix (the C-matrix) 

The elements of these different matrices and vectors are presented in Appendix 7. 

IV. SIMULATION RESULTS AND DISCUSSION 

In this paper, to show the validity of the linearized state-space model of the Cameroonian SIG, and hence to investigate the 

performance of its PID controller, PID controlled voltage and speed regulators, simulation works have been carried out for 

the single machine system connected to a load, using MATLAB programs designed by the authors. Most of the model 

parameters used in the ensuing simulation are given in the appendix and were obtained from technical manuals of the system. 

Some parameters were obtained from experiments on a prototypal alternator [18]. 

In order to prove the validity of the model, the results are compared with those given in source books like [3] and [15]. The 

perturbations considered in this paper are input unit steps which are applied to the system. We consider the operating point 

given in appendix 8 which also gives the values of sub-systems parameters. The parameterized state-space model is 

presented in Appendix 7. The simulation results are step responses of water flow deviation, armature voltage deviation, rotor 

speed deviation and rotor angle deviation. They are depicted respectively in figures 5 to 8. 

Fig. 5 illustrates the step response of the dam water flow system given in fig.2, to a unit step disturbance of the reference 

water flow rate. 
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FIG. 5 : RESPONSE TO THE SET POINT UNIT STEP OF THE WATER FLOW 

The PID controller really stabilizes the system. The dynamics of the water flow rate deviation exhibits during post 

perturbation state many oscillations with large initial amplitude which then decreases slowly, before it settles to its steady 

state value 1,0. The system is poorly damped and it is not regulated back to zero deviation after a unit step perturbation of the 

water flow set point. The system with classical PID controller has a long settling time and a bad accuracy. 

Fig. 6 illustrates the step responses of the turbine-alternator system, following a disturbance of the reference armature 

voltage. It shows the deviations of the armature voltage U, the rotor speed n and the polar wheel angle p. 
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FIG. 6: RESPONSES TO THE SET POINT UNIT STEP OF THE ARMATURE VOLTAGE 

The dynamics of the armature voltage deviation exhibits a first swing with overshoot during post perturbation state, before it 

decreases, oscillates slowly and settles to its non zero steady state value; it contains high frequencies due to transients in 

stator voltages. The PID controlled AVR really stabilizes the system, but not accurately; the armature voltage perturbation is 

poorly damped and not regulated back to zero by the AVR. The dynamics of the rotor speed deviation displays during post 

perturbation state, an acceleration of the rotor in the first half cycle and its deceleration in the second half cycle and so on, 

with decreasing amplitude; it oscillates slowly and settles to its zero steady state value; the perturbation is completely cleared 

by the speed controller. The dynamics of the rotor angle deviation exhibits during post perturbation state a first positive 

swing followed by a negative swing, before it oscillates slowly after a negative overshoot and settles to its non zero steady 

state value. 

Fig. 7 illustrates the step responses of the turbine-alternator system, following a disturbance of the reference rotor speed. It 

shows the deviations of the rotor speed n, the rotor angle p and the armature voltage U. 

FIG. 7 : RESPONSES TO THE SET POINT UNIT STEP OF THE ROTOR SPEED 

The dynamics of the rotor speed deviation exhibits during post perturbation state, first a decrease followed by an increase and 

oscillations with decreasing amplitude, before it settles to its zero steady state value; the perturbation is completely cleared 

by the speed controller. The rotor is decelerated in the first half cycle and accelerated in the second half cycle and so on, with 

decreasing amplitude; it oscillates slowly and settles to its zero steady state value. The PID controlled speed regulator really 

stabilizes the system, accurately. The rotor angle deviation first exhibits a decrease and then it increases steadily to reach a 

positive overshoot; it then decreases and oscillates to stabilize at a non zero value. The armature voltage deviation first 

exhibits a decrease and then it increases steadily to reach a positive peak value and decreases to stabilize at a non zero value. 

The PID controlled AVR really stabilizes the system, but not accurately. The initial retardation of the rotor has an aftereffect 

on the rotor angle and the armature voltage. They are caused by high frequency transients in the transformer voltage terms in 

the stator voltages. 

Fig. 8 illustrates the step responses of the turbine-alternator system, following a disturbance of the reference active power 

demand. It shows the deviations of the rotor speed n, the polar wheel angle p and the RMS value of the armature voltages 

U. 
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FIG. 8 : RESPONSES TO THE SET POINT UNIT STEP OF THE ACTIVE POWER DEMAND 

The dynamics of the rotor speed deviation exhibits during post perturbation state a high negative peak that means a sharp 

deceleration in the first half cycle, followed by an acceleration in the second half cycle and so on; it increases to a high 

positive overshoot and then decreases and oscillates around zero, before it settles to its zero steady state value; the power 

perturbation is completely cleared by the speed controller: the PID controlled speed regulator really stabilizes the system, 

accurately. The dynamics of the rotor angle deviation and the armature voltage deviation exhibit a first decrease to negative 

values (backswing phenomenon) and then a steady increase to positive values. They exhibit overshoots and stabilize at non 

zero values. The PID controlled regulator does not clear the perturbation of the power demand. 

The high frequency oscillations affecting the rotor speed are due to the derivative action of the rotating mechanical system of 

the turbine-alternator system. 

V. CONCLUSION 

A linearized dynamic model of the Cameroonian southern grid has been developed, using the state-space approach. The 

model is modular in structure. Intensive MATLAB simulation has been carried out to investigate the behavior of the southern 

grid of the Cameroon power system, after small disturbances. The simulation results have shown that classical controllers 

actually in the southern grid of the Cameroon power system ensure stability of the SIG, but they are not accurate, they are 

slow. The power system is poorly damped. This assessment can serve as a basis for the design of most efficient additional 

automatic controls to operate in combination with classical controllers present in the SIG. 
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APPENDIX 

Appendix 1: Matrices of Generator and Turbine-Generator Unit Models. 
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Ld = inductance of the imaginary coil in the d-axis 

Lq = inductance of the imaginary coil in the q-axis  

LF= inductance of the inductor coil F 

LKD = inductance of the damping coil KD 

LKQ = inductance of the damping coil KQ 

MFS = maximum mutual inductance between the inductor coil F and the stator coils 

MKD,S = maximum mutual inductance between the damping coil KD and the stator coils 

MKQ,S =maximum mutual inductance between the damping coil KQ and the stator coils 

MF,KD = maximum mutual inductance between the inductor coil F and the damping coil KD 
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Appendix 2: Parameters of Hydraulic Turbine. 
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Appendix 3: Coefficients of Transfer Function of Water Flow Control System. 
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Appendix 4: Coefficients of Transfer Function of Rotor Speed Control System. 
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Appendix 5: Coefficients of Transfer Function of Voltage Control System. 
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Appendix 6: Coefficients of Power System Load Model. 
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The voltages uD0 and uQ0, and the currents iD0 and iQ0, are Kron’s components of armature voltages va, vb and vc, 

and currents ia, ib and ic respectively, in a new coordinate system D, Q and 0. They represent steady-state voltages 

across and currents in two imaginary coils located on the D and Q axis of the stator, for a given operating point, 

and are obtained as follows:  
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The Kron’s transformation matrix  )(K 0  is similar to the Park’s. 
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Appendix 7: Parameterized State-space Model and Elements of Model Matrices. 
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Appendix 8: Values of Parameters of subsystems of State-Space Model. 
System Operating Point: 

.u.p2247.1U0  ;     .u.p9.0PL0   ;       .u.p5578.0QL0   ;     85.0cos 0   ;     .u.p7487.0I0   ; 

.u.p094.1iF0   ;     97878.0G0   ;    .min/tr120n0   ;     210p  ;           .sec9661.4Tw   

Synchronous Generator: 

.u.p4938.1Ld   ;      .u.p9959.0Lq   ;      .u.p167.0L   ;             .u.p3268.1MFS   ;      25p   

.u.p852.1LF   ;        .u.p0152.0Rs   ;      .u.p0002654.0RF  ,     ²kgm8800000Jt  . 

Water Flow Control System parameters: 

50Kb   ; 916,0Tf   ; 1Kp   ; 5Td   ; 10Ti   ; 

Speed Regulator System parameters: 

50nref   ; 22,2Tn   ; 08,2Kc   ; 416,0Ki   ; 0,1Rp   ; 44,0Bl   ; 344,1Tx   ; 2,0Ks   ; 02,2Td   ; 55,0Bt   ; 

07,0Ts   ; 2,0Tv  . 

Voltage Regulator System parameters: 
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1,0K1   ; 04,01   ; 39,5K2   ; 47,10K3   ; 486,1K5   ; 93,0f   ; 971,0K6  ; 01,06   ;  

000971,0K8   ; 01,08  . 

 

Power System Load: 
2m   ; 2n   ; 3Kpf   ; 2Kqf  . 

 


