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Abstract— In this work, we propose a face recognition library, with the objective of lowering the implementation 

complexity of face recognition features on applications in general. The library is based on Convolutional Neural Networks; a 

special kind of Neural Network specialized for image data. We present the main motivations for the use of face recognition, 

as well as the main interface for using the library features. We describe the overall architecture structure of the library and 

evaluated it on a large scale scenario. The proposed library achieved an accuracy of 98.14% when using a required 

confidence of 90%, and an accuracy of 99.86% otherwise. 
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I. INTRODUCTION 

Nowadays, face detection and face recognition technologies are commonly present among online services provided by big 

Internet companies, such as Facebook and Google. Currently, some of the best image recognition techniques we have are 

based on variations of (Deep) Artificial Neural Networks (ANNs). For instance, the authors in [11] used such techniques to 

achieve record performance on the LSVRC
1
competition. However, the implementation of such systems is still complex, in 

the sense of knowledge required. This imposes a great difficulty for independent developers without the necessary AI 

expertise to apply face recognition in their own projects. 

Among the practical situations where face recognition can be applied are: 

 Surveillance systems, on places such as industries, offices, banks, etc., where it is necessary to have a control over 

the allowed staff; 

 Employee control, in the form of biometric presence monitoring systems. Controlling the employee frequency 

provides useful metrics for human resources departments; 

 Efficient login on applications, instead of a password, or in addition to it, in order to verify user authenticity on the 

recovering of forgotten passwords; 

 Personalized user experience on systems such as smart houses, cars, or personal assistants; 

 Social network applications on which users can share pictures; 

 As an additional feature for mobile applications. 

In order to provide an easy way for developers to apply face recognition on independent projects, we propose a software 

library for this task. The library created by us allows users to register new faces, monitoring the expected accuracy of the 

predictions, and predict probabilities over the registered faces when presented to images. 

The proposed library works internally using a Convolutional Neural Network (CNN), a special kind of ANN with 

architecture specialized for taking advantage of some properties in image data. Beyond this, the library architecture makes 

heavy use of regularization techniques and artificial generation of data, in order to improve generalization capacity. 

The main contributions of this work are: (i) we propose CNN architecture for image recognition; (ii) we developed a general 

purpose face recognition library for Python using the proposed architecture; and (iii) we evaluated the library architecture on 

a large scale scenario using a public dataset of face images. 

II. ARTIFICIAL NEURAL NETWORKS 

Artificial Neural Networks (ANNs), or simply Neural Networks (NNs), are a kind of predictive model. It is considered a 

machine learning technique inspired by the way the biological brain works [15]. 

                                                           
1
www.image-net.org/challenge/LSVR 
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Standard NNs are usually interpreted as a set of layers of units, each unit being a function of the previous layer. There is 

always an input layer, which assumes the values of the input of the prediction, an output layer, which will present the 

prediction output, and a set of hidden layers, as in Fig.1. The term Deep Learning is usually associated with NNs with 

multiple hidden layers [15]. 

 
FIGURE 1 - AN ARTIFICIAL NEURAL NETWORK WITH TWO HIDDEN LAYERS 

Each unit calculates a logit value, that is, a weighted sum of the outputs of the previous layer added to a bias value. The 

unit’s output is then the application of an activation function on this logit value. The set of weights and the bias are the 

parameters that influence the mapping from the previous layer to the unit’s output value. The goal of using ANNs is to adjust 

all the network parameters to make it predict some data correctly. For instance, predicting the person on a picture based on 

the pixels intensities. For this, the network uses a set of examples, called the training set. A good training set is a good 

approximation of the real distribution of data [6]. 

A cost function is a function, C(θ), where θ is the set of all the network parameters. This function evaluates how bad a 

specific configuration of the parameters is at predicting the training data. The training algorithm consists on iteratively adjust 

the parameters in order to decrease the cost. From calculus, we know that the gradient vector of a function points to the 

direction of steepest increment of this function. At the same time, the opposite direction points to the direction of steepest 

decrement. Based on this, at each iteration t, the network parameters are adjusted on the following way: 

         (1) 

Where ε is the learning rate, a (usually small) positive scalar that controls how much the parameters change at each 

iteration. This value is usually set to a large value at the beginning of training, to make the network quickly explore the 

parameter space and find a low cost region, and then we decrease it throughout the training, to make the network sensibly 

find the local minimum of this region. 

This strategy of iteratively decreasing the cost using the partial derivatives is called Gradient Descent. We do not usually 

use all the training examples at each iteration. Instead, we select a different batch to estimate the cost at each iteration. This 

approach can take more iteration to find a good cost, due to statistical instabilities, but in advantage, it makes the individual 

iterations much faster. This strategy of estimating the cost using a random batch is called Stochastic Gradient Descent [15]. 

In order to make the network more capable of generalizing the prediction to new data (data not present on the training set), it 

is common to apply generalization techniques during training. These techniques aim to make the network learn more robust 

solutions, capable of identifying more frequent and realistic patterns from the training data, which are more likely to be 

present on the real data. 

A commonly used regularization technique is L2 Penalty [15], which consists on adding another function to the cost, which 

grows proportionally to the square of the network parameters, scaled by some penalty. By decreasing the cost, the training 

algorithm will keep the parameters small in magnitude. This forces the network to find more simple solutions, capable of 

identifying more frequent patterns on the data. 

Another common technique is dropout [11][7], which consists on, at each iteration, ignoring the output of some random units 

of a layer, using some predefined probability. This makes the units more individualistic during learning, which forces the 

network to find more robust solutions. When presented to unseen data, all the units are used, and the network is expected to 

perform better. 

The easier way to make the network generalize better is by using more data for training, in order to have a sample that better 

approximates the true distribution of real data, minimizing the effect of individual irregularities. This can be done by either 
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collecting more data or by artificially generating more samples from the already collected data (by distortions, reflections or 

addition of noise)[17]. 

2.1 Classification Tasks 

When performing classification tasks, it is useful to have a probability distribution over the possible categories as the model’s 

output. For this, the last layer of an ANN is commonly a softmax layer. On such layer, the output of the unit, yi, is defined as: 

          (2) 

with zi being the logit value of unit i. 

III. CONVOLUTIONAL NEURAL NETWORKS 

CNNs [12] are a kind of Deep Neural Network that uses Convolutional Layers as the first hidden layers of the network. 

These layers have an architecture designed to make better use of the knowledge obtained from the spatial structure present on 

image data. 

Convolutional layers are based on the concept of local receptive fields[15]. On a convolutional layer, each unit is a mapping 

from a region (field) of neighboring outputs from the previous layer. In Figure 2, we have a receptive field of size 4×4, from 

a previous layer of 10×10. The connections to the first unit are shown in gray, on the left. For each of the next units, the 

receptive field is shifted right or down at a stride length. If this stride length is 1 on the horizontal direction, then the 

connections of the second unit are as in Figure 2 (right). 

 
FIGURE 2 - CONNECTIONS OF THE FIRST (LEFT) AND SECOND (RIGHT) UNITS OF A CONVOLUTIONAL LAYER 

Also, the set of parameters on all the units on the layer is shared, so that all the units perform the same mapping from 

different parts of the previous layer. The reason for sharing the mappings is to try to detect the same patterns that are present 

on different parts of the image. In order to detect multiple patterns, it is used not only one, but several mappings, each of 

which with a different set of parameters. Each mapping on a convolutional layer is called a feature detector [15]. 

In order to try to identify the presence of the same features on groups of nearby output units, the polling technique is 

frequently applied to the output of convolutional layers [15]. A common kind of pooling is the max-pooling, which consists 

on outputting the maximum value present on a group of units from the convolutional layer. The reason behind this is to try to 

detect the presence of features, losing some information about its exact position on the image. For instance, knowing that an 

image has a nose and an eye strongly indicates the presence of a face, not mattering where on the image these features are. 

The use of pooling on image classification can allow a certain degree of translation invariance [15], and thus, overcome the 

effects of small variations of pose, angle and distance. Another advantage is that they do not add any extra parameter to be 

trained. 

The main motivation for the use of CNNs on image recognition is the fact that these kinds of models are capable of 

extracting spatial features from the data. Image data have a nice and useful hierarchical decomposition: groups of nearby 

pixels can form edges, groups of nearby edges can form polygons, and so on, until complex visual structures are formed. 

Because of this property, CNNs usually use a chain of convolutional and pooling layers, with the output of one being the 

input to the next. [14][4][11][10]. 

IV. FACE RECOGNITION LIBRARY 

In this section, we describe the developed face recognition library, focusing on the methods that are used to register new 

faces, make the recognizer fit the model to the provided data, and use the recognizer to predict the probability of the 

registered faces when presented to new images. The main class of the library is the Recognizer class, which is instantiated as 

follows: 
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recognizer = Recognizer(width, height, channels, 

image_dir, dataset_dir, models_dir, 

qt_images, valid_proportion) 

where the parameters width and height are the dimensions of the images to be fed into the network, channels is the 

depth of the pixels: 1 for grayscale, 3 for RGB, etc., image_dir is the path to save the training images, dataset_dir is 

the path to save the preprocessed training data, models_dir is the path to save the network’s checkpoints, qt_images is 

the minimum number of images of each person to use, and valid_proportion is the proportion of these images to be 

used for validation, i.e., to estimate the prediction accuracy. 

The register of a new person on the system is done as follows: 

recognizer.add_person(pictures, name) 

where pictures is a list containing the paths to the person’s pictures that the user is providing for the library. If an image 

is not of size width × height, it is automatically reshaped. If there are less than qt_images, the library artificially generates 

more images from these ones, using different degrees of translations and rotations, in a similar way as is done in [17]. 

The generation of new images is performed as follows. The translations are made by shifting the pixels some number of units 

to the left, right, top, and bottom of the image, ignoring the parts that end outside the frame, and filling the empty pixels with 

black. The rotations are made both clockwise and counter-clockwise, also ignoring the outside parts and filling the empty 

pixels with black. Initially, the images are shifted one unit on each of the four directions, and one degree in each orientation, 

and then two, and so on, creating six new images for iteration, until the number of original images plus the generated ones 

reaches the required number of images for training. 

The received images have their pixel values rescaled to avoid big input numbers. As grayscale pixels and single components 

of RGB pixels both assumes single integers from 0 to 255, the recognizer scales the pixel values to (pixel_value − 

127.5)/255. After this rescaling, the pixel values of all images are compressed on a file inside dataset_dir, using a 

friendlier format for the training algorithm, and with a proper separation between training and validation sets. 

To request the library to adjust the model to the currently registered people, we call: 

recognizer.train_model(num_steps, valid_interval, start_over) 

where num_steps is the number of iterations to train, valid_interval is the number of iterations on which the 

network accuracy is estimated on the validation set, and start_over is a boolean variable indicating that the model should 

either initialize its parameters and start training from the beginning, or use the last checkpoint saved on models_dir. 

For using the library to predict the person on a picture, we need to call: 

predictions = recognizer.predict(picture) 

where this method receives picture, the path of the image to be analyzed, and returns a vector with dimension equals to 

the number of people registered, representing a probability distribution over these people. The higher the probability of a 

person, the more the network believes the image is from this person. 

Other hyper-parameters (batch size, dropout probability, weight penalty, number of units per layer) can be easily modified 

through this Recognizer object. Although, for any change to reflect on the predictions, it is necessary to retrain the model. 

The same applies for the addition of new people. 

V. NETWORK ARCHITECTURE 

The network architecture was developed using TensorFlow
2
[1], [2], an open source software library for numerical 

computation that was originally developed by researchers and engineers working on the Google Brain Team, for machine 

learning purposes. 

                                                           
2
More information available on www.tensorflow.org 
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The network is a chain of convolutional and pooling layers, followed by fully connected layers. The number of layers of each 

type, as well as the number of units in each layer can be easily set through the Recognizer object. The input layer is a 3D 

tensor of size width×height×channels, which just assumes the pixel intensities of the images. In the default configuration, the 

first six hidden layers are an intercalation of three convolutional layers and three pooling layers, and the next hidden layer is 

a fully connected layer which starts with 512 units by default. The output layer is an n-way softmax, where n is the number of 

registered people. The softmax function is used to make the output of the last layer a probability distribution over the 

possible categories [6]. With the exception of the units on the output layer, all the other 

units apply the Rectified Linear Function as an activation function, which is simply equal 

to max(0, z), with z being the unit’s logit value. 

Each of the convolutions has 16 feature detectors, each of them with a receptive field of 

size 10 × 10 over the output of the previous pooling layer (or the image pixels for the first 

convolution). Each of the pooling layers applies a max-pooling function to the 

convolution’s output with a field of size 2 × 2 and a stride length of 2, both horizontally 

and vertically. With this pooling stride, every pooling layer halves the dimensions of the 

previous output. 

Prior to the training, the network parameters have to be initialized. The unit weights are set 

to random values, drawn from a normal distribution with mean zero, and standard 

deviation equals to 0.1. The unit biases are set to zero on the convolution’s units and 1 on 

the last two fully connected layers. 

The training phase is performed using an initial learning rate of 0.01, which is decreased 

by 10% at each 500 training iterations. At each iteration, the cost gradient is estimated 

based on a batch of 32 samples from the training set, and the cost function used is the 

average cross entropy error [6]: 

      (3) 

where B is the batch of samples of the current iteration, x is a training sample, n is the 

number of people registered, t
x 

is the one-hot label vector of the samplex, that is, a vector 

with 1 on the position corresponding to the correct person and zeros on all other positions, and 

y(x) is the output vector of the network for the simplex, that is, the output of the softmax layer. 

The overall network architecture can be seen on Figure 3. 

In order to improve the generalization capacity, it is applied an L2 Penalty [15] to all the network weights, with a penalty of 

0.001, and it is applied dropout [11][7] on the fully connected hidden layers, with the units having a probability of being used 

of 0.3. The accuracy is estimated on the validation data periodically according to the parameter valid interval, and informed 

to the user. 

For using the model to recognize new faces, the final configuration of the parameters is chosen to be the configuration on 

which the network had the best validation accuracy, not mattering how many iterations were performed after. 

VI. EVALUATION 

6.1 Dataset 

The data used for the library test is the Extended Yale Faces Dataset B(B+)
3
[5]. This dataset consists of 16380 pictures of 28 

different people, with 585 pictures of each person, using different variations of pose and illumination. All the images were 

grayscale of size 640 × 480 pixels. Some samples of this dataset are shown in Figure 4. 

                                                           
3
Dataset publicly available at http://vision.ucsd.edu/content/extended-yale-face-database-b-b 

FIGURE 3– OVERALL VIEW 

OF THE DEFAULT NETWORK 

ARCHITECTURE  
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FIGURE 4 - SOME SAMPLES OF THE B+ DATASET 

From this datasets, we selected 50 random images from each person to compose the test set. These 1400 images were only 

used for the final test of the library and were not used for any training or estimation purposes. 

The recognizer was instantiated to use grayscale images of size 100 × 100, and expect a minimum of 700 images for each 

person. The remaining 535 images of each person were registered on the recognizer, which rescaled them to the appropriate 

size, and artificially generated more images to compose the 700 required images. The recognizer was instantiated with a 

validation proportion of 0.1, thus, 630 random images of each person were used for training and the remaining 70 images 

were used as the validation set to estimate the generalization capacity. 

6.2 Training Phase 

We then run the Gradient Descent algorithm for 3000 iterations, using the default library configuration: initial learning rate 

of 0.01, L2 penalty of 0.001, the probability of being used when using dropout of 0.3, and the default configuration for the 

overall network structure. The validation set was analyzed at each 100 iterations. 

We recorded the training cost at each iteration, which is plotted on Figure 5. The graph is plotted logarithmically because the 

main variations occur on the beginning of training. It is possible to see that the network quickly found a low cost region on 

the parameter space, and then specialized to approximate the local minimum of this region. 

  
FIGURE 5 - COST RELATED TO THE RANDOM 

BATCHES OF 32 IMAGES DURING TRAINING 

ITERATIONS. 

FIGURE 6–NUMBER OF CORRECTLY PREDICTED 

IMAGES RELATED TO THE RANDOM BATCHES OF 32 

IMAGES DURING TRAINING ITERATIONS 

 

On Figure 6, we can see the number of correctly predicted images. This shows that the network learned to recognize the 

images correctly as the cost lowered, meaning that the cost function truly captures the prediction accuracy. We considered a 

prediction to be correct if the network attributed the highest probability to the correct person. 

On the cost (Figure 7) and accuracy (Figure 8) on the validation set, we can see that the network has extracted real patterns 

from the faces, being able to generalize the prediction to unseen data. 
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FIGURE 7 - COST FROM THE VALIDATION SET 

DURING TRAINING ITERATIONS 

FIGURE 8 - NUMBER OF CORRECTLY PREDICTED 

IMAGES FROM THE VALIDATION SET DURING 

TRAINING ITERATIONS 

 

The best validation accuracy occurred on the last validation, at the iteration number 3000 of the training. Then the 

parameter’s configuration on this iteration was chosen to be the official model for future predictions. 

As the final evaluation, we presented the trained library with the 1400 images reserved as the test set. If we considered a 

prediction to be correct if the network assigned the higher probability to the correct person, then the network correctly 

predicted 1398 of the 1400 images, an accuracy of 99.86%. If we considered a prediction to be correct if the network 

assigned a probability greater than 0.9 to the correct person, than the network correctly predicted 1374 of the images, an 

accuracy of 98.14%. However, if we consider this second metric, as the network has never assigned more than 0.9 to a wrong 

person, than the network did not classify any image erroneously. In these situations, the recognizer considers this face as 

unknown, which is an important feature on security applications. 

VII. RELATED WORK 

The authors in [11] used a CNN with dropout trained on a GPU for the ImageNet dataset from the LSVRC-2010 contest. The 

images were of high-resolution and belonging to 1000 different object classes. Their network achieved a top-1 and top-5 

error rates of 37.5% and 17.0% respectively, a considerably improvement from the previous state-of-the-art models. 

In [17], the authors presented a set of good practices for the development of CNNs for document recognition. It is explained 

the importance of the dataset size. It is also proposed a flexible architecture for document retrieval that is evaluated on the 

MNIST dataset [13]. As one of the contributions of our work, we have abstracted the process of artificial generation of data 

in order to transparently handle the possibility of few data samples. 

In [4], it is proposed a model based on a committee of 7 deep CNNs trained on GPUs applied to handwritten digits and letters 

recognition. They reported an error rate of 0.27% for MNIST dataset [13]. In our work, we extended the application of CNNs 

to the faces domain, allowing the use images with much higher resolution than the 28 × 28 MNIST images. 

In [8], the authors provided an evaluation of CNNs on large-scale video classification using a dataset of 1 million YouTube 

videos and 487 classes. They analyzed a number of approaches of extending the connectivity of CNNs to the time domain, in 

order to take advantage of the spatial-temporal information of video data. 

In [14], the authors proposed CNN architecture for handling the task of face detection on images. In real world scenarios, this 

task is considered hard because of the many variations on distance, angle, pose, light, background color and objects, presence 

of more than one face, etc. The proposed architecture quickly discards large portions of background at low resolution and 

then carefully analyzes high resolution smaller portions. Our work is complementary with [14], in the sense that face 

detection is a commonly prior stage of face recognition. 

In [9], it is done a research on different face recognition techniques for biometric systems. They showed the advantages of 

different NN approaches compared to other methods, as well as the current limitations. The contribution of our work is in the 

sense of providing a library abstracting the complexity of such techniques, as well as demonstrating, through a large scale 

experiment, the potential of CNNs on achieving high accuracy and not making mistakes on the prediction. 
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The authors in [16] used CNNs to build a mapping from face images to vector points, and then use the distance between 

these points as a direct measure of similarity between faces. They achieved a representation efficiency of 128 bytes per face. 

In [3], it is proposed an open-source face recognition implementation called Open Face based on the work of[16]. They 

provided a web page with comparisons of accuracies of models
4
 and concluded that face recognition is still an unsolved 

problem, with many issues yet to be handled, and accuracies from research papers have just begun to surpass human 

accuracies. One important contribution of our work over existing ones is the automatic generation of data, with the objective 

of compensates small number of pictures available, and thus, improving generalization capacity through better representative 

datasets. 

VIII. CONCLUSION 

In this work, we proposed a face recognition library in Python, with the objective of lowering the implementation complexity 

of face recognition features in applications in general. We provided the description of the main library features, as well as a 

description of the general architectural model of the internal CNN. 

Despite the current existence of a similar software library [3], face recognition is still not a fully solved problem, with human 

level accuracies being surpassed only on the last few years. In this perspective, the main contributions of our work are: (i) we 

proposed CNN architecture for image recognition; (ii) we developed a general purpose face recognition library for python 

using the proposed architecture; (iii) we evaluated the library architecture on a large scale scenario using a public dataset of 

face images; 

The proposed library achieved high accuracy on a large scale task of simple recognition. Also, when using a required 

confidence of 90%, the network did not classified any image erroneously, which is an important requirement for security 

systems. In summary, the results showed an excellent generalization capacity. 

In future works, we intend to apply the library on real mobile apps and evaluate its performance. We also intend to further 

improve the library, investigating the relation between number of categories (people), amount of available data, and network 

capacity, with the objective of implementing a partially automatic generation of the model’s architecture based on specific 

problems. 
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