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Abstract— The rheo-optical behavior of a viscoelastic polydimethylsiloxane (PDMS) fluid was examined at room 

temperature for various pressure drops (flow rates) across a Jeffrey Hamel type converging wedge flow cell. The strain-rates 

were computed from local velocity measurements using laser Doppler anemometry (LDA), and the planar extensional flow 

behavior of the polymer melt was studied via birefringence measurements along the centerline of the flow cell. The linear 

relation between the stress and polarizability tensors were confirmed over a range of strain rates that extended well into the 

non-Newtonian region. The first normal stress difference (FNSD) was calculated from the local velocity measurements using 

a two-term Goddard-Miller model with a single Maxwell-type relaxation time constant of 0.0174 s computed from Rouse 

model and a zero-shear viscosity of 300 Pa.s. A linear stress-optical coefficient of 1.41 x 10
-10

 Pa
-1

 was obtained for PDMS 

in planar extensional flow at room temperature from the flow birefringence measurements and the first normal stress 

difference (FNSD) computed using the Goddard-Miller model. This compares well with values for PDMS in the range of 

0.909 – 1.84 x 10
-10

 Pa
-1

 at room temperature as reported by various researchers. 

Keywords— Polydimethylsiloxane, Flow Birefringence, Jeffrey-Hamel Flow, Stress-Optical Coefficient, Goddard-Miller 

Model. 

I. INTRODUCTION 

Polymer macromolecules exhibit isotropic behavior when they are completely randomly distributed. However, flow 

deformation causes orientation of the macromolecules leading to anisotropy in the transport properties like birefringence [1-

3].  

Anisotropy to transmission of light by an optical medium produces birefringence, or differences in refractive indices in 

orthogonal directions. According to Flory [4], the degree of anisotropy in refractive index (birefringence) for a chain network 

is represented as 

N = (2/9) (/V) [( n 2 + 2)2/ n ] ( xx –  yy)      (1) 

Where /V represents the number of segments per unit volume (a segment is the portion of a macromolecular chain between 

two adjacent entanglement points), n is the refractive index of the isotropic non-ordered material, and ( xx –  yy) is the 

difference in the averaged polarizabilities of the chain along the x and y axes. 

In the case of flexible polymer solutions and melts, the net optical anisotropy caused by flow can be obtained by measuring 

differences in refractive indices in the direction of the principal stresses. When the direction of propagation of the electric 

field vector of a polarized light beam coincides with the direction of one of the principal stresses of an optically anisotropic 

macromolecular fluid flowing through a transparent channel, the difference in birefringence in the other two directions is 

related to the difference in the corresponding principal stresses via the stress-optical law. According to this law, in a wide 

range of conditions involving not too large stresses, there is a linear relation between the components of the refractive index 

(polarizability) and stress tensors given by  

N = C          (2) 

where C is a material constant known as the stress-optical coefficient, N is the difference in main refractive indices, and  

is the corresponding difference in the two principal stresses. The sign and magnitude of the stress-optical coefficient depends 

on the chemical structure of the polymer, which is governed by the polarizability of the bonds between the atoms of the 

polymer molecule and the direction of the bonds with respect to the polymer backbone. Since the deviatoric components of 

the stress and polarizability tensors are linearly related, the orientation of the principal axes will coincide with that of the 
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optical axes. According to the theory of rubber photoelasticity [4] for a network of freely jointed Gaussian chain, the stress-

optical coefficient is given by  

C = (2/45kT) [( n
2 + 2)2/ n ] (1 – 2)      (3) 

where n is the mean refractive index of the material, k is the Boltzmann constant, T is the absolute temperature, 1 is the 

polarizability of the chain link parallel to the link, and 2is the polarizability of the chain link transverse to the link. 

Extensive experimental work has been done on stress-optical laws ranging from solids concentrated polymer solutions [5-7]. 

Since the proportionality of stress and refractive index does not imply proportionality of the stress and strain rate, the stress-

optical law holds good for polymer melts well into the non-Newtonian region of flow [8]. The only requirement is that both 

stress and the refractive index tensors are governed by the orientation function. This will be true as long as the flow does not 

create a change in the magnitude of the macromolecular chain end-to-end vector. Janeschitz-Kriegl [9] has shown 

experimentally that, for many polymers, the linearity of the stress-optical law is valid up to a shear stress of 10
4
 Pa and 

tensile stress of 10
6
 Pa. 

Majority of the rheo-optical studies of polymeric systems done so far involved the mechanical measurements of stress and 

optical measurements of birefringence to evaluate the linear stress-optical coefficient [10-13]. In this paper we illustrate the 

use of optical techniques (laser Doppler anemometry) measure birefringence, compute stress and then evaluate the linear 

stress-optical coefficient of a polydimethylsiloxane (PDMS) melt at room temperature in planar extension along the 

centerline of a converging wedge flow cell. 

1.1 Velocity Vector, Rate-of-Strain and Stress Tensors 

Assuming the flow in the converging wedge cell is two-dimensional, the components of the velocity vector in circular 

coordinates (Figure 1) are 

Vr = f (r, )   and   V = Vz = 0      (4) 

 

FIGURE 1. GEOMETRY OF THE TWO-DIMENSIONAL JEFFREY-HAMEL TYPE CONVERGING WEDGE FLOW CELL 

Along the centerline where the flow is purely extensional, the component of velocity vector is  

Vr = f (r)           (5) 
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The rate of strain tensor (


 ) along the centerline have the following components: 
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Since there is no flow of the fluid in the direction of propagation of light (z-direction), the stress tensor ( ) along the 

centerline have the following components: 
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1.2 Equation of Continuity 

The equation of continuity in cylindrical coordinate system for steady-state flow of an incompressible fluid in a converging 

two-dimensional flow channel (where ∂Vr∂ is negligible) is given by  

∂(rVr)/∂r = 0   or   rVr = constant     (8)  

1.3 Linear Stress-Optical Law Equations 

For two-dimensional converging wedge flows, Adams et al. [10] gave the following forms of the linear stress-optical law: 

r = [N (sin 2 cos 2 – cos 2 sin 2)/2C] = [N sin (2 – 2)]/2C    (9) 

rr – = [N (cos 2 cos 2 + sin 2 sin 2)/C]  

= [N cos (2 – 2)]/C       (10) 

Where  is the angle between the principal molecular orientation axis and the cell centerline, and  is the angular coordinate 

of the intersection of the two split monochromatic light beams at the point of measurement (Figure 1). 

Here N is the birefringence of the material and given by the equation 

N = R/d            

where d is the thickness of the birefringent material,  is the wavelength of the monochromatic light used, and R is the 

relative retardation of the two plane-polarized components of the monochromatic light emerging from the birefringent 

material. 

Along the centerline of the converging wedge cell where the flow is purely extensional, both  and  are zero. Therefore, the 

linear stress optical relation in the reduces to  

rr –= N/C           (12) 

1.4 Goddard-Miller Model 

The Goddard-Miller model [14] is a quasilinear corotational constitutive equation obtained by using only the first term in the 

Goddard memory-integral expansion [15]. This model, which can also be obtained as a result of applying the Boltzmann 

Superposition principle to a viscoelastic model in a cororating frame of reference, has been used successfully to describe the 

rheologolical behavior of PDMS [16-17]. In an integral form, the Goddard-Miller model is written as 

'')'( dtttG

t






          (13) 

where G(t – t’)is the relaxation modulus and 

'

 is the corotating rate-of-deformation tensor. 



International Journal of Engineering Research & Science (IJOER)                       ISSN: [2395-6992]              [Vol-3, Issue-8, August- 2017] 

Page | 96 

The corotating rate-of-deformation tensor (

'

 ) is represented by the Taylor series expansion about t’ as  

'

  =  (t) – [(t – t’) D (t)/Dt] + ½ [(t – t’)2 D2 (t)/Dt2] -    (14) 

where D/Dt is the corotational time derivative or Jaumann derivative. 

The Jaumann derivative tells how the components of a tensor change with time as seen by an observer moving with the fluid 

and rotating with it. For a second-order tensor, the Jaumann derivative is defined as 

D( )/Dt = ∂( )/∂t + V. ( ) + [ .( ) – ( ). ]       (15) 

where  is the vorticity tensor which corrects for the rotary motion of the fluid. 

The rate-of-deformation tensor (


 ) and vorticity tensor ( ) are given by 



  = V + (V)t         (16) 

  = V –(V)t         (17) 

Along the centerline of the converging wedge cell, the flow is purely planar extensional and hence, the vorticity tensor ( ) 

is zero.  

For this study, a single Maxwell-type relaxation modulus is used and given by the equation  

G(t – t’) = (0/0) e–(t – t’)/
0        (18) 

where 0 is a characteristic viscosity like zero-shear viscosity and 0 is a characteristic time constant. 

Substituting the rate-of-strain tensor and using only the first two terms of the Taylor series expansion for the corotating rate-

of-deformation tensor (

'

 ) yields the following terms for the stress tensor of the Goddard-Miller model for purely 

extensional flow along the centerline of the two-dimensional converging wedge cell: 

rr = - 2 0 {(∂Vr/∂r) - 0 [Vr (∂2Vr/∂r2)]}         (19)  

 = - 2 0 {(Vr/r) - 0 [(Vr/r) (∂Vr/∂r - Vr/r)]}        (20) 

Therefore, the first normal stress difference (rr) according to the truncated Goddard-Miller model is given by  

rr –=  - 2 0 {[(∂Vr/∂r) – (Vr/r)] - 0 Vr [(∂2Vr/∂r2) - (1/r)(∂Vr/∂r) + Vr/r2]}   (21) 

II. EXPERIMENTAL 

2.1 Flow Cell Geometry 

The schematic of the 60
o
 converging wedge flow cell used for this study is shown in Figure 1. The width of the flow cell is 

5.00 cm and it is capable of withstanding a pressure of 1000 kPa. Two such cells were used for the study, one for velocity 

measurements and another for flow birefringence measurements with modified windows in order to minimize the 

contribution to the measured birefringence.  

2.2 Polydimethylsiloxane (PDMS) Fluid Properties  

Linear PDMS fluids and melts are ideally suited for flow birefringence studies because of their thermal, physical and 

chemical stability. They have relatively low surface tension (19-21 x 10
-3

 Nm
-1

), thus minimizing the problem of formulation 

and entrainment of bubbles that poses a tremendous practical difficulty in optical measurements. PDMS exits in the liquid or 

molten state at room temperature, thus eliminating the need to maintain high temperatures that often hinders optical 

measurements. PDMS fluids are highly transparent and the polymer chain monomer unit has relatively small refractive index 
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anisotropy. The experimental polymer used for this study was a linear amorphous Dow Corning Type 200 

polydimethylsiloxane fluid. The polymer was analyzed using a conventional gel permeation chromatograph (GPC) at 30
o
C 

with toluene as the solvent, and the following properties were obtained: 

Number-Average Molecular Weight (Mn) = 6.79 X 10
4
 

Weight-Average Molecular Weight (Mw) = 2.327 X 10
5
 

z-Average Molecular Weight (MZ) = 3.459 X 10
5
 

Polydispersity Ratios: Mw/Mn = 3.43   

Mz/Mn = 4.95 

The steady-state rheometric characterization of PDMS in simple shear was performed using a Weissenberg Rheogoniometer, 

and the results shown in Figure 2.  The zero-shear viscosity was found to be 300 Pa.s. 

 

FIGURE 2. STEADY-STATE SIMPLE SHEAR VISCOSITY OF PDMS AS A FUNCTION OF SHEAR RATE USING A 

WEISSENBERG RHEOGONIOMETER. 

2.3 Laser Doppler Anemometry (LDA) 

The local velocities along the centerline of the unmodified converging wedge flow cell were measured using a 

monochromatic laser Doppler anemometry (LDA) in differential Doppler or fringe mode with forward scattering. A 

monochromatic helium-neon laser beam (wavelength = 0.6328, diameter = 600) is split into two separate beams and then 

converges in a small reference volume in the flowing polymer located at the mid-point between the two windows of 

converging cell. As a result, a diffraction pattern is set up and the motion of the polymer macromolecules moving through 

this reference volume scatters light. This scattered light produces a Doppler frequency proportional to the velocity of the 

polymer.  

2.4 Orientation Angle and Flow Birefringence 

The local flow birefringence of the modified converging wedge flow cell was measured by adding a quartz compensator to 

the set off cross-polarizers (a half-wave plate and an analyzer). The cross-polarizers were used to measure the orientation 

angle, which is the angle between the principal molecular orientation axis and the cell centerline. The linearly vertical 

polarized beam from the monochromatic He-Ne laser traverses the along the width of the flow cell and the transmitted beam 

is then analyzed to obtain the net molecular orientation. For planar extensional flow along the centerline of the cell, the 

orientation angle should be zero because the principal molecular orientation axis and the cell centerline coincide. The quartz 

compensator, placed between the converging flow cell and the analyzer, produces an exact canceling retardation by 

compensating the phase difference of the polarized monochromatic light introduced by the polymer flowing through the cell.  
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III. RESULTS AND DISCUSSION 

3.1 Linearity of the Stress-Optical Law 

When a macromolecular polymer fluid is stretched, there is a decrease in entropy associated with the orientation of the 

network chains. Stresses and orientation are also caused by the phenomena of macromolecular chain stretching. So it does 

not come as a surprise that, as a first approximation, a simple proportionality exits between the stress (entropic) and 

birefringence (orientation). In the limits of small macroscopic deformation, the root mean square (RMS) of the end-to-end 

distance of a Gaussian chain is rather small compared to the length of the stretched chain. As the strain/stress increases, both 

orientation and birefringence of the macromolecular chain increases till it approaches a saturation point. In fact, entropy 

change accompanying a complete alignment of chain segments must be - ∞. From this qualitative discussion one can 

hypothesize that the ratio of measured birefringence to the corresponding stress difference should deviate in a downward 

direction from the value of the constant stress-optical coefficient (C). This has been found in polymer melts subjected to very 

high tensile stresses [18]. However, in an overwhelming majority of experiments [8,11] that are relevant to practical 

situations in polymer processing, stresses appear to be too small for deviation from the linear stress-optical law. 

For the stress-optical law to be linear there are two limits to its validity; (a) an upper limit for the stress and (b) a time scale 

of the deformation process must be large enough to allow for establishment of internal thermodynamic equilibrium. 

The assumption has always been made that the time scales for the establishment of internal equilibrium are due to rapid 

vibrational modes between backbone molecules. These are very short compared to the macroscopically observable time 

scales of the bulk motion. As a consequence, the latter time scale must be solely due to the relatively low rates of change of 

the locations of the entanglements. For this study, we assumed that the internal thermodynamic equilibrium was established 

very quickly.  

The upper bound in the stress can be determined from measurements in pure extensional flow because, generally, stresses in 

extension are many times higher than stresses in shear. For this study, the flow birefringence measurements were made 

between any two radial positions along the centerline and related to the first normal stress difference (FNSD) by the 

following equation: 

(rr –)r=r1 - (rr –)r=r2 =[(N)r=r1 - (N)r=r2]/C       (22) 

Therefore, a plot of the difference in normal stresses versus the difference in flow birefringence between the two radial 

positions along the centerline should yield a straight line in the linear stress-optical region. Figure 3 shows such a plot 

between r = 1.1 cm and r = 2.1 cm, and it indicates a linear nature of the stress-optical law for PDMS up to a pressure drop of 

689 kPa (100 psi) across the converging flow cell. Although this is a necessary condition to confirm the linearity of the 

stress-optical law, it is not a sufficient condition. The slight zero-offset evident in Figure 3 is probably caused by an optical 

window effect, and it is extremely difficult to eliminate for PDMS because of the very low intrinsic anisotropy of the fluid. 

 
FIGURE 3. DIFFERENCE IN CENTERLINE BIREFRINGENCE (BETWEEN r = 1.1 cm AND r = 2.1 cm) AS A 

FUNCTION OF PRESSURE DROP ACROSS THE FLOW CELL. 
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In order to confirm the sufficient condition for the linearity of stress-optical law for PDMS up to a pressure drop of 689 kPa, 

the equation of momentum along the centerline of the converging flow cell has to be examined. The r-directed momentum 

balance equation along the centerline is given by 

 rVr ∂Vr/∂r = (rr –)– r [∂(p + rr)/∂r]       (23)  

Using the mean value theorem, we can write the above equation for any radial position (r) as 

R r VrVr/r =   rr – (r [])        (24) 

where . 

For the stress-optical law to be linear, the average value of normal stress difference from the entrance to the exit of the flow 

cell   rr must retain a constant proportionality with the overall pressure drop across the flow cell. Therefore, 

 
  




rr

inout

r

r
N

rr

Ndr
out

in         (25) 

Thus using the measured birefringence (∆N) versus r data along the centerline from entrance to exit at different pressure 

drops, the average birefringence (∆N) can be evaluated. This was done by extrapolating the centerline flow birefringence 

(∆N) data measured between r = 1.1 to 2.1 cm to the entrance and the exit using equation 25 as shown in Figure 4. A straight 

line plot of ∆N vs ∆P was obtained along the centerline, clearly indicating that the linear stress-optical law is valid up to a 

pressure drop of 689 kPa across the flow cell. 

  
FIGURE 4. AVERAGE CENTERLINE BIREFRINGENCE 

AS A FUNCTION OF PRESSURE DROPS ACROSS THE 

FLOW CELL. 

FIGURE 5. CENTERLINE RADIAL VELOCITY AS A 

FUNCTION OF RADIAL POSITION FOR VARIOUS 

PRESSURE DROPS ACROSS THE FLOW CELL. 
 

3.2 Velocity and Extensional Rates 

The local velocities (Vr) as a function of radial position (r = 0.9 to 2.5 cm) along the centerline of the unmodified converging 

flow cell for different pressure drops were obtained using LDA and shown in Figure 5. The planar extensional rates (∂Vr/∂r) 

were obtained by differentiating the local velocity data. It can be seen that as the radial position increases, both local velocity 

and the extensional rate decrease. 

3.3 Equation of Continuity 

As mentioned earlier, the equation of continuity for steady-state flow of PDMS in the converging two-dimensional flow 

channel (where ∂Vr∂ is negligible) is given by rVr = constant. Figure 6 shows a plot of the equation of continuity (rVr) as 

a function of the centerline radial position (r) for different pressure drops across the flow cell.  It can be seen that the value of 

rVr is nearly constant and it is proportional to the pressure drop, thereby indicating the two-dimensional nature of the flow 

through the converging wedge cell. 
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FIGURE 6. EQUATION OF CONTINUITY AS A FUNCTION OF THE CENTERLINE RADIAL POSITION FOR VARIOUS 

PRESSURE DROPS ACROSS THE FLOW CELL. 

3.4 First Normal Stress Difference (FNSD) 

The first normal stress difference (rr) can be computed from the truncated Goddard-Miller model using equation 

21given by 

rr – = - 2 0 {[(∂Vr/∂r) – (Vr/r)] - 0 Vr [(∂2Vr/∂r2) - (1/r)(∂Vr/∂r) + Vr/r2]}   (27) 

Thus, we require the local velocity (Vr), extension rate (∂Vr/∂r) and its derivative (∂
2
Vr/∂r

2
), zero-shear viscosity (0) and 

characteristic time constant (0) in order to evaluate the first normal stress difference (rr) at different radial position 

along the centerline of the converging flow cell for various pressure drops.  

The single Maxwell-type time constant (0) was obtained from the Rouse model [19] for polymer melts. According to the 

Rouse model for a polymer melt with large number of molecules in the spring-bead molecular structure, the relaxation time 

(0) is given by  



 R T)]         (28) 

where M is the molecular weight,  is the density, R is the Universal gas constant, and T is the temperature. For the PDMS 

used in this study at room temperature (T = 25 
o
C), the relation time using equation 27 gives 






x x x


xx


 xs

The first normal stress difference in planar extensional flow along the cell centerline for this study was computed using 0= 

0.0174s and 0 = 300 Pa.s, and listed in Table 1. 

TABLE 1 

FIRST NORMAL STRESS DIFFERENCE (rr –) COMPUTED USING THE TWO-TERM GODDARD-MILLER 

MODEL ALONG THE CENTERLINE OF THE JEFFREY-HAMEL TYPE CONVERGING WEDGE FLOW CELL 
Pressure r = 2.1 cm  r = 1.9 cm r = 1.7 cm r = 1.5 cm r = 1.3 cm r = 1.1 cm 

Drop (P) 

in kPa 

(rr –)  

in kPa 

(rr –)  

in kPa 

(rr –)  

in kPa 

(rr –)  

in kPa 

(rr –)  

in kPa 

(rr –)  

in kPa 

276 - 6.35 - 6.53 - 8.66 - 10.63 - 13.29 - 14.94 

380  - 10.05 - 11.76  - 17.25 - 21.09 

483 - 12.36 - 13.06 - 14.76 - 20.29 - 21.64 - 28.10 

586  - 27.96 - 32. 11  - 38.02 - 42.13 

689 - 18.42 - 26.17 - 31.10 - 35.28 - 45.56 - 53.50 
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3.5 Linear Stress-Optical Coefficient  

The room-temperature linear stress-optical coefficient (C) for PDMS in planar extensional flow at various pressure drops 

(flow rates) can be obtained from equation 12 using the measured birefringence along the cell centerline and the first normal 

stress difference (FNSD) calculated from the two-term Goddard-Miller model (equation 27) with a single Maxwell-type 

relaxation time constant of 0.0174 s and a zero-shear viscosity of 300 Pa.s. Thus, a plot of ∆N vs rr should give a 

straight line passing through the origin with the slope equal to the linear stress-optical coefficient (C). Figure 7 shows such a 

plot for pressure drops of 276, 380, 483, 586, and 689 kPa across the converging wedge flow cell. A linear stress-optical 

coefficient of 1.41 x 10
-10

 Pa
-1

 was obtained for PDMS at room temperature. This compares well with values of 1.35 x 10
-10

 

Pa
-1

 by Wales [11], 0.909 x 10
-10

 Pa
-1

 by Liberman et al. [12], 1.56-1.84 x 10
-10

 Pa
-1

 by Galante and Frattini [13]for a low and 

a high molecular weight PDMS, and 1.44 x 10
-10

 Pa
-1

 by Subramanian et al. [20].The positive sign of the stress-optical 

coefficient confirms that the polarizability of the backbone of PDMS chain is indeed highest in the chain direction. 

 

FIGURE 7. MEASURED FLOW BIREFRINGENCE VS. COMPUTED FIRST NORMAL STRESS DIFFERENCE (USING 

THE TWO-TERM GODDARD-MILLER MODEL) IN PLANAR EXTENSIONAL FLOW ALONG THE CELL CENTERLINE 

FOR VARIOUS PRESSURE DROPS ACROSS THE FLOW CELL. 

IV. CONCLUSION 

We have shown that the linear stress-optical coefficients of an amorphous polymer melt or fluid can be estimated from flow-

induced birefringence and laser Doppler anemometry measurements. Unlike many previous studies that measured stresses 

mechanically, the stresses can be evaluated by choosing an appropriate constitutive equation that best describes the 

rheological behavior of the polymer. The strain-rates can be computed from local velocity measurements using laser Doppler 

anemometry. The linear relation between the stress and polarizability tensors, which generally valid over a range of strain 

rates that extended well into the non-Newtonian region, can then be used to obtain the stress-optical coefficient.  
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