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Abstract— Two robust procedures evaluating all unstrained element lengths are presented to find one practically 
optimized initial shape of cable-stayed bridges under dead loads. An analytical method based on the continuous 
girder model accounting for P-Δeffects due to stay-cable tensions is first proposed to calculate optimized cable 
tensions and unstrained element lengths without recourse to refined nonlinear FE analysis method. And then it is 
addressed how the G.TCUD method [10] developed for suspension bridges should be applied to determine an 
optimized initial state of cable-stayed bridges. For this, the extended nonlinear formulations of the co-rotational 
frame element as well as the elastic catenary cable element are briefly summarized by adding unstrained lengths 
of all finite elements to the unknown. Finally, based on the unstrained lengths determined from two methods, the 
unstrained length methods are presented to effectively perform nonlinear FE analysis of cable stayed bridges 
subjected to various load combinations. Consequently accuracy and effectiveness of the proposed schemes are 
demonstrated by showing that not only the unstrained lengths of a long-span cable-stayed bridge model by the 
analytical method are nearly same as those by the G.TCUD method but also these two methods lead to essentially 
one optimized initial configuration which is in suit with the target geometry. 

Keywords— Initial shaping, G.TCUD, elastic catenary cable element, co-rotational frame element, unstrained length, 
cable-stayed bridge 

I.  INTRODUCTION  

Generally one initial configuration satisfying the equilibrium condition between external dead loads and internal member 
forces including cable tensions should be predetermined in the preliminary design stage of cable-supported bridges because 
cable members cannot be defined in the stress-free state. Moreover it is of extreme importance to obtain the minimized 
bending moment distributions by determining optimized cable tensioning forces because the internal forces due to dead loads 
can be significantly large as the span length of cable bridges is increased. This analysis process finding one initial 
equilibrium state close to the target configuration of cable structures under full dead loads is referred to as shape finding, 
form finding or initial shape analysis.  

With relation to shape finding problems of cable-stayed bridges, a set of optimized tensioning forces for stay-cables should 
be found such that the vertical displacements of the main girder vanish except for the fabrication camber and the horizontal 
displacements of the pylon are minimized within the allowable limit. Otherwise, huge bending moments in the deck and 
pylons of cable-stayed bridges under dead loads can be induced due to the P - ∆ effect by horizontal or vertical components 
of the cable tension. Furthermore, in case of fan- and harp-typed cable-stayed bridges, one practically optimized initial state 
should be searched because there can exist several initial configurations. Particularly as the span length of cable-supported 
bridges is greatly increased, the maximum bending moment occurring in the main girder and the pylon can become rapidly 
outsized depending on the fabrication camber and the balanced condition with respect to self-weights. 

Until now, to find the initial state solution of cable-stayed bridges, various analysis methods have been developed such as the 
zero displacement method [1], the force equilibrium method [2], the optimization method [3, 4, 5], the initial force method 
[6], the TCUD (Target Configuration Under Dead loads) method [7], and the combination method of initial force method and 
TCUD method [8, 9]. However, it is judged that the optimized cable tensioning problem of cable-stayed bridges is still 
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challenging because the slight variation of cable tension forces can result in massive bending moments in the main girder or 
pylons.  

Particularly it is worth mentioning the unstrained element length-based method [10] generalizing TCUD method recently 
proposed for finding an optimized initial shape of suspension bridges under dead load. In that study, the extended tangential 
stiffness matrices of the frame element as well as the cable element were derived by adding unstrained lengths of all finite 
elements to the unknown. And the unstrained element length-based methods including the G.TCUD method were then 
proposed based on Newton iteration method. Eventually it was demonstrated through numerical application that one ideally 
optimized initial configuration for typical suspension bridges subjected to full dead loads can be successfully found such that 
not only the converged state well conformed to the designed configuration but also bending moments in the main girder were 
minimized and moments in the tower were negligibly small. For cable-stayed bridges contrary to suspension bridges, it is 
questionable whether the nonlinear analysis methods proposed for suspension bridges can be straightforwardly applied to 
long-span cable-stayed bridges or not. 

On the other hand, some analytical method has been proposed to get the trial initial state solution of cable bridges. The study 
by Chen et. al [2], which is based on the continuous beam model virtually supported at the points anchored by stay cables 
and a constraint condition of horizontal displacements at the top of the pylon, is worth referring in case of cable-stayed 
bridges. However, most of initial state solutions obtained analytically by these methods might not provide one optimized 
initial configuration due to the combined action of fabrication cambers and horizontal tension components of cable members 
in case of self-anchored cable-stayed bridges. In other words, for cable-stayed bridges having fabrication cambers, bending 
moments and reaction forces of the continuous stiffening girder supported virtually at the points anchoring by cable elements 
can be inaccurately evaluated due to horizontal tensions because it is subjected to horizontal tension components of cable 
members as well as self-weights. Furthermore, stay-cables in case of long-span cable-stayed bridges are so long that it can be 
sometimes required to improve the accuracy in calculating their unstrained lengths.  

This paper intends to propose two robust procedures evaluating all unstrained element lengths to find one practically 
optimized initial shape of cable-stayed bridges under dead loads: 

1. An improved analytical method based on the continuous girder model accounting for P − ∆ effects of the main girder due 

to cable tensions is first proposed to calculate optimized cable tensions and unstrained element lengths without recourse to 
refined nonlinear FE method.  

2. And then it is addressed how the G.TCUD method [10] developed for suspension bridges should be applied to determine 
an optimized initial state of cable-stayed bridges.  

3. For this, the extended nonlinear formulations of the frame element as well as the cable element are briefly summarized by 
adding unstrained lengths of all finite elements to the unknown.  

4. Finally, based on the unstrained lengths determined from two methods, the unstrained length methods are presented to 
effectively perform nonlinear FE analysis of cable-stayed bridges subjected to various load combinations.  

5. For a long-span cable-stayed bridge example having two intermediate piers, accuracy and effectiveness of the proposed 
two schemes are demonstrated by showing that not only the unstrained lengths by the analytical method are nearly same as 
those by the G.TCUD method but also these two methods lead to essentially one optimized initial configuration which is in 
suit with the target geometry.  

6. In particular, amplified effects of the fabrication camber and the weight balancing between center and side spans on the 
initial state solution are carefully investigated through the bridge example.  

II.  NONLINEAR ELASTIC CATENARY CABLE AND FRAME ELEMENTS  

Jayaraman and Knudson [11] have firstly proposed an elastic catenary cable element from the exact solution 
(Irvine [12]) of the elastic catenary cable equation under its self-weight. And a frame element for geometrically 
nonlinear analysis of plane frames has been developed by several researchers (Pacosteand Eriksson [13], 
Crisfield [14], Leand Battini [15]). In this section, the unstrained length-based frame and cable element presented 
in Jung el al. [10] are briefly formulated to develop the G.TCUD method and the corresponding unstrained length 
method in the subsequent sections. 
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Consider an elastic catenary cable element suspended between two points(0,0)i and ( , )x yj L L as shown in Fig. 1. 

By integrating equilibrium equations exactly, the following compatibility condition can be derived as a function 
of the nodal forces

1F  and 2F  at the node i and the unstrained lengthoL as  
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FIGURE 1 AN ELASTIC CATENARY CABLE ELEMENT SUBJECTED TO ITS SELF -WEIGHT AND NODAL FORCES  

where 2
2

2
1 FFTp += ; ( )22

1 2q oT F wL F= + − ; oEA = the axial rigidity; w = self-weight per unit length.  

Now partial differentiation of both sides of Eq. (1) yields the following incremental relationships: 
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13 UULx ∆−∆=∆  and 24 UULy ∆−∆=∆       (2b, c) 

Consequently the inverse of the flexibility matrix in Eq. (2a) leads to incremental equilibrium equations of an 
elastic catenary cable element as follows; 

 oL∆ = ∆ + ∆c c c cuF K U K    (3) 

Where ∆ cF = the incremental nodal force vector;
cK = the tangential stiffness matrix;∆ cU = the incremental 

displacement vector; cuK = the stiffness matrix related to the unstrained length. It should be emphasized that all 

the stiffness terms in Eq. (3) are fully used for calculating the extended tangential stiffness matrix in case of the 
TCUD methods but the last term in Eq. (3) vanishes in the unstrained length method because the unstrained cable 
length oL is kept constant. In addition to this, one of nodal forces

1F  and 2F  of long stay-cable members is 

assumed to remain unchanged in developing an analytical method in section 3.2. Consequently it is worth 
pointing out that Eq. (1) should be iteratively solved with keeping one of

1F , 2F and oL a fixed value in order to 

resolve the state determination problem of elastic catenary cable elements.  
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On the other hand, Fig. 2 shows nodal displacements and deformation components of a frame element with 
respect to the co-rotational coordinate system at the initial and the deformed state where the nodal displacement 
and force vector may be defined as follows;  

( )1 2 3 4 5 6= , , , , ,T U U U U U UfU      (4a) 

( )1 2 3 4 5 6= , , , , ,T F F F F F FfF       (4b) 

 

FIGURE 2 NODAL DISPLACEMENTS AND PURE DEFORMATIONS OF A NONLINEAR FRAME  ELEMENT  

Large rigid-body motions but the small deformations are assumed in this formulation. Removing rigid body modes from 
nodal displacement, the three pure deformations consisting of the axial deformation and relative rotations can be determined 
as follows; 
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whereL = the chord length between two element nodes. Note that oL is the element length computed as the distance between 

the nodal points in the TCUD method but the unstrained element length which should be updated iteratively in the G.TCUD 
method [10].  

Then the chord lengthL and rigid body rotationα are calculated as  
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where ( , ), ( , )i i j jx y x y = the nodal coordinates in the global coordinate system. 

Now force-deformation relationships of the beam-column element considering the bowing effect andP − δ effect can be 

expressed as follows;  
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Referring to [10], the incremental equilibrium equation of aframe element cans beobtainedin the global coordinate system as 
follows; 

oL= + ∆f f f fuΔF K ΔU K
      

(7) 

Where fK , fuK = the tangential stiffness and the unstrained length-related stiffness matrix, respectively, which 

can be expressed as  

= + +

=
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f e d g

T *
fu fu

K R (k k k )R

K R k       

(8a, b) 

whereR = the coordinate transformation matrix;* * *
e d gk , k , k and *

fuk = the elastic stiffness, stiffness due to 

member deformations, geometric stiffness due to member forces and the unstrained length-related stiffness 
matrices, respectively, in the co-rotational coordinate system. Their detailed forms are presented in Appendix. 

III.  AN ANALYTICAL METHOD FOR THE INITIAL SHAPING ANALYSIS OF CABLE -STAYED BRIDGES 

To find one optimized initial configuration of cable-stayed bridges under dead loads analytically without 
nonlinear FE analysis, basic assumptions are given in section 3.1 and then an analytical procedure determining all 
the unstrained element lengths is proposed in section 3.2.  

3.1 Basic assumptions for developing the analytical method 

First of all, it is assumed that in order to localize bending moments in the main girder due to dead loads, the 
stiffening girder is virtually supported at the nodal points anchored by stay cables so that vertical displacements 
should not occur at those points except for the fabrication camber. This assumption usually leads to the 
minimized bending moment distribution of the stiffening girder.  

Second, the self-weights of a center span and two side spans in case of self-anchored cable-stayed bridges should 
be well balanced which can result in minimization of bending moments in pylons.  

Third, it is assumed that the stay-cable element having relatively small cable lengths is parabolic under self-
weights and nodal forces can be decomposed into the pre-tensionTθ and the vertical reaction 

component / 2owL as shown in Fig. 3. Also, the unstrained length Lo of the inclined stay cables can be evaluated 

by solving the cubic equation of Eq. (9) when their nominal tensionTθ and the chord lengthl are given: 
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FIGURE 3 FREE BODY DIAGRAM OF A PARABOLIC CABLE ELEMENT UNDER ITS SELF -WEIGHT  
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Fourth, in case of extremely long-span cable-stayed bridges, the length of stay cables near the back-stay cable is 
so long that some deviation from the accurate solution can occur if only one parabolic cable element is used for 
each stay cable member. In this case, one stay cable member needs to be regarded as an elastic catenary cable 
element instead of a parabolic cable element. 

Fifth, the chord lengthl in Eq. (9) in applying the analytical method is evaluated using the initial distance 

between two anchor points of each stay cable because main girder and the pylon subjected to dead loads and 
optimized cable tensions are well balanced enough to experience negligibly small displacements.  

3.2 An analytical method for determining an optimized initial state of cable-stayed bridges 

In case of cable-stayed bridges, nominal tensions and unstrained lengths of stay cables are usually determined from reaction 
forces Ri obtained through linear elastic analysis of the continuous girder model virtually supported at anchored points under 
only dead loads (see Fig. 4(a)). However, if geometrically nonlinear analysis for the full bridge model is performed based on 
them, globally huge bending moments due to P-∆ effect by horizontal tension components of stay cables can be inevitably 
induced in the main girder having the fabrication camber.  

1R 2R 3R 5R 6R 7R 8R
4R

gw

1,backT
1T 2,backT

2T 3T 4T 5T
6T 7T 8T

 

FIG 4 (A) A MAIN GIRDER SUBJECTED TO ITS SELF -WEIGHT ONLY  

To get the optimized initial state solution, tension components of stay cables are suitably modified so that those 
bending moment in the girder should be completely excluded except for local moments. This problem can be 
overcome by analyzing the continuous beam subjected to its self-weight and updated tension components of stay 
cables simultaneously through some iteration process. In other words, the continuous girder model subjected to 
not only dead loads but also horizontal cable tensions as shown in Fig. 4(b) is newly considered to get rid of those 
global moments and to generate only local moments in the initial configuration of the main girder. In that case, 

modified reaction forcesiR ′ and corresponding cable tensions can be evaluated from linear elastic analysis of the 

improved girder model. And it is necessary to update horizontal cable tensions through some iteration loop 
because those nominal tensions of stay cables are not known in advance.  
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FIG 4 (B) A MAIN GIRDER SUBJECTED TO BOTH ITS SELF -WEIGHT AND THE HORIZONTAL TENSIONS OF STAY 
CABLES 

FIGURE 4 HALF MODELS OF THE CONTINUOUS MAIN GIRDER WITH FABRICATION C AMBERS IN A CABLE -
STAYED BRIDGE  
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Now for cable-stayed bridges with fabrication cambers subjected to dead loads, an analytical calculation procedure to make 
internal moment distributions minimized and to provide the corresponding unstrained lengths of all elements is given 
including the iteration loop of cable tensions as follows; 

Step 1) Build a structural model for the continuous stiffening girdersupported vertically at the points anchoring 
by stay-cables as shown in Fig. 4. 

Step 2) after the iteration index k is set to be zero, calculate the initial reaction forces ( )o
iR at the anchor points of 

the continuous main girder subjected to not only its self-weight but also the initial horizontal tension 

component ( )o
iH of stay cables which are zero in the first iteration process but are newly updated in the 

subsequent iterations. 

Step 3) Enter the iteration process: k = k + 1 

Step 4) Calculate the updated reaction force( )k
iR at the anchor pointsof the continuous main girder subjected to 

not only its self-weight but also the horizontal tension ( 1)k
iH − . 

Step 5) Evaluate the updated horizontal tension( )k
iH of the i-th stay cable using one of the following two cases:  

I) In case of relatively short stay cables (see assumption 3), determine the nominal tension( )
,
k

s iT of the stay cable 

and the axial forces ( ) ( )
, ,,k k

i g i pP P of the main girder and the pylon, respectively, by invokingthe following 

equilibrium conditionat two anchorage pointsof the stay cable (see Fig. 5): 
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FIGURE 5 FREE BODY DIAGRAMS AT TWO ANCHORAGE POINTS OF ONE STAY CABLE  

where iθ  = the inclination angle; Ws,i = the self-weight of the i-thstay cable.  

II) In case of relatively long stay cables (see assumption 4), solve the compatibility equation (1) of an elastic catenary cable 

element derived as a function of the nodal forces and the unstrained length where note that ( )
2 ( )k

iF R= is a known value 

calculated in Step 4) (refer to Fig. 6). Accordingly Newton iteration process is executed using the incremental equation (11) 

to find two unknowns ( )
1, ( )k

o iL F H= − where their initial values are chosen from Eq. (9) and (10). 
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FIGURE6A STAY CABLE TREATED AS AN ELASTIC CATENARY CABLE IN THE K -TH ITERATION PROCESS  

Step 6) Evaluate the horizontal tension( )k
backH of the back-stay cable: its nominal tensions cannot be evaluated 

from Eq. (10) due to existence of real vertical supports. Moreover it is well known that back-stay cable tensions 
cannot be uniquely determined in case of fan- or harp-typed cable-stayed bridges. Practically this can be 
calculated by analyzing the pylon model with the roller support at the node anchored by back-stay cables and 
subjected to horizontal tension components of stay-cables evaluated in Step 5) as shown in Fig. 7. 
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(A) A PYLON SUBJECTED TO NOMINAL CABLE TENSIONS (B) FREE BODY DIAGRAM OF A PYLON UNDER 
HORIZONTAL TENSIONS  

FIGURE 7A PYLON SUBJECTED TO NOMINAL TENSIONS BYTHE STAY CABLE  
 

Step 7) Check whether the nominal tensions of stay cables converge or not: If it is not converged, go to Step 3) and repeat 
the iteration process to Step 7). If it is converged, exit to Step 8). 

Step 8) Determine the converged tensions and the unstrained lengths of all stay cables using one of the following 
two cases:  

I) In case of relatively short stay cables, the unknown values are easily calculated using Eq. (9) and (10). 
II) If the back-stay cable is relatively long, the compatibility condition of the elastic catenary cable is applied similarly to II) 

of Step 4) namely, Eq. (1) is iteratively solved with respect to2F and oL as shown in Eq. (12) because( )
1( )k

backH F= − is 

determined in Step 6) (see Fig. 8). 
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Step 9) Finally evaluate the axial force and the unstrained length of frame members: the axial force of all frame members can 
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be determined from statics and the corresponding unstrained length using Hooke’s law. 
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FIGURE : 8 A BACK -STAYCABLE TREATED AS AN ELASTIC CATENARY CABLE  
 

In this study, three analytical procedures are taken into account for comparison. Fig. 9 to 11 shows flowcharts of three 
algorithms to determine unstrained lengths of all cable and frame elements analytically. Here the analytical method 1 (AM1) 
without any iteration process neglects P-∆ effect by horizontal tension components of stay cables which can cause huge 
bending moments in the main girder and the pylons due to the horizontal or the vertical components of stay cable tensions. 
On the other hand, both the analytical method 2 (AM2) and the analytical method 3 (AM3) can greatly reduceP − ∆ effects 

of cable tensions owing to the updated iteration process of stay cable tensions. Here the main difference between the AM2 
and AM3 is that each stay cable is modeled as an approximate parabolic cable element in the former but as an accurate elastic 
catenary cable in the latter. Therefore, the AM3 is expected to provide the most optimized initial state solution by treating 
long stay-cables as a catenary cable member. 
 

Calculate reaction forces     of the 

continuous main girder under its self-weight only                
iR

Determine the nominal tension        and 

the horizontal tension       using Eq. (10)

Input the geometric and dead load data of cable stayed  bridges

Determine the horizontal tension           of back-stay cables referring to Fig. 7(b) 

Complete AM1

Calculate unstrained lengths of all cable elements using Eq. (9)

Calculate axial forces of all frame elements and the 

corresponding unstrained lengths using Hooke’s law
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FIGURE 9 A FLOWCHART TO DETERMINE UNSTRAINED ELEMENT LENGTHS BY THE ANALYTICAL METH OD 1 

IV.  THE G.TCUD METHOD FOR THE INITIAL SHAPING ANALYSIS OF CABLE -STAYED BRIDGES 

In this section, the generalized TCUD method is presented for initial shaping analysis of cable-stayed bridges. 
The TCUD and G.TCUD methods for initial shaping analysis of suspension bridges have well developed in the 
previous papers [7, 10]. Basically those procedures can be applied to determine the initial state of long-span 
cable-stayed bridges under dead loads without major modification. Accordingly in this section, the nonlinear 
formulation of the G.TCUD method is compactly summarized and some differences between suspension bridges 
and cable-stayed bridges in applying these methods are mentioned. 
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FIGURE 10 A FLOW CHART TO DETERMINE UNSTRAINED ELEMENT LENGTHS BY THE ANALYTICAL METHOD 2 

The extended incremental equilibrium equation for the whole structural system accounting for unstrained element 
lengths as the unknown can be written as 

 = +t ul oΔF K ΔU K ΔL    (13) 

where ( 1)n ×ΔF = the unbalanced load vector; ( )n n×tK and ( )n m×ulK = the tangential stiffness matrix and the 

unstrained length-related stiffness matrix, respectively; ( 1)n ×ΔU = the incremental nodal displacement 

vector;n = the number of total degree of freedom; ( 1)m ×oΔL = the incremental unstrained length vector where 

note that m is equal to the total number of all the cable elements in TCUD method and the number of both cable 
and frame elements in G.TCUD method, respectively. 

Clearly additional constraint conditions should be introduced to solve the incremental equation (13) since the total 
number of unknown variables in Eq. (13) exceeds the total number of equations. Fig. 12 illustrates one example 
of the constraints applied to a cable-stayed bridge having two intermediate piers in which the arrowed degrees of 
freedom are additional restraints due to unstrained lengths of cable and frame elements introduced in G.TCUD 
method. In other words, additional geometric restraints due to cable members are the vertical displacements of the 
main girder at the points anchored by stay cables and the horizontal displacements of the pylon at nodal points 
connecting to back-stay cables. And constraints due to frame members include the axial displacements of all the 
nodal points in both the main girder and the pylon.  

In case of suspension bridges, the horizontal displacements at the top of the tower are ideally zero and the 
bending moments are localized in the main girder under dead loads irrespectively of balanced or unbalanced 
conditions. However, it should be pointed out that all horizontal movements of the pylon cannot be perfectly 
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suppressed in fan- or harp-typed cable-stayed bridges. To minimize these bending moments occurring in pylons, 
it is of central importance for total self-weights between the center span and the side spans to be well balanced. 

Enter the iteration loop: 

k=0

Input the geometric and dead load data of  cable stayed bridges

k = k+1

Yes

Yes

No

k = 0  ?
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FIGURE 11 A FLOW CHART TO DETERMINE UNSTRAINED ELEMENT LENGTHS BY THE ANALYTICAL METHOD 3 

 

FIGURE 12 ADDITIONAL GEOMETRIC CONSTRAINTS IN THE G.TCUD METHOD FOR A HALF MODEL OF A 
CABLE -STAYED BRIDGE HAVING ONE INTERMEDIATE PIER  

 

 



International Journal of Engineering Research & Science (IJOER)                                                               [Vol-1, Issue-9,  December- 2015] 

Page | 84  

  

Now taking into account those additional restraints, Eq. (13) may be rewritten as  

 = + +tu u ts s ul oΔF K ΔU K ΔU K ΔL    (14) 

where ( )( ) 1n m− ×uΔU = the unknown displacement vector to be determined; ( 1)m×sΔU = the constrained 

displacement vector imposed by the designer to fulfill the target shape of the bridge; 

( ( ))n n m× −tuK and ( )n m×tsK = partitioned stiffness matrices corresponding touΔU and sΔU , respectively.  

Accordingly, the second term in the right-hand side of Eq. (14) vanishes and the other two terms result in a non-
symmetric stiffness formulation as 

( ) [ ]  
=  

 

u
tu ul

o

ΔU
ΔF K K

ΔL
   

(15) 

Consequently the iterative G.TCUD algorithm can be represented as follows; 

( ) 1, 2 ,for i
 

  = − = ⋅ ⋅ ⋅    
 

(i)
u(i-1) (i -1) (i -1)

tu ul (i)
o

ΔU
K K W F

ΔL  

     
= +          

     

(i) (i -1) (i)
u u u

(i) (i-1) (i)
o o o

U U ΔU

L L ΔL                                  (16) 

where W = the dead load vector;(i)F = the equivalent internal force. After the simultaneous equation (16a) having 
the non-symmetric stiffness matrix is solved, the total nodal displacement and the unstrained length vector are 

updated as seen in Eq. (16b) and the internal force vector (i-1)F is evaluated by the state determination procedure 

based on the total displacements and the unstrained lengths. Particularly (0)F denotes the internal force due to 

initial cable tensions and axial forces determined by the analytical procedure in section 3.1.Generally this vector 
vanishes in case of girder bridges but should be consistently calculated for cable bridges because it may be slowly 
converged or diverged if it is neglected.  

Remark 1: Not only the G.TCUD method provides an optimized initial state of balanced cable-stayed bridges but 
also linear analyses based on it can be conducted under various load combinations. However, similarly to 
analytical methods introduced in section 3, some difficulties can be caused in performing nonlinear FE analyses 
under extreme loads.  

Remark 2: Nonlinear analyses under limit load combinations including the geometry control can be easily and 
accurately executed through the unstrained length element method presented in the next section. 

V. UNSTRAINED LENGTH METHOD FOR NONLINEAR ANALYSIS OF CABLE -STAYED BRIDGES 

Basic concept of the unstrained length method (ULM) for the initial state analysis of cable-stayed bridges is 
similar to that for suspension bridges [10]. The unstrained length method consists of two stages. In the first stage, 
unstrained lengths of both cable and frame elements are pre-determined in the reasonable way and in the second 
stage, nonlinear FE analysis based on Newton iteration method is performed under dead loads by keeping 
unstrained element lengths constant. Consequently Newton-Raphson iteration algorithm for the second stage can 
be represented as follows; 

1, 2,for i= − =(i-1) (i) (i-1)
tK ΔU W F L  
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= +(i) (i-1) (i)U U ΔU        (17) 

=(i)
o oL L      

where W and (i)F = the dead load and the internal force vector identical to those in Eq. (16). It should be again 
emphasized that the tangential stiffness matrix is symmetric and the unstrained lengths of all finite elements 
remain constant in the iteration process. In the last stage, incremental nonlinear analyses under additional live 

load combinations are performed by simply adding the live loadλ LW to the dead load in Eq. (17a) as follows; 

1, 2,L for iλ= + − =(i-1) (i) (i-1)
tK ΔU W W F L     (18) 

Particularly if some temperature increase of specific elements occurs, the unstrained length of the corresponding 
elements should be adjusted depending on the thermal change T∆ in which the incremental unstrained length is 

calculated as  

o T oL T Lα∆ = ∆        (19)  

where Tα = the coefficient of linear thermal expansion. 

With relation to the first stage of ULM, three analytical schemes determining all the unstrained lengths have been 
proposed in section 3.2 and G.TCUD presented in section 4. In this study, four ULMs are taken into account 
depending on the scheme evaluating the unstrained length as follows; 

1. ULM1: the unstrained lengths of cable and frame elements obtained from the AM1 in section 3.1 are directly 
used in geometrically nonlinear FE analysis. 

2. ULM2: the unstrained element lengths obtained from the AM2 are used. 

3. ULM3: the unstrained lengths from the AM3 are used. 

4. ULM4: the solution determined by G.TCUD is fully used. 

Fig. 13 represents a flow chart of four ULMs. In connection with the concept of unstrained cable lengths, it is 
worth referring to the study by Lozano-Galant et al. [16] because it well explains what the unstrained length of 
cable elements means in construction stage analysis even though it is based on linear analysis. 

VI.  NUMERICAL EXAMPLES  

In section 3 and 4, the analytical methods and G.TCUD method determining all the unstrained element lengths 
have been presented to find one optimized initial state of cable-stayed bridges and in section 5, four ULMs for 
nonlinear analysis of cable bridges subjected to additional load combinations have been proposed based on the 
two initial shaping analysis methods. In this section, one example determining the initial shape of self-anchored 
cable-stayed bridge with an intermediate pier is provided to demonstrate efficiency and effectiveness of those 
methods.  

Incheon Bridge which connects Incheon International Airport and Songdo International city in Incheon-si is the 
biggest cable-stayed bridge in Korea. Figure 14 shows a structural model of Incheon bridge, and it is a long-
span cable-stayed bridge with five spans of 80+260+800+260+80m, and the concrete tower is an inverse Y 
shape with 238.5m height. Streamlined steel box girder is suspended by 208 cables with double cable planes. 
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Also Figure 15 denotes the vertical camber of the main girder which is linear along the side spans and parabolic 
throughout the center span. 

λ∆ = + LF W W

Solve tK ΔU = ΔF

 

FIGURE 13 FLOW CHART OF THE UNSTRAINED LENGTH METHOD FOR CABLE -STAYED BRIDGES 
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FIGURE 14 PROFILE OF INCHEON BRIDGE MODEL  
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FIGURE 15 VERTICAL CAMBER OF INCHEON BRIDGE MODEL  

To investigate the effects of cambers and unbalancing of self-weights, two types of the cable-stayed bridge 
model are basically analyzed namely, the balanced bridge having fabrication cambers and the balanced bridge 
with-out cambers. For comparison, the unbalanced bridge models with or without cambers are additionally 
explored using G.TCUD method.  

Table 1 summarizes the material and cross-sectional properties of Incheon bridge model. In this model, a 
counter weight of 300kN/m between 6.78~36.782m and 1443.218~1473.22m along the main girder, which is 
neglected in case of the unbalanced bridge models, is deliberately applied to make self-weights of the center 
span and side spans balanced. And the supply piers are located in each side spans which means that there are 
four back-stay cables connected with supply piers and end piers.  

TABLE 1  
MATERIAL AND GEOMETRIC PROPERTIES OF INCHEON BRIDGE MODEL  

Structural member E(Gpa) A(m2) I(m4) w(kN/m) Remarks 

Girder 200 2.1203 3.1608 250.0 
Counter weightof 187.5kN/m   between 

supplemental and end piers 

Tower 1 37.5 43 240.27 1065.6 0~182m 

Tower 2 37.5 24.125 141.712 689.1 182m~234.5m 

Cable 4 195 0.02316 - 1.86 C1~4, 8~14, 29~56, 71~77, 81~84, 

Cable 6 195 0.01162 - 0.93 C5~7, 15~28, 57~70, 78~80 
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To get one optimized initial state solution, the following constraints are introduced in the G.TCUD method. 

The essential boundary condition: 

- Y-coordinates of the roller-supported points (No. 1, 9, 65 and no. 78) on the main girder  

- X- and Y-coordinates of the hinged point (No. 22) on the main  

- Y-coordinates of a point (No. 34) on the main girder supported by the tower 

- Fixed end points (No. 110 and 134) at the base of two pylons 

The additional constraints introduced in G.TCUD (displayed as arrow in Fig. 12 and as boldface in Table 2): 

- Y-coordinates of points (No. 2 - 8, No. 10 - 21, No. 23 – 64, No. 66-77 and No. 79 - 85) on the main girder anchored    
by stay cables  

- X-coordinates of points (No. 88, 96, 112 and no. 120) on the pylons anchored by back- stay cables 

- X-coordinates of nodal points (No. 1 – 21, No. 23 - 86) on the main girder except for No. 22  

- Y-coordinates of all nodal points on towers except for No. 110 and 134 

TABLE 2 
UNSTRAINED CABLE ELEMENT LENGTHS IN THE CABLE -STAYED BRIDGE MODEL  

Cable No.    

LO(m) by 
G.TCUD    

(1)    

LO (m)    

by AM1     

(2)    

LO(m) 
by AM2     

(3)    

LO(m)    

by AM3     

(4)    

∆∆∆∆LO 
(mm)    

(2)-(1)    

∆∆∆∆LO 
(mm)    

(3)-(1)    

∆∆∆∆LO 
(mm)    

(4)-(1)    

Remarks    

1 380.523 380.719 380.500  380.515  195.6 -22.9  7.5  back stay 
3 361.298 361.359 361.247  361.296  61.3 -50.9  2.0  stay cable 
5 340.801 340.781 340.790  340.800  -20.2 -11.5  0.6  stay cable 
7 321.199 321.178 321.190  321.199  -21.0 -9.2  0.3  stay cable 
9 302.613 303.717 302.549  302.593  1103.5 -63.8  19.9  back stay 
11 265.955 265.976 265.935  265.955  20.9 -19.6  0.3  stay cable 
13 230.850 230.866 230.836  230.850  15.6 -14.3  0.3  stay cable 
15 197.363 197.357 197.361  197.363  -5.6 -2.2  -0.1  stay cable 
17 167.390 167.388 167.388  167.390  -2.2 -1.5  0.2  stay cable 
19 142.491 142.491 142.491  142.491  -0.1 -0.5  0.0  stay cable 
21 125.750 125.751 125.749  125.750  0.9 -0.6  0.2  stay cable 
23 130.386 130.409 130.385  130.386  23.2 -0.7  0.5  stay cable 
25 149.821 149.855 149.819  149.820  34.0 -1.8  0.6  stay cable 
27 176.397 176.446 176.395  176.397  49.3 -2.2  0.0  stay cable 
29 207.714 207.767 207.700  207.713  53.2 -13.7  0.7  stay cable 
31 241.495 241.567 241.476  241.494  71.9 -18.5  0.7  stay cable 
33 276.984 277.075 276.961  276.983  91.4 -23.1  1.1  stay cable 
35 310.296 310.415 310.249  310.294  119.1 -47.0  1.7  stay cable 
37 340.455 340.589 340.405  340.453  134.0 -50.4  1.9  stay cable 
39 370.992 371.142 370.935  370.991  150.3 -56.8  1.3  stay cable 
41 401.914 402.093 401.835  401.912  179.4 -79.4  2.0  stay cable 
42 416.900 417.040 416.862  416.899  140.4 -37.8  0.9  stay cable 

 

Initial solutions including unstrained lengths of all cable and frame elements are firstly determined using AM1, AM2, AM3 
and G.TCUD methods and then four ULMs are applied to build an initial state of the bridge model under dead loads.  

Table 2 shows unstrained cable lengths and their differences evaluated by analytical methods and G.TCUD. Also, Table 3 
display not only initial target coordinates including the vertical camber of the main girder but also horizontal and vertical 
displacements by ULMs at the nodal points of the main girder and towers connected to stay cables. Here vertical coordinates 
of No.1 - 86 in the second column of Table 3 denotes elevations of fabrication cambers of the main girder. Particularly nodal 
degrees of freedom corresponding to boldface and stared values correspond to essential boundary conditions and additional 
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geometric restraints introduced in G.TCUD method, respectively (also refer to Fig. 12).In addition, Fig. 16 and 17 show 
bending moment diagrams in the left half of the main girder and the right pylon, respectively and Fig. 18 displays 
fluctuations of stay cable tensions by three ULMs. Finally Table 4 shows the summary of maximum internal forces and 
displacements of the main girder and towers analyzed by initial shaping analysis methods for the balanced and unbalanced 
bridge models with the fabrication camber. On the other hand, Table 5 summarizes maximum bending moments of the 
main members for the balanced and unbalanced bridge without the camber. Several observations and conclusions can be 
drawn from the presented Tables and Figures.  

 
TABLE 3  

INITIAL COORDINATES AND NODAL DISPLACEMENTS AT THE POINT OF THE GI RDER AND TOWERS 
CONNECTED TO STAY CABLES BY THREE UNSTRAINED LENGTH METHODS FOR THE B ALANCED BRIDGE WITH 

THE FABRICATION CAMBER  

 

Node    

No.    

Target Coord.    

(X,Y) 

(m)    

ΔX by    

ULM1 

(mm)    

ΔY by    

ULM1 

(mm)    

ΔX by    

ULM2 

(mm)    

ΔY by    

ULM2 

(mm)    

ΔX by    

ULM3 

(mm)    

ΔY by    

ULM3 

(mm)    

ΔX by    

ULM4 

(mm)    

ΔY by    

ULM4 

(mm)    

Remark    

1 (0.0*,0.0) -9.2 0.0 0.1  0.0  0.0  0.0  0.0 0.0 roller support 

5 (40*,1.195*) -8.7 -5.2 0.0  2.0  0.0  0.0  0.0 0.0 
 9 (80*,2.390) -8.2 0.0 0.1  0.0  0.0  0.0  0.0 0.0 roller support 

13 (160*,4.780*) -1.1 -161.8 0.6  -18.7  0.1  -3.1  0.0 0.0 
 17 (240*,7.170*) 1.1 -144.3 0.7  -22.8  0.1  -2.8  0.0 0.0 
 22 (340 , 10.158) 0.0 0.0 0.0  0.0  0.0  0.0  0.0 0.0 Hinged support 

30 (500*,15.018*) -4.4 303.6 -1.5  51.1  -0.1  4.6  0.0 0.0 
 38 (648*,17.351*) -8.2 714.7 -3.6  181.4  -0.2  11.0  0.0 0.0 
 42 (712*,17.716*) -8.7 839.5 -3.9  221.7  -0.3  12.9  0.0 0.0 
 46 (784*,17.661*) -8.8 819.6 -3.9  215.6  -0.3  12.6  0.0 0.0 
 54 (920*,16.215*) -11.6 455.7 -5.3  95.5  -0.3  7.0  0.0 0.0 
 62 (1080*,12.265*) -15.5 112.1 -7.2  13.8  -0.5  1.7  0.0 0.0 
 65 (1140*,10.158) -17.6 0.0 -7.7  0.0  -0.5  0.0  0.0 0.0 roller support 

69 (1220*,7.768*) -18.6 -119.6 -8.4  -20.4  -0.6  -2.4  0.0 0.0 
 73 (1300*,5.378*) -17.7 -180.4 -8.4  -23.2  -0.6  -3.5  0.0 0.0 
 78 (1400*,2.390) -9.4 0.0 -7.8  0.0  -0.5  0.0  0.0 0.0 roller support 

82 (1440*,1.195*) -8.9 -4.9 -7.7  2.2  -0.5  0.0  0.0 0.0 
 86 (1480*,0.0) -8.4 0.0 -7.8  0.0  -0.5  0.0  0.0 0.0 roller support 

88 (340 , 174*) -202.3 1.3 -37.8  -1.4  -4.0  0.0  0.0 0.0 back-stay cable 

92 (340 , 166*) -195.8 1.3 -35.9  -1.4  -3.7  0.0  0.1 0.0 
 96 (340 , 158*) -189.3 1.3 -34.1  -1.3  -3.6  0.0  0.0 0.0 back-stay cable 

104 (340 , 142*) -174.8 1.1 -30.9  -1.2  -3.8  0.0  -0.5 0.0 
 110 (340 , -64) 0.0 0.0 0.0  0.0  0.0  0.0  0.0 0.0 fixed support 

112 (1140 , 174*) 183.9 1.3 29.5  -1.4  3.4  0.0  0.0 0.0 back-stay cable 

116 (1140 , 166*) 178.3 1.3 28.1  -1.4  3.2  0.0  -0.1 0.0 
 120 (1140 , 158*) 172.6 1.3 26.7  -1.3  3.1  0.0  0.0 0.0 back-stay cable 

132 (1140 , 142*) 152.8 1.1 24.3  -1.2  3.3  0.0  0.7 0.0 
 134 (1140 , -64) 0.0 0.0 0.0  0.0  0.0  0.0  0.0 0.0 fixed support 
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First of all, the initial state solutions by AM1 look reasonable at first glance. However, as shown in Fig. 16(b), Fig. 17(a) and 
the second column of Table 4 and 5, ULM1 based on unstrained lengths by AM1 gives explosively large bending moments 
in both the main girder and the pylon for bridge models with camber. Fundamentally this is because AM1 cannot remove 
magnified bending moments in the main girder with the camber and the pylons due to compressive forces transmitted by 
cable tensions.  

Second, it is noticed in Table 3 that not only vertical displacements ΔY at nodal points on the main girder anchored by stay 
cables and horizontal displacements ΔX at points on the pylons anchored by back- stay cables but also axial displacements at 
points along the main girder and the towers by ULM4 vanish exactly which is due to constraints introduced by G.TCUD 
method. Particularly maximum bending moments in both the girder and the pylon by G.TCUD are ideally small in case of 
the balanced bridge without the camber (Table 5) while it turns out that in the balanced bridge with the camber, maximum 
moments in the pylon are small within the allowable limit (Table 4).  

TABLE 4  
SUMMARY OF MAXIMUM INTERNAL FORCES AND DISPLACEMENTS FOR THE B ALANCED AND THE 

UNBALANCED BRIDGE MODEL SHAVING THE INITIAL CAMBER  

    

AM1     

(ULM1)     

AM2     

(ULM2)     

AM3     

(ULM3)     

G.TCUD    

(ULM4)     

G.TCUD*     

(ULM4 *)    

Max. positive moment  

of the main girder(kN-m) 

7,852.82 

(30,737.2) 

7,854.31 

 (7,387.16) 

7,858.54 

(7,526.85) 

7,859.57 

(7,863.79) 

7,859.45* 

(7,859.53*) 

Max. negative moment  

of the main girder(kN-m) 

-10,147.2 

(-72,514.1) 

-10,144.3 

 (-16,544.8) 

-10,141.3 

(-10,473.9) 

-10,140.2 

(-10,140.7) 

-10,140.1* 

(-10,140.0*) 

Max. compressive force  

of the tower (kN) 

-224,694. 

(-215,896) 

-210,324. 

 (-214,683.) 

-206,052. 

(-214,703.) 

-214,687. 

(-214,687.). 

-214,857.* 

(-214,857.*) 

Max. positive moment  

of the right pylon (kN-m) 

5,250.24 

(46,232.9) 

4,645.37 

(4,015.2) 

4,840.62 

(4,986.1) 

4,807.93 

(4,809.22) 

9,884.9* 

(9,885.2*) 

Max. negative moment  

of the right pylon (kN-m) 

-26,075.9 

(-119,187.) 

-17,021.2 

 (-16,998.7) 

-16,681.4 

(-16,176.2) 

-16,818.3 

(-16,816.5) 

-67,119.4* 

(-67,119.3*) 

Horizontal displacement  

at the top of the tower (mm) 

- 

(202.7) 

- 

(29.6) 

- 

(4.0) 

1.1 

(1.1) 

2.32* 

(2.31*) 

Vertical displacement  

at the top of the tower (mm) 

- 

(1.3) 

- 

(-1.4) 

- 

(0.0) 

0.0 

(0.0) 

0.0* 

(0.0*) 

Axial shortening  

of the whole main girder (mm) 

- 

(17.6) 

- 

(8.5) 

- 

(0.6) 

0.0 

(0.0) 

0.0* 

(0.0*) 

Max. vertical displacement  

of the main girder (mm) 

- 

(852.8) 

- 

(225.2) 

- 

(13.1) 

0.6 

(0.5) 

0.6* 

(0.6*) 
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Consequently both G.TCUD and ULM4 clearly provide one optimized initial configuration conforming well to the target 
geometry in case of the balanced bridge model under dead loads as observed in Fig. 16 and 17 and Table 3. In addition, 
note that the absolute maximum moment of the pylon from Table 4 is 16.82 MN-m which corresponds to the small flexural 
stress of about 0.36 MPa (=16.818× 3/141.7) and also, the maximum bending moment of the continuous girder will decrease 
rapidly as the distance between anchor points of stay cables becomes small. Particularly it should be realized that both 
G.TCUD and ULM4 lead to completely identical initial solutions irrespective of balanced or unbalanced conditions as 
observed in the fourth and the fifth column of Table 4 and 5. 
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FIGURE 15 VERTICAL CAMBER OF INCHEON BRIDGE MODEL  
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FIG 16 (A) BENDING MOMENT DIAGRAMS BY ULM2,  ULM3,  AND ULM4 
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FIG 16 (B) BENDING MOMENT DIAGRAMS BY ULM1  AND ULM4 

 
FIGURE 16 BENDING MOMENT DIAGRAMS IN THE LEFT HALFMODEL OFTHE MAIN GIRDER I N INCHEON 

BRIDGE (KN-M ) 
 

Third, it is noted from Table 2 to 5 and Fig. 16 and 17 that unstrained cable lengths and maximum bending moments by 
AM3 and ULM3 are in extremely good agreement with those by G.TCUD and ULM4 while the results by AM1and ULM1 
displays large difference. Furthermore, it should be emphasized that the initial solution by AM3 shows little difference with 
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that by ULM3. This means that one practically optimized initial state of long-span cable-stayed bridges including unstrained 
element lengths can be easily determined by adopting the analytical method 3 (AM3) without recourse to relatively 
complicated G.TCUD. 

Fourth, Table 2 to 4 and Fig. 16 and 17 reveal that overall unstrained lengths and bending moment distributions by AM2 
(ULM2) show good agreement with those by the AM3 (ULM3) and the G.TCUD (ULM4) but that the initial state solutions 
(the fifth and sixth columns of Table 3) by ULM2 display some deviations with the target configuration. It should be pointed 
out that each stay-cable of Incheon bridge model is approximately modeled as a parabolic cable in AM2 which results in 
locally unbalanced moment distributions in pylons. Nonetheless, note that maximum bending moments by ULM2 are very 
small similarly to those by ULM4. Therefore, it is judged that AM2 and ULM2 can be satisfactorily applied to initial shaping 
analysis of cable-stayed bridges having moderate span lengths. 

TABLE 5 
MAXIMUM BENDING MOMENTS FOR THE BALANCED AND THE UNBALANCED BRI DGE MODELS WITHOUT THE 

CAMBER  

 

AM1 

(ULM1) 

AM3 

(ULM3) 

G.TCUD 

(ULM4) 

G.TCUD* 

(ULM4*) 

Max. positive moment 

ofthe main girder (kN-m) 

7,852.82 

(8,261.76) 

7,853.14 

(7,107.03) 

7,853.12 

(7,852.66) 

7,853.13* 

(7,853.21*) 

Max. negative moment 

of the main girder (kN-m) 

-10,147.2 

(-17,849.7) 

-10,146.8 

(-10,893.1) 

-10,146.9 

(-10,147.6) 

-10,146.9* 

(-10,146.8*) 

Max. positive moment 

of the right pylon (kN-m) 

1,498.5 

(1,247.1) 

1,498.2 

(1,189.98) 

1,508.69 

(1,508.61) 

5,571.0* 

(-5,571.2*) 

Max. negative moment 

of the right pylon (kN-m) 

-1,185.6 

(-17,434.5) 

-1,184.4 

(-3,022.32) 

-1,159.01 

(-1,158.71) 

-53,111.7* 

(-53,111.6*) 
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FIGURE 18 STAY CABLE TENSIONS IN THE INCHE ON BRIDGE MODEL  
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Finally the initial state solution of suspension bridges is usually insensitive to weight-balancing between center span and 
side spans because the suspension system consisting of the main cable and hangers can effectively absorbs large bending 
moments generated from the combined action of the fabrication camber and the horizontal compression component by the 
main cable even though it is a self-anchored suspension bridge. 

However, initial shaping analysis of unbalanced cable-stayed bridges by G.TCUD can lead to large bending moments of 
pylons because cable tensions are directly transferred from the main girder to the pylons. Actually it is observed that 
bending moments in the main girder can be always minimized by applying G.TCUD but the maximum bending moment of 
the pylon for the unbalanced bridge model by G.TCUD becomes about 4 times larger than that for the balanced bridge (see 
the fifth and sixth columns of Table 4). This means that the weight balancing between the center span and side spans 
should be definitely well preserved in the preliminary design stage. 

VII.  SUMMARY AND CONCLUSIONS  

Two unstrained-length calculation procedures for determining one optimized initial state solution of cable-stayed 
bridges, the analytical method and the G.TCUD method, have been presented, in which the former method is 
based on the continuous beam analysis and the nonlinear algebraic equations but the latter method adopts the FE 
Newton iteration method using the elastic catenary cable element and the consistent frame element based on the 
co-rotational formulation. Moreover, the unstrained length method strongly depending on the unstrained-length 
calculation schemes are presented to effectively perform nonlinear FE analysis of cable-stayed bridges subjected 
to various load combinations. Finally initial shaping analysis of a cable-stayed bridge having one intermediate 
pier is performed and numerical results are analyzed. The important concluding remarks can be made as follows: 

1. The initial state solutions by AM1 look reasonable at first glance but ULM1 based on unstrained lengths by AM1 leads to 
explosively large bending moments in both the main girder and the pylon for the bridge model having the initial camber.  

2. The G.TCUD introduces the corresponding additional boundary constraints instead of adding all the unstrained 
element lengths to the nodal unknown while the ULM adopts Newton iteration method with keeping the pre-
determined unstrained lengths constant. And G.TCUD provides the optimized initial solution converging nearly 
to the target configuration in case of balanced cable-stayed bridges under dead loads.  

3. Interestingly, even though any additional constraints in the ULM method are not enforced except for the 
essential boundary condition, the initial state solutions by ULM3 and ULM4 are nearly identical to those by 
G.TCUD irrespective of the weight-balanced condition and the fabrication camber. 

4. Initial state solutions by AM3 and ULM3 are in excellently good agreement with those by G.TCUD and ULM3 while the 
results by AM1and ULM1 display large difference. Furthermore, the initial solution by AM3 shows little difference with that 
by ULM3, which means that one optimized initial state of balanced cable-stayed bridges can be easily found by adopting 
AM3 without recourse to relatively complicated G.TCUD. 

5. Practically AM2 and ULM2 can be applied to the initial shaping and the construction stage analysis of cable-stayed 
bridges having moderate span lengths. 

6. Bending moments in the main girder can be always localized by applying the G.TCUD method but the 
maximum moments in pylons in case of the unbalanced cable-stayed bridge can be extremely huge than those in 
the balanced bridge which means that the weight balancing between the center span and side spans should be 
carefully taken into account in the preliminary design. 

7. Finally, it is judged that ULM3 and ULM4 based on the unstrained-lengths by AM3 and G.TCUD, 
respectively, can be the most powerful tool for not only the initial shaping analysis but also the subsequent 
construction stage analysis and structural nonlinear analysis under various load combinations. 
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APPENDIX 

The followings are detailed forms of elastic stiffness, stiffness due to member deformations, geometric stiffness 
due to member forces and the unstrained length-related stiffness consisting of the extended tangential stiffness 
matrix of a frame element:   
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