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Abstract— Two robust procedures evaluating all unstrained element lengths are presented to find one practically
optimized initial shape of cable-stayed bridges under dead loads. An analytical method based on the continuous
girder model accounting for P-Aeffects due to stay-cable tensions is first proposed to calculate optimized cable
tensions and unstrained element lengths without recourse to refined nonlinear FE analysis method. And then it is
addressed how the G.TCUD method [10] developed for suspension bridges should be applied to determine an
optimized initial state of cable-stayed bridges. For this, the extended nonlinear formulations of the co-rotational
frame element as well as the elastic catenary cable element are briefly summarized by adding unstrained lengths
of all finite e ements to the unknown. Finally, based on the unstrained lengths determined from two methods, the
unstrained length methods are presented to effectively perform nonlinear FE analysis of cable stayed bridges
subjected to various load combinations. Consequently accuracy and effectiveness of the proposed schemes are
demonstrated by showing that not only the unstrained lengths of a long-span cable-stayed bridge model by the
analytical method are nearly same as those by the G.TCUD method but also these two methods lead to essentially
one optimized initial configuration whichisin suit with the target geometry.

Keywords— I nitial shaping, G.TCUD, elastic catenary cable element, co-rotational frame element, unstrained length,
cable-stayed bridge

l. INTRODUCTION

Generally one initial configuration satisfying tequilibrium condition between external dead loadd aternal member
forces including cable tensions should be predetexanin the preliminary design stage of cable-sutgubbridges because
cable members cannot be defined in the stressstie. Moreover it is of extreme importance to mbthe minimized
bending moment distributions by determining optiizable tensioning forces because the interne¢$odue to dead loads
can be significantly large as the span length diledridges is increased. This analysis procesdinfin one initial
equilibrium state close to the target configuratafrcable structures under full dead loads is refeto as shape finding,
form finding or initial shape analysis.

With relation to shape finding problems of cablaysd bridges, a set of optimized tensioning fofoestay-cables should
be found such that the vertical displacements efrtiain girder vanish except for the fabrication bamand the horizontal
displacements of the pylon are minimized within #ilewable limit. Otherwise, huge bending momemighe deck and
pylons of cable-stayed bridges under dead loaddednduced due to the - A effect by horizontal or vertical components
of the cable tension. Furthermore, in case of éar@t harp-typed cable-stayed bridges, praetically optimized initial state
should be searched because there can exist séviéiedlconfigurations. Particularly as the spandéh of cable-supported
bridges is greatly increased, the maximum bendioghent occurring in the main girder and the pylon bacome rapidly
outsized depending on the fabrication camber aadvéhlanced condition with respect to self-weights.

Until now, to find the initial state solution of lne-stayed bridges, various analysis methods haea Heveloped such as the
zero displacement method [1], the force equilibriomethod [2], the optimization method [3, 4, 5], th#ial force method
[6], the TCUD (Target Configuration Under Dead Ieachethod [7], and the combination method of ihfilace method and
TCUD method [8, 9]. However, it is judged that thptimized cable tensioning problem of cable-stapedges is still

Page | 73



International Journal of Engineering Research & Science (IJOER) [Vol-1, Issue-9, December- 2015]

challenging because the slight variation of cabfesion forces can result in massive bending monieritee main girder or
pylons.

Particularly it is worth mentioning the unstrainelgment length-based method [10] generalizing TQu&hod recently
proposed for findingn optimized initial shape of suspension bridges under dead load. In that study, the extended tangential
stiffness matrices of the frame element as wethascable element were derived by adding unstrdigegths of all finite
elements to the unknown. And the unstrained elerfemdth-based methods including the G.TCUD methaiewthen
proposed based on Newton iteration method. Evdpgtitavas demonstrated through numerical applicatizat onddeally
optimized initial configuration for typical suspéms bridges subjected to full dead loads can beessfully found such that
not only the converged state well conformed todésigned configuration but also bending momentkémmain girder were
minimized and moments in the tower were negligittyall. For cable-stayed bridges contrary to suspenwidges, it is
guestionable whether the nonlinear analysis metipodsosed for suspension bridges can be straigidfolty applied to
long-span cable-stayed bridges or not.

On the other hand, some analytical method has pexrosed to get the trial initial state solutiorcable bridges. The study
by Chenet. al [2], which is based on the continuous beam mod#alally supported at the points anchored by stalyles
and a constraint condition of horizontal displaceteeat the top of the pylon, is worth referringdase of cable-stayed
bridges. However, most of initial state solutiorgained analytically by these methods might notvigl® one optimized
initial configuration due to the combined actionfalbrication cambers and horizontal tension comptmef cable members
in case of self-anchored cable-stayed bridgestharonords, for cable-stayed bridges having faltidcacambers, bending
moments and reaction forces of the continuousesiiifiig girder supported virtually at the points awahg by cable elements
can be inaccurately evaluated due to horizontadideis because it is subjected to horizontal tens@mponents of cable
members as well as self-weights. Furthermore, stdjes in case of long-span cable-stayed bridgesatong that it can be
sometimes required to improve the accuracy in ¢afityg their unstrained lengths.

This paper intends to propose two robust procedereduating all unstrained element lengths to foree practically
optimized initial shape of cable-stayed bridgesaurdkad loads:

1. An improved analytical method based on the continuous girder model accountingPfeA effects of the main girder due

to cable tensions is first proposed to calculatémoped cable tensions and unstrained element hesngithout recourse to
refined nonlinear FE method.

2. And then it is addressed hdke G.TCUD method [10] developed for suspension bridges should lpdiegpto determine
an optimized initial state of cable-stayed bridges.

3. For this, the extended nonlinear formulationshef frame element as well as the cable elemertraagfly summarized by
adding unstrained lengths of all finite elementg®unknown.

4. Finally, based on the unstrained lengths detegdhifrom two methodghe unstrained length methods are presented to
effectively perform nonlinear FE analysis of cabtayed bridges subjected to various load combinatio

5. For a long-span cable-stayed bridge examplengatwio intermediate piers, accuracy and effectisengf the proposed
two schemes are demonstrated by showing that rgttiba unstrained lengths by the analytical methosl nearly same as
those by the G.TCUD method but also these two nasthead to essentially one optimized initial coafation which is in
suit with the target geometry.

6. In particular, amplified effects of the fabricat camber and the weight balancing between cemtdrside spans on the
initial state solution are carefully investigatbdaugh the bridge example.

Il NONLINEAR ELASTIC CATENARY CABLE AND FRAME ELEMENTS

Jayaraman and Knudson [11] have firstly proposedlastic catenary cable element from the exacttisolu
(Irvine [12]) of the elastic catenary cable equatimder its self-weight. And a frame element foomgetrically
nonlinear analysis of plane frames has been deedldyy several researchers (Pacosteand Eriksson [13]
Crisfield [14], Leand Battini [15]). In this sectipthe unstrained length-based frame and cableeglepresented

in Jungel al. [10] are briefly formulated to develop the G.TCuigthod and the corresponding unstrained length
method in the subsequent sections.
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Consider an elastic catenary cable element suspereteeen two pointg0,0)andj(L,,L,) as shown in Fig. 1.

By integrating equilibrium equations exactly, tlildwing compatibility condition can be derived agunction
of the nodal forces, and F, at the nodé and the unstrained length as

L, =- AL, i{sinh‘l[—':2 — W, J - sinh‘l(ij}

EA, W F, F, (1)

FL, . w2 | 1
L, =- EZAD +2EAO +W(Tq _Tp) (1b)

y F,
(L, .L,)
TR
5
wL, :
0,072 ' > X

1

FIGURE 1 AN ELASTIC CATENARY CABLE ELEMENT SUBJECTED TO ITS SELF -WEIGHT AND NODAL FORCES

whereT, =/ F?+F/ T, = \/Flz +(WLD - Fz)2 ; EA = the axial rigidity;w = self-weight per unit length.

Now partial differentiation of both sides of Eq) ¢lelds the following incremental relationships:
A oL /0F, 0L /0F, |[AF oL /o
L| [oL/0F oL /oR[aR] oL /L] o)
AL, oL, /oF dL, /dF,||AF, aL, /oL,
AL, =AU;-AU, andAL, =AU, -AU, (2b, c)

Consequently the inverse of the flexibility matiix Eq. (2a) leads to incremental equilibrium equagi of an
elastic catenary cable element as follows;

AF, =K AU _+K _ AL, 3)

Where AF = the incremental nodal force vecter= the tangential stiffness matrixy = the incremental
displacement vectorK = the stiffness matrix related to the unstrainewyle. It should be emphasized that all

the stiffness terms in Eq. (3) are fully used falcalating the extended tangential stiffness matrigase of the
TCUD methods but the last term in Eqg. (3) vanishabe unstrained length method because the unetiaable
lengthL, is kept constant. In addition to this, one of noftatesr, and F, of long stay-cable members is

assumed to remain unchanged in developing an &walyhethod in section 3.2. Consequently it is Wwort
pointing out that Eq. (1) should be iterativelyvaal with keeping one & ,F, andL, a fixed value in order to

resolve the state determination problem of elasttenary cable elements.
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On the other hand, Fig. 2 shows nodal displacemamnds deformation components of a frame element with
respect to the co-rotational coordinate systenhairtitial and the deformed state where the notgdlacement
and force vector may be defined as follows;

u,"=(u,U,,U, U, UU,) (42)

F'=(F.F, F;F,Fs.Fo) (4b)

U>
U _(_, 9_,
Lo
Us Us

FIGURE 2 NODAL DISPLACEMENTS AND PURE DEFORMATIONS OF A NONLINEAR FRAME ELEMENT

Large rigid-body motions but the small deformati@e assumed in this formulation. Removing rigidlyoonodes from
nodal displacement, the three pure deformationsisting of the axial deformation and relative rimas can be determined
as follows;

D, L-L,
D=|D,|=|U,-a (5)
D, U,-a

where L = the chord length between two element nodes. Naiiel | is the element length computed as the distancedagtw

the nodal points in the TCUD method but the unstedielement length which should be updated iteghtivn the G.TCUD
method [10].
Then the chord length and rigid body rotatiomr are calculated as

L:\/(xj - X +U4—U1)2+(yj Y, +U5_U2)2
Y, Y +U5_U2
X =% +U,-U,;

tana =

where (x,Y;), (X;,Y, )= the nodal coordinates in the global coordinatesy.

Now force-deformation relationships of the beamiomh element considering the bowing effect Bndo effect can be
expressed as follows;

2 _ 2
P = EA(%+ 2Df - DDy 2Dsj (62)
P :£4LE' +22’15L°] D2+(2LEI - P;%Jm (6b)
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L 30 L 15

(o] (o]

P, :(zﬂ— PlLOJ D, +(£+ 2P1L°] D, (6)

Referring to [10], the incremental equilibrium etjaa of aframe element cans beobtainedin the globatdinate system as
follows;

AF =K, AU, + K, AL, (7)
Where K, , K, = the tangential stiffness and the unstrained rengated stiffness matrix, respectively, which
can be expressed as

K;=RT(k,+k’y tk )R

) (8a, b)
K fu = R Tk fu

whereR = the coordinate transformation matrk, k'y, k', andk;, = the elastic stiffness, stiffness due to

member deformations, geometric stiffness due to neenforces and the unstrained length-related stsfn
matrices, respectively, in the co-rotational cooatie system. Their detailed forms are presentégpendix.

. AN ANALYTICAL METHOD FOR THE INITIAL SHAPING ANALYSIS OF CABLE  -STAYED BRIDGES

To find one optimized initial configuration of cak$tayed bridges under dead loads analytically awith
nonlinear FE analysis, basic assumptions are giveaction 3.1 and then an analytical procedurerdehing all
the unstrained element lengths is proposed in@est2.

3.1 Basic assumptions for developing the analyticatethod

First of all, it is assumed that in order to lozalibending moments in the main girder due to deadsl the

stiffening girder is virtually supported at the abgoints anchored by stay cables so that verticgdlacements

should not occur at those points except for theidabon camber. This assumption usually leadsh® t
minimized bending moment distribution of the stififeg girder.

Second, the self-weights of a center span and idespans in case of self-anchored cable-stayeldédsishould
be well balanced which can result in minimizatidiending moments in pylons.

Third, it is assumed that the stay-cable elemeninbarelatively small cable lengths parabolic under self-
weights and nodal forces can be decomposed into phetensionr, and the vertical reaction
componentwL, /2 as shown in Fig. 3. Also, the unstrained lerigilof the inclined stay cables can be evaluated
by solving the cubic equation of Eqg. (9) when tmaiminal tensiori, and the chord lengthare given:

T;.,.%(LO_”TH?_M:() (9)
L, 24

FIGURE 3 FREE BODY DIAGRAM OF A PARABOLIC CABLE ELEMENT UNDER ITS SELF -WEIGHT
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Fourth, in case of extremely long-span cable-stdyathes, the length of stay cables near the btskeable is
so long that some deviation from the accurate molutan occur if only one parabolic cable elemsniised for
each stay cable member. In this case, one stag cadinber needs to be regarded as an elastic catatde
element instead of a parabolic cable element.

Fifth, the chord lengthin Eqg. (9) in applying the analytical method is leded using the initial distance

between two anchor points of each stay cable becassn girder and the pylon subjected to dead |@amtb
optimized cable tensions are well balanced enoogxperience negligibly small displacements.

3.2 An analytical method for determining an optimizd initial state of cable-stayed bridges

In case of cable-stayed bridges, nominal tensiodsumstrained lengths of stay cables are usuatgrehéned from reaction
forces Robtained through linear elastic analysis of theticmous girder model virtually supported at anetbpoints under
only dead loads (see Fig. 4(a)). However, if geoicedty nonlinear analysis for the full bridge mddae performed based on
them, globally huge bending moments dudta effect by horizontal tension components of stayles can be inevitably
induced in the main girder having the fabricatiamber.

Tl.hack T1 TZ Jback T2 T3 T4 T5 Tﬁ T7 T8
L . L ’ - ’ , ’ // \\\ \\ .\\ \\ \\\
/// /// 4 4 /// \\\ A N h ) \\\
¥y A4 A 4 » L N AR
7 s y / Wg R AN W -
. S vl ~ \ \ AN ~ oS
/ VDA ] P S S S SN S RN ~

o o9 9 o} 2 o) 2 9 9 9
Rt Raf

R/t R ALY LY

FIG 4 (A) A MAIN GIRDER SUBJECTED TO ITS SELF -WEIGHT ONLY

To get the optimized initial state solution, temsmmponents of stay cables are suitably modif@that those
bending moment in the girder should be completalyiueled except for local moments. This problem ban
overcome by analyzing the continuous beam subjeotéd self-weight and updated tension componehitay
cables simultaneously through some iteration pmcesother words, the continuous girder model ectied to
not only dead loads but also horizontal cable terssas shown in Fig. 4(b) is newly considered taigeof those
global moments and to generate only local momantke initial configuration of the main girder. tihat case,

modified reaction forceR' and corresponding cable tensions can be evaluaisdlinear elastic analysis of the

improved girder model. And it is necessary to updabrizontal cable tensions through some iterakomp
because those nominal tensions of stay cablesoateawn in advance.

.
- [

,

Tl‘back T1 . 2 back Tz /Ts TA TS TG T7\ TS

FIG 4 (B) A MAIN GIRDER SUBJECTED TO BOTH ITS SELF -WEIGHT AND THE HORIZONTAL TENSIONS OF STAY
CABLES

FIGURE 4 HALF MODELS OF THE CONTINUOUS MAIN GIRDER WITH FABRICATION C AMBERS IN A CABLE -
STAYED BRIDGE
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Now for cable-stayed bridges with fabrication camb&ubjected to dead loads, an analytical calangirocedure to make
internal moment distributions minimized and to pdevthe corresponding unstrained lengths of almelats is given
including the iteration loop of cable tensions @lfofvs;

Step 1)Build a structural model for the continuous stiffengirdersupported vertically at the points anagr
by stay-cables as shown in Fig. 4.

Step 2)after the iteration indek is set to be zero, calculate the initial reactiorcésR® at the anchor points of
the continuous main girder subjected to not only self-weight but also the initial horizontal tessi

componenHi(O) of stay cables which are zero in the first itematiprocess but are newly updated in the
subsequent iterations.

Step 3)Enter the iteration proceds=k + 1

Step 4)Calculate the updated reaction for® at the anchor pointsof the continuous main girddyjected to
not only its self-weight but also the horizontald®nH .

Step 5)Evaluate the updated horizontal tensjoft of thei-th stay cable using one of the following two cases:

) In case of relatively short stay cables (seaiagsion 3), determine the nominal tensigi? of the stay cable
and the axial forcer!s, RV of the main girder and the pylon, respectively, inyokingthe following

equilibrium conditionat two anchorage pointsof s@y cable (see Fig. 5):

T sing = RM +wg, /2
T cosg = H

k) _ p(k k
Hi( ) = Pg(,i)+1 - Pg(,i)

(10)

/2

T sing,

k k
P;:(),i)+1 - Pp(),i) - Ws,i

(k)
Ts,i

FIGURE 5 FREE BODY DIAGRAMS AT TWO ANCHORAGE POINTS OF ONE STAY CABLE

where g = the inclination angley\s; = the self-weight of thethstay cable.

II) In case of relatively long stay cables (seeuagstion 4), solve the compatibility equation (1)aof elastic catenary cable
element derived as a function of the nodal foraes the unstrained length where note tRaf=R™®)is a known value
calculated in Step 4) (refer to Fig. 6). Accordindlewton iteration process is executed using theeimental equation (11)
to find two unknowng_, F, (=—H®) where their initial values are chosen from Eq.g8l (10).

oL oL
- 9L, AF, + oL, AL, , AL, =—2AF +—LAL, (11)
oF, oL oF, oL

(o]

AL

X

(o]
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R -l

FIGUREGA STAY CABLE TREATED AS AN ELASTIC CATENARY CABLE IN THE K -TH ITERATION PROCESS

Step 6) Evaluate the horizontal tensiet}?, of the back-stay cable: its nominal tensions carmeoevaluated

from Eq. (10) due to existence of real vertical@ups. Moreover it is well known that back-stay leatensions

cannot be uniquely determined in case of fan- apdyped cable-stayed bridges. Practically this &&n

calculated by analyzing the pylon model with théerosupport at the node anchored by back-stayesabhd
subjected to horizontal tension components of stdjes evaluated in Step 5) as shown in Fig. 7.

H & - H (<)

—>d§<— 1,Back
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H ék) _>d§<— H SB)ack
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(k) - :
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(A) A PYLON SUBJECTED TO NOMINAL CABLE TENSIONS (B) FREE BODY DIAGRAM OF A PYLON UNDER
HORIZONTAL TENSIONS
FIGURE 7A PYLON SUBJECTED TO NOMINAL TENSIONS BYTHE STAY CABLE

Step 7)Check whether the nominal tensions of stay cat@serge or not: If it is not converged, go to S8¢mnd repeat
the iteration process to Step 7). If it is convergexit to Step 8).
Step 8)Determine the converged tensions and the unsttdémgths of all stay cables using one of the fuaithgy

two cases:

I) In case of relatively short stay cables, thenown values are easily calculated using Eq. (9)(a6y
) If the back-stay cable is relatively long, tbempatibility condition of the elastic catenary leails applied similarly to 11)
of Step 4) namely, Eq. (1) is iteratively solvedttwrespect t@, and L, as shown in Eq. (12) becausé'a‘gk(: -F) is
determined in Step 6) (see Fig. 8).

oL oL,

oL oL
AL, =—“AF,+—*AL, , AL, =—LAF,+— AL, (12)
oF, oL, oF, oL,

Step 9)Finally evaluate the axial force and the unstrailemgth of frame members: the axial force of @hie members can
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be determined from statics and the correspondistrained length using Hooke’s law.

F,—-wi

y L

‘ |
H

F,

back

wL,
Hback > X

FIGURE: 8 A BACK-STAYCABLE TREATED AS AN ELASTIC CATENARY CABLE

In this study, three analytical procedures arertakéo account for comparison. Fig. 9 to 11 sholesv€harts of three
algorithms to determine unstrained lengths of alile and frame elements analytically. Here theydical method 1 (AM1)
without any iteration process negle®sA effect by horizontal tension components of stalyles which can cause huge
bending moments in the main girder and the pylares to the horizontal or the vertical componentstay cable tensions.
On the other hand, both the analytical method 2 ZAlhd the analytical method 3 (AM3) can greatiyuee P — A effects
of cable tensions owing to the updated iteraticocpss of stay cable tensions. Here the main difeerdoetween the AM2
and AM3 is that each stay cable is modeled as proapnate parabolic cable element in the formerasuan accurate elastic
catenary cable in the latter. Therefore, the AM@&ipected to provide the most optimized initiakestsolution by treating
long stay-cables as a catenary cable member.

Input the geometric and dead load data of cable stayed bridges

Calculate reaction forces R of the
continuous main girder under its self-weight only

Determine the nominal tension T, ; and
the horizontal tension H; using Eq. (10)

Determine the horizontal tension H, ., of back-stay cables referring to Fig. 7(b)

Y

Calculate unstrained lengths of all cable elements using Eq. (9) |

Calculate axial forces of all frame elements and the
corresponding unstrained lengths using Hooke's law

Complete AMI1

FIGURE 9 A FLOWCHART TO DETERMINE UNSTRAINED ELEMENT LENGTHS BY THE ANALYTICAL METH obl

V. THE G.TCUD METHOD FOR THE INITIAL SHAPING ANALYSIS OF CABLE -STAYED BRIDGES

In this section, the generalized TCUD method iss@néed for initial shaping analysis of cable-stapedges.
The TCUD and G.TCUD methods for initial shapinglgsia of suspension bridges have well developetihén
previous papers [7, 10]. Basically those procedesss be applied to determine the initial stateasfgtspan
cable-stayed bridges under dead loads without majmdification. Accordingly in this section, the dioear
formulation of the G.TCUD method is compactly sumized and some differences between suspensiondsridg
and cable-stayed bridges in applying these metammentioned.
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| Input the geometric and dead load data of cable stayed bridges

¥

Enter the iteration loop:
k=0

.|

Y

k=0 ?

Yes

Set H =0 No

Calculate reaction forces R of the continuous main girder
under both its self-weight and the horizontal tension H

!

Determine the nominal tension T and
the horizontal tension H®using Eq. (10)

Y

h 4

Determine the horizontal tension H (), of back-stay cables referring to Fig. 7(b)

Are the horizontal tensions
onverged in the structure level?

| Calculate unstrained lengths of all cable elements using Eq. (9) |

Calculate axial forces of all frame elements and the
corresponding unstrained lengths using Hooke's law

Complete AM2

FIGURE 10A FLOW CHART TO DETERMINE UNSTRAINED ELEMENT LENGTHS BY THE ANALYTICAL METHOD 2

The extended incremental equilibrium equation e whole structural system accounting for unstchelement
lengths as the unknown can be written as

AF =K, AU + K, AL, (13)

where AF (nx1) = the unbalanced load vectgr; (nxn) andK , (nxm) = the tangential stiffness matrix and the
unstrained length-related stiffness matrix, redpelst AU (nx1) = the incremental nodal displacement
vector;n= the number of total degree of freedam; (mx1) = the incremental unstrained length vector where

note thatmis equal to the total number of all the cable eleimién TCUD method and the number of both cable
and frame elements in G.TCUD method, respectively.

Clearly additional constraint conditions shoulditieoduced to solve the incremental equation (I8)esthe total
number of unknown variables in Eq. (13) exceedgdted number of equations. Fig. 12 illustrates erample
of the constraints applied to a cable-stayed britgeng two intermediate piers in which the arrowdegrees of
freedom are additional restraints due to unstraleadths of cable and frame elements introduce@.iIRCUD

method. In other words, additional geometric réstsadue to cable members are the vertical disptecgs of the
main girder at the points anchored by stay cabheisthe horizontal displacements of the pylon atah@aints

connecting to back-stay cables. And constraintstdifeame members include the axial displacemehtsl the

nodal points in both the main girder and the pylon.

In case of suspension bridges, the horizontal a@éigphents at the top of the tower are ideally zew the
bending moments are localized in the main girdedteurdead loads irrespectively of balanced or umicaid
conditions. However, it should be pointed out thkthorizontal movements of the pylon cannot befqmtly
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suppressed in fan- or harp-typed cable-stayed &sidfo minimize these bending moments occurringylons,
it is of central importance for total self-weiglutstween the center span and the side spans tolbleaeaced.

| Input the geometric and dead load data of cable stayed bridges |
¥

Enter the iteration loop:

z

Calculate reaction forces R{*’ of the continuous main girder
under both its self-weight and the horizontal tension H ()

1

Calculate initial values of two unknowns L%, F,(=-H®)
using Eq. (9) and (10)
¥

Solve Eq.(1) and (11) iteratively by keeping R™ constant

l

If converged, in the element level
update LY, H®

l

Determine the horizontal tension H ), of back-stay cables referring to Fig 7(b)

Are the horizontal tensions
onverged in the structure level?

Initialized unstrained lengths and vertical reactions of
back-stay cables using Eq.(9) and (10)

| Iteratively solve Eq.(1) and (12) with keeping H

1

If converged, in the element level
update L, paq

i back constant. |

Calculate axial forces of all frame elements and the
corresponding unstrained lengths using Hooke's law

Complete AM3

FIGURE 11 A FLOW CHART TO DETERMINE UNSTRAINED ELEMENT LENGTHS BY THE ANALYTICAL METHOD 3

7

FIGURE 12 ADDITIONAL GEOMETRIC CONSTRAINTS IN THE G.TCUD METHOD FOR A HALF MODEL OF A
CABLE -STAYED BRIDGE HAVING ONE INTERMEDIATE PIER
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Now taking into account those additional restraifs. (13) may be rewritten as
AF =K, AU, + K AU+ K AL, (14)

where AU, ((n-m)x1)= the unknown displacement vector to be determingd; (mx1)= the constrained

displacement vector imposed by the designer to illfulthe target shape of the bridge;
K, (nx(n—-m)) andK ,(nxm) = partitioned stiffness matrices correspondinglth and AU, respectively.

Accordingly, the second term in the right-hand séi&q. (14) vanishes and the other two terms tesw non-
symmetric stiffness formulation as

(AF) =[K, K,] @tj] (15)

Consequently the iterative G.TCUD algorithm candmesented as follows;

(K KSI_U]CE(E)J:(W -F D) for i=1, 2,0

U (0] U (i-1) Au(i)
LO J = L 6D J * ALO J (16)

where W = the dead load vectd® = the equivalent internal force. After the simuttans equation (16a) having
the non-symmetric stiffness matrix is solved, tb&ltnodal displacement and the unstrained lengtiiov are

updated as seen in Eq. (16b) and the internal feector F' is evaluated by the state determination procedure
based on the total displacements and the unstraémeghs. Particularly © denotes the internal force due to

initial cable tensions and axial forces determibgdhe analytical procedure in section 3.1.Gengthil vector
vanishes in case of girder bridges but should Insistently calculated for cable bridges becauseit be slowly
converged or diverged if it is neglected.

Remark 1: Not only the G.TCUD method provides an optimizeiial state ofoalanced cable-stayed bridges but
also linear analyses based on it can be conduateédruvarious load combinations. However, similaidy
analytical methods introduced in section 3, sonfiécdities can be caused in performing nonlineardfalyses
under extreme loads.

Remark 2: Nonlinear analyses under limit load combinatiomduding the geometry control can be easily and
accurately executed through the unstrained lerigthent method presented in the next section.

V. UNSTRAINED LENGTH METHOD FOR NONLINEAR ANALYSIS OF CABLE -STAYED BRIDGES

Basic concept of the unstrained length method (Ulibf)the initial state analysis of cable-stayeddgeis is
similar to that for suspension bridges [10]. Thettained length method consists of two stageshadrfitst stage,
unstrained lengths of both cable and frame elenaetpre-determined in the reasonable way andeirs¢icond
stage, nonlinear FE analysis based on Newton ieranethod is performed under dead loads by keeping
unstrained element lengths constant. Consequemtiytdh-Raphson iteration algorithm for the secomrgetcan

be represented as follows;

KIAUO =W -F™  fori=1, 2,
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0 = yi-n 0
U =U""+ AU (17)

LY =L
where W and F® = the dead load and the internal force vector idahto those in Eq. (16). It should be again
emphasized that the tangential stiffness matrigyimmetric and the unstrained lengths of all firstements
remain constant in the iteration process. In tlst $dage, incremental nonlinear analyses undetiodali live
load combinations are performed by simply addirgglive loadiW, to the dead load in Eq. (17a) as follows;

KIVAUD =W + AW, -F™  fori =1, 2, (18)

Particularly if some temperature increase of speeiements occurs, the unstrained length of tlieesponding
elements should be adjusted depending on the thehlmageAT in which the incremental unstrained length is

calculated as
AL, = a;AT L, (19)
wherea; = the coefficient of linear thermal expansion.

With relation to the first stage of ULM, three aytadal schemes determining all the unstrained lesitjiave been
proposed in section 3.2 and G.TCUD presented itiosed. In this study, four ULMs are taken into acnt
depending on the scheme evaluating the unstragmeH as follows;

1. ULMZ1: the unstrained lengths of cable and franmmgnts obtained from the AM1 in section 3.1 aredtly
used in geometrically nonlinear FE analysis.

2. ULM2: the unstrained element lengths obtained ftbenAM2 are used.
3. ULM3: the unstrained lengths from the AM3 are used
4. ULMA4: the solution determined by G.TCUD is fullged.

Fig. 13 represents a flow chart of four ULMs. Imaoection with the concept of unstrained cable lesgit is
worth referring to the study by Lozano-Galant et[86] because it well explains what the unstraiteedyth of
cable elements means in construction stage analysisthough it is based on linear analysis.

VI. NUMERICAL EXAMPLES

In section 3 and 4, the analytical methods and GD@nethod determining all the unstrained elemengtles
have been presented to find one optimized initialesof cable-stayed bridges and in section 5, iluvs for
nonlinear analysis of cable bridges subjected thtadal load combinations have been proposed baseithe
two initial shaping analysis methods. In this smttione example determining the initial shape tfaechored
cable-stayed bridge with an intermediate pier Bvigled to demonstrate efficiency and effectivenafsthose
methods.

Incheon Bridge which connects Incheon Internatigkigbort and Songdo International city in Inchedrissthe
biggest cable-stayed bridge in Korea. Figure 14wnsha structural model of Incheon bridge, and ia i®ng-
span cable-stayed bridge with five spans of 80+860+260+80m, and the concrete tower is an inverse Y
shape with 238.5m height. Streamlined steel boaegiis suspended by 208 cables with double calleesl
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Also Figure 15 denotes the vertical camber of tlaénngirder which is linear along the side spans ardbolic

throughout the center span.

Start the ULM

Input the geometric and material data
and the dead load of cable-stayed bridges

¥

Y

Y

!

ULMI: Calculate the
unstrained lengths by AM1

ULM2: Calculate the
unstrained lengths by AM2

ULMB3: Calculate the
unstrained lengths by AM3

ULM4: Calculate the
unstrained lengths by G.TCUD

Set the target configuration and
all the unstrained element lengths.

Enter the iteration loop for geometric nonlinear analysis

Iter=0

<

<

Iter = Iter+1

Y

Form the new local coordinate system

and the transformation matrix

¥

Calculate frame member forces.

{

Evaluate cable forces of elastic catenary cable elements.

{

Construct the member
tangential stiffness matrices

@ YCS

No

Calculate the unbalanced load

! AF =W + AW,

Converged?
No
| AF = the unbalanced load |

l:

Assemble the structural
tangential stiffness matrix

Y

Complete the ULM.

| SolveK AU =AF |

FIGURE 13FLOW CHART OF THE UNSTRAINED LENGTH METHOD FOR CABLE -STAYED BRIDGES

1" stage

2" stage
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FIGURE 15VERTICAL CAMBER OF INCHEON BRIDGE MODEL

To investigate the effects of cambers and unbat@nof self-weights, two types of the cable-stayedde
model are basically analyzed namely, the balancild having fabrication cambers and the balancathé
with-out cambers. For comparison, the unbalancedgbrmodels with or without cambers are additignall

explored using G.TCUD method.

Table 1 summarizes the material and cross-sectipraggerties of Incheon bridge model. In this moael,
counter weight of 300kN/m between 6.78~36.782m a4u4i3.218~1473.22m along the main girder, which is
neglected in case of the unbalanced bridge modeleliberately applied to make self-weights of temter
span and side spans balanced. And the supply @ierfocated in each side spans which means thed #re
four back-stay cables connected with supply piedsend piers.

TABLE1
M ATERIAL AND GEOMETRIC PROPERTIES OF |NCHEON BRIDGE MODEL
Structural member E(Gpa) A(m?) I(m?) w(kN/m) Remarks
Girder 200 21203 3.1608 2500 Counter weightof 187.5kN/m _betwe
supplemental and end piers
Tower 1 375 43 240.27 1065.6 0~182m
Tower 2 375 24.125 141.712 689.1 182m~234.5m
Cable 4 195 0.02316 - 1.86 C1~4, 8~14, 29~56, 7187784,
Cable 6 195 0.01162 - 0.93 C5~7, 15~28, 57~70,38~8
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To get one optimized initial state solution, thiédwing constraints are introduced in the G.TCUDtoesl.
The essential boundary condition:

- Y-coordinates of the roller-supported points (p9, 65 and no. 78) on the main girder

- X- and Y-coordinates of the hinged point (No. 2R)the main

- Y-coordinates of a point (No. 34) on the mairdgirsupported by the tower

- Fixed end points (No. 110 and 134) at the baswofylons
The additional constraints introduced in G.TCUDsfdiayed as arrow in Fig. 12 and as boldface ingahl

- Y-coordinates of points (No. 2 - 8, No. 10 - Rl. 23 — 64, No. 66-77 and No. 79 - 85) on the ng@ider anchored
by stay cables

- X-coordinates of points (No. 88, 96, 112 and120) on the pylons anchored by back- stay cables
- X-coordinates of nodal points (No. 1 — 21, No.-B5) on the main girder except for No. 22

- Y-coordinates of all nodal points on towers exdepNo. 110 and 134

TABLE?2
UNSTRAINED CABLE ELEMENT LENGTHS IN THE CABLE -STAYED BRIDGE MODEL
Lomby | 5o 1| my | LM | AL, Alo Alo
Cable No. G.TCUD by AM1 by AM2 by AM3 (mm) (mm) (mm) Remarks
(1) @) (3) 4) (2)-(1) (3)-(1) (4)-(2)
1 380.523 380.719 | 380.500 | 380.515| 195.6 -22.9 7.5 back stay
3 361.298 361.359 | 361.247 | 361.296 61.3 -50.9 2.0 stay cable
5 340.801 340.781 | 340.790 | 340.800 | -20.2 -11.5 0.6 stay cable
7 321.199 321.178 | 321.190 | 321.199| -21.0 9.2 0.3 stay cable
9 302.613 303.717 | 302.549 | 302.593 | 1103.5 -63.8 19.9 back stay
11 265.955 265.976 | 265.935| 265.955 20.9 -19.6 0.3 stay cable
13 230.850 230.866 | 230.836 | 230.850 15.6 -14.3 0.3 stay cable
15 197.363 197.357 | 197.361 | 197.363 -5.6 2.2 -0.1 stay cable
17 167.390 167.388 | 167.388 | 167.390 2.2 -1.5 0.2 stay cable
19 142.491 142.491 | 142.491 | 142.491 -0.1 -0.5 0.0 stay cable
21 125.750 125.751 | 125.749 | 125.750 0.9 -0.6 0.2 stay cable
23 130.386 130.409 | 130.385| 130.386 23.2 -0.7 0.5 stay cable
25 149.821 149.855 | 149.819 | 149.820 34.0 -1.8 0.6 stay cable
27 176.397 176.446 | 176.395 | 176.397 49.3 2.2 0.0 stay cable
29 207.714 207.767 | 207.700 | 207.713 53.2 -13.7 0.7 stay cable
31 241.495 241.567 | 241.476 | 241.494 71.9 -18.5 0.7 stay cable
33 276.984 277.075 | 276.961 | 276.983 91.4 -23.1 1.1 stay cable
35 310.296 310.415| 310.249 | 310.294 | 119.1 -47.0 1.7 stay cable
37 340.455 340.589 | 340.405 | 340.453| 134.0 -50.4 1.9 stay cable
39 370.992 371.142 | 370.935| 370.991 | 150.3 -56.8 1.3 stay cable
41 401.914 402.093 | 401.835| 401.912| 179.4 -79.4 2.0 stay cable
42 416.900 417.040 | 416.862 | 416.899 | 140.4 -37.8 0.9 stay cable

Initial solutions including unstrained lengths df @able and frame elements are firstly determinsihg AM1, AM2, AM3
and G.TCUD methods and then four ULMs are applielluild an initial state of the bridge model undead loads.

Table 2 shows unstrained cable lengths and th#erences evaluated by analytical methods and G CAlso, Table 3
display not only initial target coordinates inclngithe vertical camber of the main girder but disoizontal and vertical
displacements by ULMs at the nodal points of thénngirder and towers connected to stay cables. Mergcal coordinates
of No.1 - 86 in the second column of Table 3 demelevations of fabrication cambers of the maideyir Particularly nodal
degrees of freedom corresponding to boldface aan@dtvalues correspond to essential boundary éongliand additional
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geometric restraints introduced in G.TCUD metha$pectively (also refer to Fig. 12).In additiongFlL6 and 17 show
bending moment diagrams in the left half of the mgirder and the right pylon, respectively and Fi@. displays
fluctuations of stay cable tensions by three ULMmally Table 4 shows the summary of maximum ingériorces and
displacements of the main girder and towers analymeinitial shaping analysis methods for the baéahand unbalanced
bridge models with the fabrication camber. On thieeo hand, Table 5 summarizes maximum bending mtsngnthe
main members for the balanced and unbalanced bridtfpeut the camber. Several observations and csimhs can be
drawn from the presented Tables and Figures.

TABLE 3
I NITIAL COORDINATES AND NODAL DISPLACEMENTS AT THE POINT OF THE GI RDER AND TOWERS
CONNECTED TO STAY CABLES BY THREE UNSTRAINED LENGTH METHODS FOR THE B ALANCED BRIDGE WITH
THE FABRICATION CAMBER

Target Coord. | AXby | AYby | AXby | AYby | AXby | AY by | AX by | AY by
Node
:8%) ULM1 | ULM1 | ULM2 | ULM2 | ULM3 | ULM3 | ULM4 | ULM4 Remark
No.
(m) (mm) | (mm) | (mm) | (mm) | (mm) | (mm) | (mm) | (mm)
(0.0,0.0) -9.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 roller support

(40,1.195) -8.7 5.2 0.0 2.0 0.0 0.0 0.0 0.0

(807,2.39() -8.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 roller support
13 (160,4.780) -11 | -161.8| 0.6 -18.7 0.1 3.1 0.0 0.0
17 (240,7.170) 1.1 -1443 | 07 -22.8 0.1 -2.8 0.0 0.0
22 (340 ,10.15%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Hinged support
30 | (500,15.018) -4.4 3036 | -1.5 51.1 -0.1 4.6 0.0 0.0
38 | (648,17.351) -8.2 7147 | -3.6 1814 | -0.2 11.0 0.0 0.0
42 | (712,17.716) -8.7 8395 | -39 2217 | -0.3 12.9 0.0 0.0
46 | (784,17.661) -8.8 8196 | -3.9 2156 | -0.3 12.6 0.0 0.0
54 | (920,16.215) | -11.6 | 4557 | -5.3 95.5 -0.3 7.0 0.0 0.0
62 | (1080,12.265) | -155 | 1121 | -7.2 13.8 -0.5 1.7 0.0 0.0
65 (1140,10.15¢) -17.6 0.0 -7.7 0.0 -0.5 0.0 0.0 0.0 roller support
69 | (1220,7.768) | -186 | -119.6 | -8.4 -20.4 -0.6 2.4 0.0 0.0
73 | (1300,5.378) | -17.7 | -180.4 | -8.4 -23.2 -0.6 -35 0.0 0.0
78 (1400,2.39() 9.4 0.0 -7.8 0.0 -0.5 0.0 0.0 0.0 roller support
82 (1440,1.195) -8.9 -4.9 7.7 2.2 -0.5 0.0 0.0 0.0
86 (1480,0.0) -8.4 0.0 -7.8 0.0 -0.5 0.0 0.0 0.0 roller support
88 (340, 179 2023 | 1.3 -37.8 -1.4 -4.0 0.0 0.0 0.0 back-stay cable
92 (340, 166) -1958 | 1.3 -35.9 -1.4 -3.7 0.0 0.1 0.0
96 (340, 1598 -189.3 | 1.3 -34.1 -1.3 -3.6 0.0 0.0 0.0 back-stay cable
104 (340, 149) -1748 | 1.1 -30.9 -1.2 -3.8 0.0 -0.5 0.0
110 (340 ,-64) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 fixed support
112 (1140, 172 183.9 1.3 29.5 -1.4 3.4 0.0 0.0 0.0 back-stay cable
116 | (1140, 166 178.3 1.3 28.1 -1.4 3.2 0.0 0.1 0.0
120 | (1140, 159 172.6 1.3 26.7 -1.3 3.1 0.0 0.0 0.0 back-stay cable
132 | (1140, 14)) 152.8 1.1 24.3 -1.2 33 0.0 0.7 0.0
134 (1140 -64) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 fixed support
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First of all, the initial state solutions by AM1dk reasonable at first glance. However, as showkign16(b), Fig. 17(a) and
the second column of Table 4 and 5, ULM1 basedrmtrained lengths by AM1 gives explosively largadiag moments
in both the main girder and the pylon for bridged®is with camber. Fundamentally this is because Ad&liinot remove
magnified bending moments in the main girder whth tamber and the pylons due to compressive fdraasmitted by

cable tensions.

Second, it is noticed in Table 3 that not only ieattdisplacementaY at nodal points on the main girder anchored by st
cables and horizontal displacemen$ at points on the pylons anchored by back- stdfesabut also axial displacements at

points along the main girder and the towers by ULM¢hish exactly which is due to constraints intretl by G.TCUD
method. Particularly maximum bending moments irhiibe girder and the pylon by G.TCUD are ideallyairm case of
the balanced bridge without the camber (Table S)ewhturns out that in the balanced bridge witle tamber, maximum
moments in the pylon are small within the allowabtdt (Table 4).

TABLE4

SUMMARY OF MAXIMUM INTERNAL FORCES AND DISPLACEMENTS FOR THE B ALANCED AND THE
UNBALANCED BRIDGE MODEL SHAVING THE INITIAL CAMBER

AM1 AM2 AM3 G.TCUD G.TCUD’
(ULM1) (ULM2) (ULMB3) (ULMA4) (ULM4")
Max. positive moment 7,852.82 7,854.31 7,858.54 7,859.57 7,859.45
of the main girder(kN-m) (30,737.2) (7,387.16) (7,526.85) (7,863.79) (7,859.53)
Max. negative moment -10,147.2 -10,144.3 -10,141.3 -10,140.2 -10,140.1
of the main girder(kN-m) (-72,514.1) (-16,544.8) (-10,473.9) (-10,140.7) (-10,140.0)
Max. compressive force -224,694. -210,324. -206,052. -214,687. -214,857.
of the tower (kN) (-215,896) (-214,683.) (-214,703.) (-214,687.). (-214,857.)
Max. positive moment 5,250.24 4,645.37 4,840.62 4,807.93 9,884.9
of the right pylon (kN-m) (46,232.9) (4,015.2) (4,986.1) (4,809.22) (9,885.9)
Max. negative moment -26,075.9 -17,021.2 -16,681.4 -16,818.3 -67,119.4
of the right pylon (kN-m) (-119,187.) (-16,998.7) | (-16,176.2) (-16,816.5) | (-67,119.3)
Horizontal displacement - - - 1.1 2.32
at the top of the tower (mm) (202.7) (29.6) (4.0) (1.2) (2.31)
Vertical displacement - - - 0.0 0.0
at the top of the tower (mm) (1.3) (-1.4) (0.0) (0.0) (0.0)
Axial shortening - - - 0.0 0.0
of the whole main girder (mm) (17.6) (8.5) (0.6) (0.0) (0.0)
Max. vertical displacement - - - 0.6 0.6
of the main girder (mm) (852.8) (225.2) (13.2) (0.5) (0.6)
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Consequently both G.TCUD and ULM4 clearly provideecptimized initial configuration conforming wedt the target
geometry in case of the balanced bridge model uddad loads as observed in Fig. 16 and 17 and TBadle addition,
note that the absolute maximum moment of the pflom Table 4 is 16.82 MN-m which corresponds to shall flexural
stress of about 0.36 MPa (=16.818/141.7) and also, the maximum bending moment@ttntinuous girder will decrease
rapidly as the distance between anchor points @f sables becomes small. Particularly it shouldrdmized that both

G.TCUD and ULM4 lead to completely identical initisolutions irrespective of balanced or unbalancedditions as
observed in the fourth and the fifth column of Te#iland 5.

Vp, =0.029875, v, = - 0.00004747X~ 408y 17.75: v,, = — 0.029875,+ 10.15
Y A (400,17.7527) i
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FIGURE 15VERTICAL CAMBER OF |INCHEON BRIDGE MODEL
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FIGURE 16 BENDING MOMENT DIAGRAMS IN THE LEFT HALFMODEL OFTHE MAIN GIRDER| N INCHEON
BRIDGE (KN-M)

Third, it is noted from Table 2 to 5 and Fig. 16lakv that unstrained cable lengths and maximum ihgntioments by
AM3 and ULM3 are in extremely good agreement withse by G.TCUD and ULM4 while the results by AM1dsidvi1
displays large difference. Furthermore, it showddelmphasized that the initial solution by AM3 shdittke difference with
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that by ULM3. This means that one practically ojiied initial state of long-span cable-stayed bridijeluding unstrained
element lengths can be easily determined by adpptie analytical method 3 (AM3) without recourse riatively
complicated G.TCUD.

Fourth, Table 2 to 4 and Fig. 16 and 17 reveal ¢ivatrall unstrained lengths and bending momentilkigtons by AM2

(ULM2) show good agreement with those by the AMRMB) and the G.TCUD (ULM4) but that the initial s#asolutions
(the fifth and sixth columns of Table 3) by ULMZdlay some deviations with the target configuratlbshould be pointed
out that each stay-cable of Incheon bridge modelpjsroximately modeled as a parabolic cable in AMfich results in
locally unbalanced moment distributions in pyloN®netheless, note that maximum bending moments liyi2Jare very

small similarly to those by ULM4. Therefore, itjiglged that AM2 and ULM2 can be satisfactorily apglto initial shaping
analysis of cable-stayed bridges having moderata Emgths.

TABLE 5
M AXIMUM BENDING MOMENTS FOR THE BALANCED AND THE UNBALANCED BRI DGE MODELS WITHOUT THE
CAMBER
AM1 AM3 G.TCUD G.TCUD
(ULM1) (ULM3) (ULM4) (ULM43
Max. positive moment 7,852.82 7,853.14 7,853.12 7,853.13
ofthe main girder (kN-m) (8,261.76) (7,107.03) (7,852.66) (7,853.21)
Max. negative moment -10,147.2 -10,146.8 -10,146.9 -10,146.9
of the main girder (kN-m) (-17,849.7) (-10,893.1) (-10,147.6) (-10,146.8)
Max. positive moment 1,498.5 1,498.2 1,508.69 5,571.0
of the right pylon (kN-m) (1,247.1) (1,189.98) (1,508.61) (-5,571.2)
Max. negative moment -1,185.6 -1,184.4 -1,159.01 -53,111.7
of the right pylon (kN-m) (-17,434.5) (-3,022.32) (-1,158.71) (-53,111.6)
————— UM 1
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Finally the initial state solution of suspensiondiges is usually insensitive to weight-balancingwszn center span and
side spans because the suspension system congiétilng main cable and hangers can effectively disstarge bending
moments generated from the combined action ofdbeidation camber and the horizontal compressionpament by the
main cable even though it is a self-anchored susperbridge.

However, initial shaping analysis of unbalancedleatayed bridges by G.TCUD can lead to large bapdnoments of
pylons because cable tensions are directly traresfefrom the main girder to the pylons. Actuallyistobserved that
bending moments in the main girder can be alwaysmized by applying G.TCUD but the maximum bendmgment of

the pylon for the unbalanced bridge model by G. TChéBomes about 4 times larger than that for thartwald bridge (see
the fifth and sixth columns of Table 4). This medhat the weight balancing between the center spahside spans
should be definitely well preserved in the preliariy design stage.

VII. SUMMARY AND CONCLUSIONS

Two unstrained-length calculation procedures fdaeeining one optimized initial state solution @fbe-stayed
bridges, the analytical method and the G.TCUD ntkth@ave been presented, in which the former metkod
based on the continuous beam analysis and theneanlalgebraic equations but the latter methodtadbp FE
Newton iteration method using the elastic cateratyle element and the consistent frame elementlas¢he
co-rotational formulation. Moreover, the unstraidedgth method strongly depending on the unstraieegdth
calculation schemes are presented to effectiveffope nonlinear FE analysis of cable-stayed bridgdgected
to various load combinations. Finally initial shagianalysis of a cable-stayed bridge having onernmédiate
pier is performed and numerical results are andlyZke important concluding remarks can be madellsvs:

1. The initial state solutions by AM1 look reasoleaat first glance but ULM1 based on unstrainedjiks by AM1 leads to
explosively large bending moments in both the nggider and the pylon for the bridge model having ithitial camber.

2. The G.TCUD introduces the corresponding addititmoundary constraints instead of adding all thetnained
element lengths to the nodal unknown while the Uatibpts Newton iteration method with keeping the pre
determined unstrained lengths constant. And G.TQuiides the optimized initial solution convergingarly

to the target configuration in case of balancedezatayed bridges under dead loads.

3. Interestingly, even though any additional caaiats in the ULM method are not enforced exceptthar
essential boundary condition, the initial stateusohs by ULM3 and ULM4 are nearly identical to seoby
G.TCUD irrespective of the weight-balanced conditamd the fabrication camber.

4. Initial state solutions by AM3 and ULM3 are ixcellently good agreement with those by G.TCUD bdA3 while the

results by AMland ULM1 display large differencerthermore, the initial solution by AM3 shows litiiiéfference with that
by ULM3, which means that one optimized initialtst@f balanced cable-stayed bridges can be easilydf by adopting
AM3 without recourse to relatively complicated G JD.

5. Practically AM2 and ULM2 can be applied to timétial shaping and the construction stage analg$isable-stayed
bridges having moderate span lengths.

6. Bending moments in the main girder can be alwagalized by applying the G.TCUD method but the
maximum moments in pylons in case of the unbalamedde-stayed bridge can be extremely huge thasetho

the balanced bridge which means that the weight balancing betwtbe center span and side spans should be
carefully taken into account in the preliminary ides

7. Finally, it is judged that ULM3 and ULM4 basec @he unstrained-lengths by AM3 and G.TCUD,
respectively, can be the most powerful tool for naty the initial shaping analysis but also the saguent
construction stage analysis and structural nonliagalysis under various load combinations.
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APPENDIX

The followings are detailed forms of elastic s&f$s, stiffness due to member deformations, gecrrstifiness
due to member forces and the unstrained lengttecklstiffness consisting of the extended tangestiéfhess
matrix of a frame element:

K
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