
International Journal of Engineering Research & Science (IJOER) [Vol-1, Issue-9, December- 2015]

Page | 102

An efficient Mapreduce scheduling algorithm in hadoop
R.Thangaselvi

1
, S.Ananthbabu

2
, R.Aruna

3

1
M.E: Department of Computer Science, VV College of Engineering, Tirunelveli, India

2
Assistant Professor, Department of Computer Science, VV College of Engineering, Tirunelveli, India

3
M.E: Department of Computer Science, Jeyamatha College of Engineering, Kanyakumari, India

Abstract— Hadoop is a free java based programming framework that supports the processing of large datasets in a

distributed computing environment. Mapreduce technique is being used in hadoop for processing and generating large

datasets with a parallel distributed algorithm on a cluster. A key benefit of mapreduce is that it automatically handles

failures and hides the complexity of fault tolerance from the user. Hadoop uses FIFO (FIRST IN FIRST OUT) scheduling

algorithm as default in which the jobs are executed in the order of their arrival. This method suits well for homogeneous

cloud and results in poor performance on heterogeneous cloud. Later the LATE (Longest Approximate Time to End)

algorithm has been developed which reduces the FIFO's response time by a factor of 2.It gives better performance in

heterogenous environment. LATE algorithm is based on three principles i) prioritising tasks to speculate ii) selecting fast

nodes to run on iii)capping speculative tasks to prevent thrashing. It takes action on appropriate slow tasks and it could not

compute the remaining time for tasks correctly and can't find the real slow tasks. Finally a SAMR (Self Adaptive MapReduce)

scheduling algorithm is being introduced which can find slow tasks dynamically by using the historical information recorded

on each node to tune parameters. SAMR reduces the execution time by 25% when compared with FIFO and 14% when

compared with LATE.

Keywords— Hadoop, Mapreduce, Colud Computing, Scheduling, SAMR, Tuning.

I. INTRODUCTION

Hadoop is a software library framework that allows for the distributed processing of large datasets across clusters of

computers using simple programming model [1]. Mapreduce is the data processing framework that automatically handles

failures. It deals with the implementation for processing and generating large datasets with a parallel distributed algorithm on

a cluster [2].Mapreduce is used in cloud computing because of hiding the complexity of fault tolerance from the programmer

[3].Input data is splitted and fed to each node in the map phase. The results generated in this phase are shuffled and sorted

then fed to the nodes in the reduce phase[4]. Hadoopdefaultly schedules the task using FIFO technique which is static [5].

Later several techniques are being developed which supports homogeneous tasks. LATE the dynamic scheduling technique is

being introduced to schedule the jobs in heterogeneous environment[6]. Then the SAMR mapreduce scheduling technique is

being developed which uses the historical information and find the slow nodes and launches backup tasks. The historical

information is stored in each nodes in XML format. It adjusts time weight of each stage of map and reduce tasks according to

the historical information respectively[7]. It decreases the execution time of mapreduce job and improve the overall

mapreduce performance in the heterogeneous environment. In this paper we are tuning the parameters using k means

clustering technique and then assigning tasks to each node thus improving the performance of hadoop in the heterogenous

environment which is also known as Lloyd’s algorithm[8]. In Hadoop 1, a single Namenode managed the entire namespace

for a Hadoopcluster[9]. With HDFS federation, multiple Namenode servers manage namespaces and this allows for

horizontal scaling, performance improvements, and multiple namespaces.YARN, the other major advance in Hadoop 2,

brings significant performance improvements for some applications, supports additional processing models, and implements

a more flexible execution engine. YARN is a resource manager that was created by separating the processing engine and

resource management capabilities of MapReduce as it was implemented in Hadoop 1[18]. YARN is often called the

operating system of Hadoop because it is responsible for managing and monitoring workloads, maintaining a multi-tenant

environment, implementing security controls, and managing high availability features of Hadoop[10].

II. LITERATURE SURVEY

Hadoop defaultly uses FIFO technique in which the tasks are given priority in the order they arrived. This technique takes

more response time for slower jobs when compared to faster jobs[5].Then in round robin technique each tasks are given

equal priority[11]. In the fair scheduling technique all tasks get an average and equal share of resources over time[12].Then

in capacity scheduling technique resources are allocated in a timely manner under constraints of allocated capacities[13].The

International Journal of Engineering Research & Science (IJOER) [Vol-1, Issue-9, December- 2015]

Page | 103

weighted Round Robin scheduling allocate weight to each queue then scheduling tasks of different sub queue according to

weight[14]. Improved Weighted Round Robin scheduling uses weight update rules to reduce workload and to balance tasks

allocation[15]. Hybrid scheduling is designed for data intensive workloads and tries to maintain data locality during

execution[16]. SARS(Self-Adaptive Reduce Scheduling) can decide the start time points of each reduce tasks dynamically

according to each job context, includes the job completion time[17].LATE (Longest Approximate Time to End) scheduling

improves the execution in hadoop by finding real slow tasks[6]. SAMR improves the execution in hadoop by finding real

slow tasks[7].

TABLE 1

 LITERATURE SURVEY ON VARIOUS MAPREDUCE SCHEDULING TECHNIQUES
S.NO ALGORITHM ADVANTAGE DISADVANTAGE

1 First In First Out(FIFO) scheduling

Reduces response time due to speculative

execution. Works well in case of short

jobs.

Uses fixed threshold for selecting tasks to reexecute.

Can’t identify which tasks to be reexecuted on fast

nodes correctly.

2 Round Robin scheduling

No need to wait for the previous one to get

completed.

Job that can’t be completed in its turn will

be stored back to the queue waiting for the

next turn.

Largest jobs take enough time for scheduling.

Supports only internal scheduling of jobs.

3 Fair scheduling Can work well in both small and large

clusters.

Job weight is not considered for each node.

4 Capacity scheduling

Improve the utilization of resources

through dynamic adjustment of resource

allocation.

Improve job efficiency.

User needs to know system information and make

queue set and queue select group for the job.

5 Weighted Round Robin scheduling

Can provide good fairness when the size

of each task is same.

Provides unfairness for the smaller queues if the size

of the task is inconsistent.

Due to fixed weight, can’t adjust the weight of each

sub queue in real time.

6
Improved Weighted Round Robin

scheduling

Easy to implement.

Low cost.

Defects occur when consider the external influence

on the time that each task took when they switched

scheduling.

Does not maintain stability under high concurrency,

large capacity and high workload.

7 Hybrid scheduling

Fastand flexible scheduler.

Improves response time for multiuser

hadoop environment.

The time taken for the creation of tasks and result

retrieval is increased due to the increase in the

number of tasks.

8 Self-adaptive Reduce scheduling(SARS)
Reduces completion time. Decrease the

response time

Only focuses on reduce process.

9

Longest approximate time to end(LATE)

scheduling

Robustness to heterogeneity.

Address the problem of how to robustly

perform speculative execution to

maximize performance.

Does not compute remaining time for tasks correctly

and can’t find real slow tasks.Poor performance due

to the static manner in computing the progress of the

tasks.

10

Self-adaptive mapreduce(SAMR)

scheduling

Decreases the execution time of

mapreducejob. Improve the overall

mapreduce performance in the

heterogeneous environment.

Does not find the slow jobs accurately.

International Journal of Engineering Research & Science (IJOER) [Vol-1, Issue-9, December- 2015]

Page | 104

III. THEORETICAL FOUNDATION

The MapReduce framework first splits an input data file into G pieces of fixed size, typically being 16 megabytes to 64

megabytes (MB). These G pieces are then passed on to the participating machines in the cluster. Usually, 3 copies of each

piece are generated for fault tolerance. It then starts up the user program on the nodes of the cluster. One of the nodes in the

cluster is special the master. The rest are workers that are assigned work by the master. There are M map tasks and R reduces

tasks to assign. M and R is either decided by the configuration specified by the user program, or by the cluster wide default

configuration. The master picks idle workers and assigns them map tasks. Once map tasks have generated intermediate

outputs, the master then assigns reduces tasks to idle workers. Note that all map tasks have to finish before any reduce task

can begin. This is because a reduce task needs to take output from every map task of the job. A worker who is assigned a

map task reads the content of the corresponding input split. It parses key/value pairs out of the input data chunk and

passeseach pair to an instance of the user defined map function. The intermediate key/value pairs produced by the map

function are buffered in memory at the corresponding machines that are executing them. The buffered pairs are periodically

written to a local disk and partitioned into R regions by the partitioning function. The framework provides a default

partitioning function but the user is allowed to override this function by a custom partitioning. The locations of these

buffered pairs on the local disk are passed back to the master. The master then forwards these locations to the reduce

workers. When a reduce worker is notified by the master about these locations, it uses remote procedure calls to read the

buffered data from the local disks of mapworkers. When a reduce worker has read all intermediate data, it sorts it by the

intermediate key so that all occurrences of the same key are grouped together.

The sorting is needed because typically many different keys are handled by a reduce task. If the amount of intermediate data

is too large to fit in memory, an external sort is used. Once again, the user is allowed to override the default sorting and

grouping behaviors of the framework. Next, the reduce worker iterates over the sorted intermediate data and for each unique

intermediate key encountered, it passes the key and the corresponding set of intermediate values to the reduce function. The

output of the reduce function is appended to a final output file for this reduce partition. When all map tasks and reduce tasks

have completed, the master wakes up the user program. At this point, the MapReduce call in the user program returns back to

the user code.

FIG 1: MAP REDUCE FRAMEWORK

International Journal of Engineering Research & Science (IJOER) [Vol-1, Issue-9, December- 2015]

Page | 105

IV. METHODOLOGY

4.1 Proposed methodology

The SAMR technique uses the historical information that is being stored in each node and using that information it finds the

real slow tasks. Then it maps the slow tasks and reduces the slow tasks. In this paper we use the k-means clustering technique

to tune the parameters in the historical information and finding the slow tasks very accurately. The proposed K-means

algorithm can solve even the most difficult clustering issues. It requires the number of clusters that we are going to use in our

process. The algorithm finds k centroids, one for each cluster. Depending on the location of the centroid the result will vary.

During the map phase it finds the M1 temporary value and using this value it finds in the clusters which one is closest to the

M1 value. Similarly inthe reduce phase it finds the R1 temporary value and using this value it finds in the clusters which one

is closest to the R1 value. Based on the result the centroid location is changed and the values are recalculated again.

FIG 2: MAPREDUCE IMPLEMENTATION

International Journal of Engineering Research & Science (IJOER) [Vol-1, Issue-9, December- 2015]

Page | 106

4.2 Algorithm

Algorithm 1 Self-adaptive MapReduce

1: Start procedure

2: input: Key/Value pairs

3: output: Statistical results

4: read historical information

5: tune parameters using proposed k-means clustering

6: Find slow tasks

7. Find slow tasktrackers

8: Launch back up tasks

9: Using the results update the historical information

10. End procedure

Algorithm 2 Proposed k-means clustering

1: Start procedure

2: Input: D-set of n datanodes, n-number of datanodes, C-set of k centroids, k-number of clusters

3: Output: A-set of k clusters

4: Compute distance between each data nodes to all centroids

5: For each Di find the closest Ci

6: Add Di to A

7: Remove Di from D

8: Repeat for all Di……Dn andCi...Ck

9: End procedure

V. RESULTS AND DISCUSSION

We applied the proposed k-means clustering algorithm to improve the performance of the Self-adaptive MapReduce

scheduling algorithm. The proposed k-means clustering algorithm works better than the k-means clustering algorithm. When

the input file is given the job tracker manages the information and assigns tasks to its slave nodes also known as task

trackers. The Namenode holds the metadata which is the master of all datanodes. The jobtracker and tasktrackers

International Journal of Engineering Research & Science (IJOER) [Vol-1, Issue-9, December- 2015]

Page | 107

communicate among themselves and the datanodes will communicate with the namenode.The proposed k-means clustering

algorithm find the closest distance between each datanodes and each centroids . Using this result it update the historical

information in the name node and find the accurate slow tasks , launch backup tasks and assign tasks to each task trackers.

The proposed k-means clustering technique takes less amount of computation time than the basic k-means clustering

algorithm. The following table shows the expected experimental results for the basic k-means clustering and the proposed k-

means clustering algorithm.

TABLE 2

EXPECTED EXPERIMENTAL RESULTS

VI. CONCLUSION

In this paper we proposed a method to improve the efficiency of the map reduce scheduling algorithms. It works better than

existing map reduce scheduling algorithms by taking less amount of computation and gives high accuracy. We used the

proposed k-means clustering algorithm together with the Self-Adaptive MapReduce(SAMR) algorithm. However this

technique works well it can assign only one task to each data node. In the future we have decided to improve its efficiency by

allocating more number of tasks to the datanodes.

REFERENCES

[1] Hadoop, “Hadoop home page” http://hadoop.apache.org/ .

[2] Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified data processing in large clusters”, in OSDI 2004: Proceedings of 6th

symposium on operating system design and implementation, (New York), pp. 137-150, ACM Press, 2004.

[3] JineshVaria,“Cloud architectures”, White paper of Amazon, jineshvaria.s3.amazonaws.com/ public/ cloud-

architecturesvaria.pdf,2008.

[4] Yaxiong Zhao*, Jie Wu, and Cong Liu , “Dache: A data aware caching for bigdata applications using the MapReduce framework” , in

TSINGHUA science and technology, ISSN 1007-0214 05/10 pp. 39-50 Volume 19, Number 1.

[5] JaideepDhok and VasudevaVarma , “Using pattern classification for task assignment in mapreduce”

[6] MateiZaharia, Andy Konwinski, Anthony D.Joseph, Randy Katz, Ion Stoica , “Improving MapReduce performance in heterogeneous

environment” ,8th USENIX symposium on operating systems design and implementation.

[7] Quan Chen, Daqiang Zhang, MinyiGuo, Qianni Deng and Song Guo, “SAMR: A self-adaptive MapReduce scheduling algorithm in

heterogeneous environment.

[8] Andrew Moore: “K-means and hierarchical clustering Tutorial Slides” htttp://www-2.cs.cmu.edu/~awm/ tutorials/kmeans.html.

[9] Dan Sullivan ,”Getting started with Hadoop 2.0” , http://www.tomsitpro.com/articles/hadoop-2-vs-1,2-718.html.

No of files No of clusters Algorithm Computation time in seconds

100 3 k-mean 0.105

Proposed k-mean 0.085

200 3 k-mean 0.130

Proposed k-mean 0.100

300 4 k-mean 0.145

Proposed k-mean 0.125

400 2 k-mean 0.165

Proposed k-mean 0.145

500 2 k-mean 0.205

Proposed k-mean 0.185

http://hadoop.apache.org/

International Journal of Engineering Research & Science (IJOER) [Vol-1, Issue-9, December- 2015]

Page | 108

[10] ThilinaGunarathne: “ HadoopMapReduce v2 Cookbook” , second edition PACKT publishing, Birmingham-Mumbai.

[11] Gothali E and Balasubramanie P ,”A novel approach for partitioning in hadoop using Round Robin technique”, ISSN: 1992-8645

JATIT , Vol. 63 No. 2.

[12] “Hadoop Fair Scheduler Design Document” , http://svn.apache.org/hadoop/fair_scheduler_design_doc.pdf .

[13] “Capacity Scheduler Guide” http://hadoop.apache.org/docs/r1.2.1/capacity_scheduler.html .

[14] HaiyangLi , “PWBRR algorithm of hadoop platform”.

[15] Yu Liping, Yang Lishen and Zhu Liang , “Multiuser scheduling strategy research based on mapreduce cluster”

[16] AysanRasooli and Douglas G. Down , “A Hybrid Scheduling approach for scalable heterogeneous hadoop systems.

[17] ZhuoTang ,Lingang Jiang , Junqing Zhou , Kenli Li and Keqin Li “ A self-adaptive scheduling algorithm for reduce start time” .

[18] ArunC.Murthy, Vinod Kumar Vavilapalli, Dough Eadline, Joseph Niemiec and Jeff Markham, “Apache Hadoop Yarn: Moving

beyond MapReduce and Batch Processing with Apache Hadoop 2.

[19] MapReduce, http://www.mongodb.org/display/ DOCS/ MapReduce

[20] Junjie Wu “Advances in k-means clustering” , a data mining thinking

[21] K.Krishna and M.NarasimhaMurty , “Genetic k-means algorithm” IEEE Transactions, Vol. 29, No. 3, June,1999

[22] H. Spath, “Clustering Analysis Algorithms” New York: Van Nostrand Reinhold, 1991.

[23] C. Tian, H. Zhou, Y. He, and L. Zha, “A dynamic MapReduce Scheduler for heterogeneous workloads,” in Proceedings of the 2009

eighth International Conference on Grid and Cooperative Computing-Volume 00, pp. 218-224, IEEE Computer Society,2009.

[24] L. Barroso, J.Dean, and U. Holzle, “Web search for a planet: The Google cluster architecture”, IEEE Micro, vol. 23, no. 2, pp. 22-28,

2003

[25] P. Nguyen, T. Simon, M. Halem and D. Chapman, “A hybrid algorithm for data intensive workloads in a mapreduce environment” ,

2012 IEEE/ACM fifth International Conference on Utility and Cloud Computing

[26] H. Ozkose, E. Sertacand C. Gencer ,”Yesterday, Today and Tomorrow of Big Data” .

http://svn.apache.org/hadoop/fair_scheduler_design_doc.pdf
http://hadoop.apache.org/docs/r1.2.1/capacity_scheduler.html
http://www.mongodb.org/display/

