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Abstract- Video object co-segmentation is a method of segmenting and discovering primary object from multiple videos 

without human annotation. In this paper, we are presenting a firefly based video object co-segmentation method. Here we 

are using SIFT flow method for object segmentation and firefly algorithm for object optimization. SIFT flow descriptor 

discovers the corresponding object using inter-frame motion flow from optical flow. But it will not capture the optimal 

motion of inter-frame. So we are using Firefly approach in addition to SIFT flow. Firefly approach captures optimal inter-

frame motion based on the velocity updation and position of the particle for better results.  SIFT flow produces segmented 

primary objects over the entire video data set. Finally we combine this segmented object to get high quality original videos. 

The results that we obtained from conducting the experiment show that the Firefly based co-segmentation method achieves 

high accuracy compared with the existing co-segmentation method. 

Keywords— Video object co-segmentation, energy optimization, object refinement, spatio-temporal scale-invariant feature 

transform (SIFT) flow.  

I. INTRODUCTION 

Video data is one of the fastest growing resources of publicly available data on the web. Taking such resources for learning 

and for many other purposes in an easy way is a big opportunity – but equally a big challenge. For leveraging such data 

sources, algorithm is needed to deal with the unstructured nature of such videos which is beyond today‟s state-of-the-art. The 

natural extension of image co-segmentation is the video co-segmentation. Image co-segmentation was introduced by Rother. 

Later, image based object co-segmentation was proposed, which introduced the use of object proposals for segmenting 

similar object from image pairs. The idea of co-segmentation was extended to handle multiple object classes and to work in 

internet collections where all images did not share the same object. Co-segmentation is the task of segmenting “something 

similar or related” in a given set of images. 

Efficient and automatic extraction of objects of interest from multiple videos is very important and also it is a very 

challenging problem. The appearance or motions of these interested objects maybe exhibit drastically different. In some 

videos, the foreground appearance or motions are very much different, while possibly low contrast with the background. 

These challenges cause great difficulties on existing video segmentation techniques. Moreover these methods have some 

assumption that the background is dramatically distinct from the appearance of object, which is against the situation as we 

mentioned before. Additionally, these methods lead to unsatisfactory performance. 

The extraction of main common object from a set of related videos is known as the video co-segmentation. It utilizes visual 

properties across multiple videos to infer the interested object with the absence of priori information about foregrounds or 

videos. There are a few methods designed for this problem till now [5], [6], [9]. These methods have some assumptions on 

the appearance or motion patterns of foreground. For example, method [5] assumes that the foreground objects from different 

videos have similar appearance model and similar motion patterns which is distinct from the background and method [6] 

indicate that the coherent motion of regions and similar appearance are able to conduct the segmentation. Moreover, one 

general limitation of these approaches [5], [6] is that the set of videos is assumed to be similar or related for foregrounds and 

backgrounds. The method [9] treats the task of video co-segmentation as a multi-class labelling problem, but its classification 

results heavily rely on the chroma and motion features. In total, these existing video co-segmentation approaches [5], [6], [9] 

have two main limitations.  

• Both methods abuse motion and appearance based cues and ignore the fact that there are considerable videos with the 

common object low contrast with the background. 

• In both methods, the process of inferring common objects does not completely explore the correspondence of objects 

from different set of videos, which is essential for the task of video co-segmentation.  
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These approaches simply assume that the objects are similar in motion patterns or appearance, which is not suitable for the 

frame that includes objects with large variations in appearance or motion. Besides, there are videos that consist of some 

frames not containing the common object of the whole video sequence. In some instance, the foreground object switch 

between video shots or moves out of camera. However, this fact is ignored by most previous work in both video object co-

segmentation and segmentation methods. Most of the existing methods assume that the foreground object exists in every 

frame, and hence they are unable to perform well for this issue. 

This work presents a co-segmentation framework for detecting and segmenting out common objects from multiple, 

contextually related videos without imposing above constraints. In this work, we explore the underlying properties of video 

objects in three cues: intra-frame saliency, inter-frame consistency and across-video correspondence. Based on these 

properties, we introduce a firefly approach, which captures the optimal inter-frame motion based on the velocity updation 

and position of the particle. In this optimization process, we use a spatio-temporal SIFT flow and conventional SIFT flow.  

Spatio-temporal SIFT flow captures inter-frame motion, which integrates optical flow and conventional SIFT flow captures 

across-videos correspondence information. This new spatio-temporal SIFT flow produces reliable estimations of common 

foregrounds over the entire video data set. Finally we combine this segmented object to get high quality original videos. 

II. PROPOSED SYSTEM 

Our main aim is to jointly segment multiple videos containing a common object in an unsupervised manner. Our algorithm 

has four main stages: object discovery among multiple videos, object refinement between video pairs, object segmentation on 

each video sequence and compute optimal flow by using Firefly.  

2.1 Object Discovery  

For object discovery from multiple videos, our method explores the video dataset structure and associates the global 

information with the intra-frame information. To discover the common object, we considering three main properties of 

targeted object: a) intra-frame saliency b) inter-frame consistency and c) across-video similarity. Intra-frame saliency means 

the foreground pixels should be relatively dissimilar to other pixels within a frame. Inter-frame consistency means the 

foreground pixels should be more consistent within a video. And across-video similarity means the pixels of foreground 

should be more similar to other pixels between different videos. We propose a new spatio-temporal SIFT flow algorithm that 

integrate saliency, SIFT flow and optical flow to explore the comparisons between different videos.  To infer the common 

objects without the assumption that the object must exist in each frame, we designed an object discovery energy function. 

Pixel saliency reflects how salient the pixel is, namely, the degree of its dissimilarity within the image. There are many 

methods in computer vision that concentrate on this topic. We use [8] yet any other saliency methods such as [7] can be 

incorporated. Let V = {V1, V2, ..., VN } be a set of N input videos. Fn = {𝐹𝑛
1, 𝐹𝑛

2
 , ..., 𝐹𝑛

𝑖 , ...} is a set of frames belong to video 

Vn. We compute a normalized saliency map 𝑀𝑛
𝑖  for frame 𝐹𝑛

𝑖 . Based on intra-frame saliency property, the larger value of 

𝑀𝑛
𝑖 (x), the more likely that the pixel x = (x, y) belongs to object. Then we build a saliency term 𝒜𝑛

𝑖 (x) to define the cost of 

labeling pixel x for foreground (𝑙𝑛
𝑖 (x) = 1) or background (𝑙𝑛

𝑖  (x) = 0) [1]. 

SIFT flow [3], [4] can be used to build a dense correspondence map across different scenes and object appearances. SIFT 

flow is shown to accommodate variations. We combine optical flow and local saliency into a superior spatio-temporal SIFT 

flow to build dense correspondences between pixels in different videos. Through spatio temporal SIFT flow, reliable 

correspondences 𝑤𝑛𝑛 ′
𝑖𝑖 ′  = (𝑢𝑛𝑛 ′

𝑖𝑖′ , 𝑣𝑛𝑛 ′
𝑖𝑖 ′ ) between the pixels of frame 𝐹𝑛

𝑖
 and 𝐹𝑛 ′

𝑖′  from different videos are established. In other 

words, pixel x of frame 𝐹𝑛
𝑖  is associated with the pixel x + 𝑤𝑛𝑛 ′

𝑖𝑖 ′ (x) of frame 𝐹𝑛 ′
𝑖′  .These correspondences indicate whether 

pixels belong to the common object (even when it may be very salient within its frame).  

We establish correspondences between a part of the pixels with high saliency values of one frame and the pixels from the 

frame of the other video. We select the pixels 𝑹𝑛
𝑖

 = {x | M
 i

n (x) > τ} to explore their correspondences. In experiments, we 

fixed τ = 0.4. This strategy improves matching accuracy by reducing the disturbance of those un-salient pixels which are very 

close to background, and it enables our method to remove some salient pixels that do not belong to common object. 

Let 𝑠𝑛
𝑖  and 𝑠𝑛 ′

𝑖′   be two SIFT fields of frame 𝐹𝑛
𝑖  and 𝐹𝑛 ′

𝑖′  respectively that we want to match. The terms 𝑠𝑛
𝑖+1 and 𝑠𝑛 ′

𝑖 ′+1 refer to 

the SIFT fields of frame 𝐹𝑛
𝑖+1  and 𝐹𝑛 ′

𝑖 ′+1 respectively. 𝐹𝑛
𝑖+1   is the consecutive frame for  𝐹𝑛

𝑖  , and Ns is the spatial 8-

neighborhoods of a pixel. Given the set of salient pixels  𝑹𝑛
𝑖

 , the energy function for spatio-temporal SIFT flow [1] is 

defined as follows: 
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E = ES + α1EOS + α2EDisp + α3ESmooth + α4ESal      (1) 

where the energy function contains the SIFT based data term (ES), the optical flow compensated SIFT based data term (EOS), 

displacement term(EDisp),the smoothness term (ESmooth) and the saliency term (ESal) 

It is possible to sample only a few representative frames or sample at a low frame-rate from video to perform the object 

discovery process instead of using all the frames. We select frame fn = {𝑓𝑛
1, 𝑓𝑛

2
 , ..., 𝑓𝑛

𝑘 , ...} every other five or ten frames 

from video Vn to perform object discovery process. For the k-th frame 𝑓1
𝑘 , 𝑓2

𝑘 ,, ..., 𝑓𝑁
𝑘 ,  of every video, we compute their 

spatio-temporal SIFT flow to capture their correspondence. Next, we calculate the distance of the point x of frame 𝑓𝑛
𝑘from its 

corresponding points of other frames ℵ( 𝑓𝑛
𝑘) = {𝑓1

𝑘  , ..., 𝑓𝑛−1
𝑘 , 𝑓𝑛+1

𝑘 , ... 𝑓𝑁
𝑘} in SIFT feature [1]: 

𝑆𝑛
𝑘  (x) = 

1

|𝑁−1|
 ||𝑓

𝑛 ′
𝑘∈ℵ(𝑓𝑛

𝑘) 𝑠𝑛
𝑘(x) - 𝑠

𝑛 ′
𝑘  x + 𝑤

𝑛𝑛 ′
𝑘𝑘  x  ||1     (2) 

We normalize this term with values in [0, 1], where the smaller values indicate greater chance belonging to common object 

since the smaller distances to corresponding points. Similar to the saliency term, we build a matching term ℳ𝑛
𝑘  (x) to define 

the cost of labeling pixel x for foreground (𝑙𝑛
𝑘(x)= 1) or background (𝑙𝑛

𝑘(x)= 0) [1]. 

For frame 𝑓𝑛
𝑘  , we use the above saliency and matching terms to build an object discovery energy function [1] as:  

ℰ𝑛
𝑘 (x) = 𝜖₁ 𝒜𝑛

𝑘  (x) + 𝜖₂ℳ𝑛
𝑘  (x) + 𝒱𝑛

𝑘  (x)   (3) 

where 𝒱𝑛
𝑘  (x) for frame 𝑓𝑛

𝑘   is the smooth term [1] and 𝐶𝑛
𝑘(x) indicates the color value of pixel x in 𝑓𝑛

𝑘  , spatial pixel 

neighborhood Ns consists of eight spatially neighboring pixels within one frame. This object discovery energy can be 

efficiently solved by traditional graph cut algorithm [10] and we are able to roughly estimate the common object over the 

video dataset. The scalars  𝜖 weight the various terms. 

There are many videos that include frames that do not contain the common object. Current video co-segmentation 

approaches disregard this challenge and assume common object appears in every frame. Our method effectively handles this 

difficulty. One intuition is that the frames that do not contain the common object are not consistent with the frames that 

contain the object. Therefore, we further leverage the inter-frame consistency property. Based on (3), we get object-like areas 

and background areas for each frame. Suppose frame 𝑓𝑛
𝑘−1contains the common foreground while 𝑓𝑛

𝑘  does not. Their 

estimated object-like area should be different. We employ Gaussian mixture models (GMM) to characterize the common 

object appearance. For frame 𝑓𝑛
𝑘−1 , the GMMs for object-like area and background are defined as {𝐺𝑀𝑀

𝑓𝑛
𝑘−1
𝑓

, 𝐺𝑀𝑀
𝑓𝑛
𝑘−1
𝑏 }, 

respectively. We use an object consistence term 𝒞𝑛
𝑘  (x) to measure the consistency of estimated objects in video according to 

the appearance model of object [1].  Then we add this object consistence term into our object discovery energy function: 

ℰ𝑛
𝑘 (x) = 𝜖₁ 𝒜𝑛

𝑘  (x) + 𝜖₂ℳ𝑛
𝑘  (x) + 𝜖₃𝒞𝑛

𝑘  (x) + 𝒱𝑛
𝑘  (x)   (4) 

We set parameter 𝜖₁ = 𝜖₂ = 𝜖₃= 50 for all the test videos in our experiments. Since five or ten frames between frame 𝑓𝑛
𝑘−1 

and  𝑓𝑛
𝑘 , the estimated GMM for frame 𝑓𝑛

𝑘−1 is helpful for identifying whether the frame 𝑓𝑛
𝑘  contains the common object. 

We use 𝐓𝑛
𝑘  to denote the object-like area in frame 𝑓𝑛

𝑘 ,  and the number of pixels belonging to the object-like area 𝐓𝑛
𝑘  𝑖s 

expressed as | 𝐓𝑛
𝑘  |. We consider whether frame 𝑓𝑛

𝑘 , contains the common object in case the ratio 

𝑘𝑛
𝑘  = | 𝐓𝑛

𝑘  | / | 𝐓𝑛
𝑘−1 |         (5) 

is relatively large (𝑘𝑛
𝑘  > 0.2) and conclude that the foreground object of frame 𝐹𝑛

𝑘  is not changed. If this ratio is small, we 

assume the objects between frame 𝐹𝑛
𝑘−1 and 𝐹𝑛

𝑘   are not consistent. In this case, frame 𝐹𝑛
𝑘   is considered to not contain the 

common object and we set 𝐓𝑛
𝑘   = Ø. The GMM of the frame 𝑓𝑛

𝑘  is set as: 

𝐺𝑀𝑀
𝑓𝑛
𝑘
𝑓

 = 𝐺𝑀𝑀
𝑓𝑛
𝑘−1
𝑓

 

𝐺𝑀𝑀
𝑓𝑛
𝑘
𝑏  = 𝐺𝑀𝑀

𝑓𝑛
𝑘−1
𝑏  
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In this way, the GMM for common object is kept consistent across the whole video sequence by ignoring the „noise‟ frames. 

The frames that are detected to not contain the objects in object discovery step, will be not taken into consideration in next 

object refinement process. 

2.2 Object Refinement 

We obtain a coarse estimation for the common object in the dataset from the previous step. Based on this, we seek to obtain a 

more accurate estimation for foreground object in every video. Our intuition is to remove the pixels that are similar to 

background based on the estimation result. Nevertheless, this also requires determining what foreground would look like. To 

filter out background pixels we divide the object-like area into sub-regions based on their variations. We utilize spatio-

temporal SIFT flow for this purpose. 

First, a pair of videos (Vn, Vn´) is randomly selected from dataset. Their spatio-temporal SIFT flow between frames 𝑓𝑛
𝑘   and 

𝑓𝑛 ′
𝑘   is constructed. Lack of continuities of spatio-temporal SIFT flow field shows the variation of object structure (but not 

color variation) yet robust to object details. This property of spatio-temporal SIFT flow field is very important. Through the 

computation of the lack of continuities of spatio-temporal SIFT flow field, depending on the structure variation, we divide 

the object-like area into a few regions. This enables us to evaluate every part of the object-like area whether belongs to 

foreground using GMMs. 

For each region t of object-like area 𝐓𝑛
𝑘  , we build the 𝐺𝑀𝑀𝒕

 𝑏  for background Ť𝑛

𝑘  
 and the 𝐺𝑀𝑀𝒕

 𝑓
for the remaining region 

(object) 𝐓𝑛
𝑘  \ t. The likelihood  𝜌𝑛

𝑘  (xt) of pixels xt ∈ t for foreground is estimated using {𝐺𝑀𝑀𝒕
 𝑓

 , 𝐺𝑀𝑀𝒕
 𝑏}. We compare the 

texture of region t with the background and object-like area using the local binary pattern (LBP) features, which is used for 

describing the local spatial structure of an image. To model the texture of foreground and background in frame  𝑓𝑛
𝑘  , two 

normalized histograms (𝐻𝒕
𝑓 

and 𝐻𝒕
𝑏 

) are calculated in LBP domain. For region t, the pixels belonging to the object-like area 

𝐓𝑛
𝑘  \ t are used for formulating the LBP histogram 𝐻𝒕

𝑓 
while the pixels belonging to the background area Ť𝑛

𝑘  
 are sampled for 

forming 𝐻𝒕
𝑏  . Thus the probability 𝑙𝑛

𝑘   (xt) of pixels xt ∈ t for foreground is estimated through these two LBP histograms as 

follows: 

𝑙𝑛
𝑘  (xt) = 

𝐻𝒕
𝑓  

 [𝐱𝐭]  

𝐻𝒕
𝑓  

  𝐱𝐭 +𝐻𝒕
𝑏   [𝐱𝐭] 

          (6) 

where 𝐻𝒕
𝑓 

 [𝐱𝐭]  (with value in [0, 1]) indicates the value of histogram 𝐻𝒕
𝑓 

 at pixel 𝐱𝐭 . 

We combine  𝜌𝑛
𝑘  (xt)  and 𝑙𝑛

𝑘   (xt) and we call it as 𝑜𝑛
𝑘   (xt), where the term 𝑜𝑛

𝑘   (xt)  denotes the probability of the pixel xt for 

foreground according to both appearance and texture models. If 𝑜𝑛
𝑘   (xt)< 0.5, pixel xt will be classified into background. 

There is no need to consider all of regions t ∈ 𝐓𝑛
𝑘 . If the area of region t is too large or too small, we will ignore these 

regions. These constraints will take fewer regions into account and enhance the efficiency of our object refinement. In our 

experiments, the region with 
|𝐭|

|𝐓𝑛
𝑘  |

 > 0.5 or 
|𝐭|

|𝐓𝑛
𝑘  |

 < 0.05 will be directly classified into foreground. After frame  𝑓𝑛
𝑘  has been 

refined, we update {𝐺𝑀𝑀
𝑓𝑛
𝑘
𝑓

, 𝐺𝑀𝑀
𝑓𝑛
𝑘
𝑏

} to provide guidance for the following object segmentation process. This object 

refinement process is executed across video pairs and more correct estimation for foreground object is achieved. 

2.3 Object Segmentation 

To get the segmentation results of each pixel, a graph-cut based method is employed once the correct estimations for 

foreground of each video are obtained. Recall our definition of fn = {fn
1
, fn

2
 , ..., fn

k
 , ...} is that we select frame fn every other 

five or ten frames from video Vn. After the object refinement process, we get more correct estimation for common object and 

update the appearance model of the object and background {𝐺𝑀𝑀
𝑓𝑛
𝑘
𝑓

, 𝐺𝑀𝑀
𝑓𝑛
𝑘
𝑏 } for frame fn

k
, which can be used to conduct 

the segmentation in next five or ten frames of fn
k.
. For frame Fn

i
 , we obtain the likelihood of pixel x for foreground as pn

i
 (x) 

using our appearance models estimated by its temporally nearest frame of fn.  
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For video Vn, we update the labelling {l
i
n}i for all pixels to obtain the final segmentation results through an object 

segmentation function. This object segmentation function Fn(x) based on spatio-temporal graph by connecting frames 

temporally can be defined as follows:  

Fn(x) =   { 𝑖  𝒰𝑥 n
i
(x) + γ1  𝒱𝑥 ,𝑦є𝑁𝑠 n

i
 (x,y) + γ2   𝒲𝑥 ,𝑦є𝑁𝑡  n

i
 (x,y)}    (7) 

where the set Ns contains all the 8-neighbors within one frame and the set Nt contains the backward nine neighbors in pairs of 

adjacent frames. The parameters γ are the positive coefficient for balancing the relative influence between various terms. The 

unary term 𝒰n
i 
 [1] defines the cost of labeling pixel x with foreground and background according to our appearance model. 

The pairwise terms 𝒱n
i
 and 𝒲n

i
 encourage spatial and temporal smoothness, respectively [1]. These two terms favor 

assigning the same label to neighboring pixels that have similar color. We use binary graph cuts [10] to obtain the optimal 

solution for (7), and thus get the final segmentation results. The final labelling {ln
i
}i for all pixels in all frames represents a 

segmentation of the video Vn. 

2.4 Compute Optimal Flow by Using Firefly 

Firefly captures the optimal inter-frame motion, which is based on the position and velocity updation of the flies. In this 

optimization process, we use a spatio-temporal SIFT flow and conventional SIFT flow.  Spatio-temporal SIFT flow 

integrates optical flow, which captures inter-frame motion and conventional SIFT flow captures across-videos 

correspondence information. 

Here inter-frame motion is estimated using Firefly optimization [2]. Firefly optimization is a computation method that 

optimizes a problem by frequently trying to increase a candidate solution with regard to a given measure of quality. This uses 

a number of flies that set up a swarm moving everywhere in an N dimensional search space looking for the best solution. 

Every flies takes track of its coordinates in the solution space, which are related with the best solution that is achieved to this 

point by that flies is called as personal best position (pbest) and the other best value achieved until now by any flies in the 

neighbourhood of that flies is called as global best position (gbest). 

All flies move towards the optimal point with a velocity. Initially all of the flies velocity is assumed to be zero. To improve 

the searching more effective, initially the object model is projected into a high-dimensional feature space, and then firefly-

based algorithm is used to search over the high dimensional space and congregate to some global features of the object. This 

firefly based algorithm considers even the inter frame motion estimation to speed up the searching procedure. The proposed 

algorithm can be used to estimate the inter-frame motion at each pixel in a video sequence. This new spatio-temporal SIFT 

flow generates reliable estimations of common foregrounds over the entire video data set. 

III. EXPERIMENTAL RESULTS 

The purpose of this work is to co-segment the common objects automatically from related videos with large appearance 

variations or foreground/ background motion patterns, even when some frames do not contain the common object. There has 

been very little comparative work to address these problems. We have tested our method on video groups with similar 

foreground from our dataset. As shown in Fig 1, our co-segmentation results clearly show that our method handles such 

situation. In order to show the effectiveness of our algorithm on segmenting out the common object from diverse categories, 

we further test on video groups with large variations on foreground class. We finally evaluate our method on Car2 video 

groups; these video groups have some frames not containing the common object. We also present quantitative comparisons 

with previous method. We collect video groups that have same or similar object, and also a pixel-level segmentation ground-

truth for each video is available. Our method is evaluated on these video groups and compared to previous cosegmentation 

method [1]. 

 

 

FIG 1. VIDEO CO-SEGMENTATION RESULTS ON VIDEO GROUPS WITH SIMILAR FOREGROUND OBJECT 
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Our method utilizes a deeper understanding of the properties of foreground object, including intra-frame saliency, inter-frame 

consistency and across-video similarity. These properties are further integrated into our optimisation process: spatio-temporal 

SIFT flow and object discovery energy function, which enables our method to produce more accurate results and outperform 

the state-of-the-art approaches. Firefly optimization is used which captures the optimal inter-frame motion based on the 

position and velocity updation of the flies. It is very common that some frames do not contain the object of interest in real 

video data, such as object moving out of camera or the shot switching effect as shown in Fig 2. But there are very few 

methods notice this fact, most of co-segmentation methods assume every frame contains the interesting object, which cannot 

handle these issues well. The proposed method tries to tackle these problems and is evaluated on the newly collected video 

group: Car2. In Car2 some frames do not contain the foreground object. The frames without common object are naturally 

indicated by returning an empty labeling through our method. 

                                                                               

 

FIG 2. VIDEO CO-SEGMENTATION RESULTS ON VIDEOS WITH SOME FRAMES NOT CONTATINING THE 

COMMON OBJECT. 

Accuracy of the system is calculated with the values of the True Negative, True Positive, False Positive, False negative for 

actual class and predicted class outcomes. In this research it is the ratio of exact images segmented. 

                                           Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                         (8) 

Where TP is True Positive, TN is True Negative, FP is False Positive and FN is False Negative. 

 

FIG 3 SPATIO-TEMPORAL SIFT FLOW BASED SEGMENTATION VS FIREFLY OPTIMIZED SEGMENTATION 
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Fig 3 shows the comparison of Spatio-temporal SIFT flow based segmentation and Firefly optimized segmentation in terms 

of accuracy. In the x axis, the two methods are plotted and in the y axis, accuracy in percentage is plotted. From the graph, it 

is clear that Firefly optimized segmentation has more accuracy while Spatio-temporal SIFT flow based segmentation has less 

accuracy which means that the proposed approach has better performance in terms of accuracy. 

IV. CONCLUSION 

The proposed video co-segmentation method discovers the common object over an entire video dataset and segments out the 

objects from the complex backgrounds. In this system, we use a spatio-temporal SIFT flow to segment the video object. The 

next step is optimization of the SIFT output for better results, for that we are using Firefly optimization algorithm, Firefly 

optimization  captures the optimal inter-frame motion based on the position and velocity updation of the flies. Finally the 

segmented objects are combined to form a high quality video. The results of experiment show that the proposed system 

achieves high accuracy compared with the existing system. Here, spatio-temporal SIFT flow algorithm that integrates 

saliency, SIFT flow and optical flow to explore the correspondences between different videos. In future various optimization 

algorithms like ant colony, pso are used for measuring optical flow. 
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