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Abstract— The function of Green associated to a linear partial differential operator P(D) in a domain Ω acting at point x0 

of the domain, is a distribution G(x,x0) such that P(D)G(x,x0) = δ(x−x0), where δis the Dirac’s delta distribution. The 

property P(D)G(x,x0) = δ(x−x0) of a Green’s function can be exploited to solve differential equations of the form P(D)u = f, 

because 

 

Hence 

 

which implies that u = G(x,x0)f(x0)dx0. Not every operator P(D) admits a Green’s function. And the Green’s function, if it 

exists, is not unique, but adding boundary conditions it will be unique. In regular Sturm-Liouville problems, there is an 

standard way to obtain the corresponding Green’s function, and after that, as the domain is bounded, to incorporate the 

initial and boundary conditions using also the Green’s function. But the method doesn’t work if the domain is not bounded, 

because the justification is based in the use of the Green’s Theorem. In this paper we find the Green’s function for the 

Pennes’s bioheat equation, see [1], in a unbounded domain consisting in the space R
3 

with an infinite cylindrical hole. This 

type of problems appears in radiofrequency (RF) ablation with needle-like electrodes, which is widely used for medical 

techniques such as tumor ablation or cardiac ablation to cure arrhythmias. We recall that theoretical modeling is a rapid 

and inexpensive way of studying different aspects of the RF process. 

I. INTRODUCTION 

In the theory of heat conduction in perfused biological tissues, the so called Pennes’s bioheat equation, that is 

 (1) 

plays a central role. In (1) T(x,t) denotes the temperature at every point x of a biological tissue lying in a domain 

Ω ⊂R
3 

in the instant t, the (assumed constant) terms η,c and k are the density, specific heat and thermal 

conductivity of the tissue respectively, ηb,cb,ωb and Tb are the density, specific heat, perfusion coefficient of the 

blood and blood temperature respectively (all assumed constant too) and S = S(x,t) represents the heat sources. 

We consider the following infinite spatial domain: 

 

with source  bounded in Ω, and initial and boundary conditions only dependent on  and the 

temporal variable t. This is the geometry used for problems related to radio frecuency ablation of tumors with needle-like 

electrodes. In this case Haemmerich in [2] proposed a heat source independent of the time , where j0 is the 

current density at the conductor surface and σ the electrical conductivity. 

Switching to cylindrical coordinates the Pennes’s bioheat equation (1) becomes: 

 (2) 
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The initial and boundary condition at the infinity we will consider in this paper are the following: 

T(r,0) = g(r), ∀r > r0 

 = h(t),  ∀t >0 

T(r0,t) = f(t), ∀t >0 

Where f(t) can be interpreted as a refrigeration temperature in the boundary of the hole. For example, RF ablation with 

internally needle-like electrodes is widely used for medical techniques (see the references given in [1] for example). The 

device consists of an internally liquid cooled metallic cylindrical electrode that cools the electrode surface. In this case g(r) = 

h(ξ) = Tb and f(t) = TC, where TC is the temperature fixed by the refrigeration of the electrode, see [3] and [4]. 

 

V (ρ,ξ) :=  k(T( ξη c  – Tb), ( ,ξ) := S( ξη c , 

( ) =  k (g(  r0)−Tb),  (ξ) :=  k(f(ξη c , 

 (ξ) :=  k (h(ξη c -Tb)  

Then (2) becomes 

    (3) 

V( ( ), ∀ >1 

V (ρ,ξ) = h1(ξ), ∀ξ>0 

V (1,ξ) = f1(ξ), ∀ξ>0. 

II. THE GREEN’S FUNCTION 

Our propose is to obtain a function G(ρ,ρ0,ξ,ξ0) such that 

   (4) 

G(1,ρ0,ξ,ξ0) =0,   ∀ξ, ξ0>0, ∀ρ0>1 

G(ρ,ρ0,ξ,ξ0) =0,  ∀ξ, ξ0>0, ∀ρ0>1 

G(ρ,ρ0,ξ,ξ0)=0, ∀ξ0>0, ∀ ρ0>1 

and after that to prove that G(ρ,ρ0,ξ,ξ0) is the Green’s function of (11). 

The Laplace transform of G(ρ,ρ0,ξ,ξ0), denoted L[G](ρ,ρ0,ξ,ξ0), with respect to ξ verifies 

  (5) 

L[G](1,ρ0,s,ξ0) = 0 

L[G](ρ,ρ0,s,ξ0) = 0 

. 
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To solve this equation we proceed as in the regular Sturm Liouville problems, see for example [5], [8] and [6], 

and we begin finding the function W(ρ,ρ0,s,ξ0) for the boundary value problem 

     (6) 

W(1,ρ0,s,ξ0) = 0        (7) 

       (8) 

The equation (6) is a modified Bessel equation of order 0. 

Then if  ρ≤ ρ0,   

W(ρ,ρ0,s,ξ0) =C1(s)I0(ρ ) + C2(s)K0(ρ ) 

 

And if ρ0 ≤ ρ 

   (9) 

By (8) we have C3(s) = 0, by (7)  

 

And by the remaining conditions 

 

 

Solving that system and having in mind that 

 

It is obtained 

 

  (10) 
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Our score is to prove that although the problem is not an Sturm Liouville one, the corresponding Green’s function 

is L
−1

[W](ρ,ρ0,ξ,ξ0). That is, we have to show that the function 

 

is the solution of the problem: 

    (11) 

 

 

VH(1,ξ) = 0, ∀ξ>0. 

Recall that if ρ0 ≥ ρ>1, 

 

And if ρ≥ ρ0>1, 

 

We denote: 

 

 

Then, 

 

 

. 
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Having in mind that the expression of V1(ρ,ξ) is difficult to handle, we opted for solve the problem (11). Using the 

Laplace transform, the problem leads to, 

   (12) 

 

L[VH](1,s) = 0. 

The homogeneous equation associated to (14) is a modified Bessel equation of order 0 with general solution: 

 

And using the variation of constant method and including the boundary conditions we obtain: 

 

 

Then the solution is 

 

Hence, using the convolution theorem, 

 

This proves that G(ρ,ρ0,ξ,ξ0) = L
−1

[W](ρ,ρ0,ξ,ξ0) 

The calculus of the involved inverse Laplace transform was done in [3]. For example,  if a,b ≥ 1: 
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Then 

 

Then, from the convolution theorem 

 

III. INCORPORATING THE CONTOUR CONDITION AT ρ=1 

In regular Sturm-Lioville problems the Green’s function provides a closed form to solve the complete problem, 

that is, the problem with not null boundary conditions see [5] and [6], but in unbounded domains the method 

doesn’t work because we cannot use the Green’s theorem to transform an integral in the domain in an integral in 

the boundary of the domain. Then we have to use a classical method to solve: 

     (13) 

 

Using the Laplace transform we have 

   (14) 

 

The homogeneous equation associated to (14) is a modified Bessel equation of order 0 with general solution: 

 

And using the variation of constant method and including the boundary conditions we obtain that   

 

Hence 
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We recall that the Green’s function doesn’t plays any role in the incorporation to the solution the contour 

condition at ρ= 1. And also we recall that if f1(ξ) = B, where  

 

this solution coincides with the dimensionless distribution of temperatures in the tissue during RF ablation with needle like 

internally cooled electrode obtained in [3]. 

IV. INCORPORATING THE INITIAL CONDITION 

We will solve the following problem 

    (15) 

 

 

Using the Laplace transform we have 

   (16) 

 

Hence, as L
−1

[g1(ρ)] = g1(ρ)δ(ξ), 
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We remark that the Green’s function plays the expected role in the incorporation of the initial condition to the 

solution 

V. RESOLUTION OF THE COMPLETE PROBLEM 

    (17) 

 

Define H(ρ,ξ) = V (ρ,ξ) − h1(ξ). Then H(ρ,ξ) satisfies the equation: 

   (18) 

 

Then 
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