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Abstract— This paper develops a new operator called the generalized ordered weighted power utility averaging 

(GOWPUA) operator, which first introduces the risk attitude of decision makers (DMs) in the aggregation process. We study 

its properties and families. To determine the GOWPUA operator weights, we put forward an orness measure of the 

GOWPUA operator and analyze its properties. Considering that different DMs may have different perspectives towards 

decision-making, which can be characterized by different degrees of orness, we construct a new nonlinear optimization 

model to determine the optimal weights which can aggregate all the individual sets of weights into an overall set of weights. 

Finally, based on the GOWPUA operator, a method for multiple attribute group decision-making (MAGDM) is developed.  

Keywords— Multiple attribute group decision-making, Aggregation operator, Utility function, Orness. 

I. INTRODUCTION 

Multiple attribute group decision-making (MAGDM) considers the problem of selecting alternatives that are associated with 

incommensurate and conflicting attributes by a cooperative group, known as the group decision-making [1]. To choose a 

desirable alternative, decision makers (DMs) often present their preference information which needs to be aggregated via 

some proper approaches. There are many methods for aggregating the information [2-17]. One of the most popular methods 

for aggregating decision formation is the ordered weighted averaging (OWA) operator developed by Yager [14]. It provides a 

general class of parametric aggregation operators and has been shown to be useful for modeling many different kinds of 

aggregation problems. Up to now, OWA operator has been used in a wide range of applications [7-10, 16, 18]. 

Motivated by the OWA operator, an extension to the OWA operator is the generalized OWA (GOWA) operator, which 

combined the OWA operator with the generalized mean operator [15]. It generalized a wide range of aggregation operators 

such as the OWA operator [14], the ordered weighted geometric averaging (OWGA) operator [19], the ordered weighted 

harmonic averaging (OWHA) operator [15], etc. Based on the optimization theory, Zhou and Chen [20] presented the 

generalized ordered weighted logarithm averaging (GOWLA) operator, which is an extension of the OWGA operator. Other 

extension of the OWA operator can be founded in literature [6, 21]. However, the above aggregation operators only focused 

on using the mean to eliminate the difference, and did not consider the DMs’ risk attitude in the aggregation process. 

Another important issue of applying the OWA operator for MAGDM is how to determine the associated weights. Many 

researchers have focused on this issue, and developed some useful approaches to obtaining the OWA weights. For example, 

O’Hagan [22] suggested a maximum entropy approach for obtaining the OWA operator weights for a given level of orness. 

Fullér and Majlender [4] proposed an analytic approach for obtaining maximal entropy OWA operator weights for a given 

orness level. Wang and Parkan [23] proposed a minimax disparity approach for obtaining OWA operator weights for a given 

orness level. Majlender [24] developed a maximal Rényi entropy method for generating a parametric class of OWA operators 

and the maximal Rényi entropy OWA weights. Other extension approaches to determining the OWA operator weights can be 

founded in literature [6, 21, 25, 26]. The methods mentioned above assume that any individual weight vector is equal to the 

optimal weight vector and correspondingly, and there is only one degree of orness to characterize the DMs’ attitude towards 

decision-making. As a result, there is only one set of OWA operator weights to be generated. However, this is not consistent 

with the real situation. In fact, multiple DMs may join in decision-making process to reach a holistic opinion that reflects all 

the participants’ collective view, and different DMs may have different degrees of orness, which leads to the corresponding 

OWA operator weights may also be different. So it is necessary to introduce a new method to aggregate all the participants’ 

preference in MAGDM.  

This paper aims to develop a new class of aggregation operator based on power utility function, which incorporates the risk 

attitude of DMs in the aggregation process. First, based on an optimal deviation model, we provide a new operator called the 

generalized ordered weighted power utility averaging (GOWPUA) operator, which is an extension of the GOWLA operator 

presented by Zhou and Chen [20]. Then we study some properties of the GOWPUA operator and prove that it is 
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commutative, monotonic, bounded and idempotent. Furthermore, we investigate the families of the GOWPUA operator, and 

find that they include a wide range of aggregation operators such as the OWLGA operator [20], OWGA operator [19], 

OWLHA operator, GOWLA operator [20], OWA operator [14], etc. The main advantage of the GOWPUA operator is that it 

can not only reflect the DMs’ risk attitude towards the aggregation information, but also provide a very general formulation 

that includes a wide range of aggregation operators. 

To determine the GOWPUA operator weights, we present an orness measure of the GOWPUA operator, which is an 

extension of the OWA operator orness. We further discuss some properties associated with this orness measure. Noting that 

different DMs may have different perspectives towards decision-making, which can be characterized by different degrees of 

orness, this situation leads to different sets of the GOWPUA operator weights corresponding to different orness degrees. We 

then construct a new nonlinear optimization model to determine the optimal weight vector of the GOWPUA operator which 

aggregates all the individual sets of weights into an overall set of weights. The main advantage of the nonlinear model is that 

it can not only minimize the differences between the degrees of orness provided by each DM and the degree of orness 

corresponding to an optimal aggregated weight vector, but also produce as equally important weights as possible.  

Furthermore, based on the GOWPUA operator, a new approach for MAGDM is developed. This approach is also applicable 

to different group decision-making problems effectively such as human resource management, engineering management and 

financial management, etc.  

The rest of the paper is organized as follows. Section 2 presents the GOWPUA operator and analyzes its properties. In 

addition, the families of the GOWPUA operator are investigated. Section 3 proposes an orness measure of the GOWPUA 

operator and discusses its properties. We further provide a new nonlinear model for determining the optimal weights which 

can aggregate each DM’s opinion. Section 4 develops an approach for MAGDM under the GOWPUA operator and the 

conclusions are drawn in Section 5. 

II. GENERALIZED ORDERED WEIGHTED POWER UTILITY AVERAGING OPERATOR 

In general, the basic feature of aggregation operators is the non-decreasing monotonicity, expressing the idea that “an 

increase of any of the input values cannot decrease the output value”. The desirable properties of each aggregation operator 

are commutative, monotonic, bounded and idempotent. Each aggregation operator mentioned above satisfies these properties. 

Nevertheless, the aforementioned aggregation operator in fail to capture the DM’s psychological characters in the 

aggregation process.   

Therefore, when aggregating the input arguments, we attempt to partially fill this gap by introducing the utility function in 

the aggregation process. The utility function not only satisfies the basic feature and desirable properties of aggregation 

operators, but also can reflect the risk attitude of the DMs towards the input argument information. Noting that Zhou and 

Chen [20] utilized the logarithm function to derive the GOWLA operator, we will focus on the power utility function, which 

is an extension of the logarithm function, to develop the aggregation operator. 

A utility function ( )u x is a non-decreasing real valued function defined on the real numbers, which just captures the idea of 

aggregation operator that an increase of any of the input values cannot decrease the output value. We investigate the power 

utility function: ( ) ( 1) ,u x x   where the risk aversion coefficient  satisfies ( ,0) (0,1)    . Especially, when 0  , then 

the power utility function will degenerate to the logarithm function: ( ) lnLu x x . 

Pratt [27] and Arrow [28] suggested the relative risk aversion function, / / /( ) ( ) ( )r x x u x u x   , which is called the Pratt-Arrow 

measure of relative risk aversion. Note that the relative risk aversion of the power utility is 1  , meaning that with the 

decrease of the risk aversion coefficient  , the relative risk aversion will increase, and consequently the risk attitude of DM’s 

involved in the evaluation of decision information becomes more prudent. 

2.1 GOWPUA operator 

Let
1 2( , , , )nx x xx  be a collection of arguments and

1 2( , , , )nw w ww  be a weight vector such that [0,1]iw  and 
1

1
n

i

i

w


 . 

Note that the power utility ( ) 0u x  , which implies that 1ix  for all i. For simplicity, similar to the assumption of Zhou and 
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Chen [20], this paper assumes that 1ix  for all i and  1,x x x R    , and that the utility aggregation operator of 

dimension n is a mapping f determined by: 

1 2( ) ( ( ), ( ), , ( )).nu y f u x u x u x   

In the aggregation process, we hope that the smaller the deviation between the utility values ( )iu x ( 1,2, , )i n  and the 

aggregation result ( )u y is, the better effect of aggregation method shows. Hence, to minimize the deviation 

between ( )u y and ( )( 1,2, , ),iu x i n  we have 

     
2

1

min  1 1
n

i i

i

w x y
 

  


   
  

 ,                                                             (1) 

where  is a parameter such that ( ,0) (0, ).     First-order condition (matching the derivative with respect to y to 0) of 

the objective function in Expression (1) yields that 

1
1

1

( 1) 1
n

i i

i

y w x




 



  
       
 .                                                                     (2) 

Based on Eq. (2), we propose a generalized ordered weighted power utility averaging  operator. 

Definition 1. A generalized ordered weighted power utility averaging (GOWPUA) operator of dimension n is a mapping 

GOWPUA: nR R such that 

1
1

1

( ) ( 1) 1
n

i i

i

GOWPUA w z




 



  
       
x ,                                                    (3) 

where the weight vector
1 2( , , , )nw w ww  satisfies [0,1]iw  and

1

1
n

i

i

w


 , and
iz is the ith largest of jx , and the 

parameter  satisfies ( ,0) (0, )   , and the risk aversion coefficient  satisfies ( ,0) (0,1)    . 

The following proposition shows that the GOWPUA operator is monotonic, bounded, commutative, idempotent, thus 

satisfying common properties of aggregation operators [15]. 

Proposition 1 (Properties of GOWPUA). The GOWPUA operator given in Definition 1 satisfies the 

following properties:  

(i) (Idempotency). If
ix x for 1,2, ,i n  , then ( ) .GOWPUA xx

 

(ii) (Monotonicity). If
i ia b for 1,2, ,i n  , then

1 2 1 2( , , , ) ( , , , ).n nGOWPUA a a a GOWPUA b b b   

(iii) (Boundedness). If  1 max i
i

z x and  minn i
i

z x , then
1( ) .nz GOWPUA z x  

(iv) (Commutativity). If
1 2( , , , )nv v vv  is any permutation of the arguments

1 2( , , , )nx x xx  , then we have that 

( ) ( ).GOWPUA GOWPUAx v  

Proof. (i) If
ix x for all i, according to Eq. (10), we derive

1
1

1

( ) ( 1) 1
n

i

i

GOWPUA w x x




 



  
        
x . 

(ii) For simplicity, let f denote the GOWPUA operator. According to the above equation, by taking the first partial derivative 

of f with respect to
iz , we have that 

1 -1
1 1 -1

1 1

1 1

( 1) 1 ( 1) ( 1) 0.
n n

i i i i i i i

i ii

f
w z w z w z z

z


 

       

 

     
                 
   
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Thus, we conclude that f monotonically increase with respect to
iz . Considering that

i ia b for all i, we get 

1 2 1 2( , , , ) ( , , , ).n nGOWPUA a a a GOWPUA b b b   

(iii) If  1 max i
i

z x , then by Property 2, we have that
1 1 1 1( ) ( , , , )GOWPUA GOWPUA z z z z x  .By the same token, 

for  minn i
i

z x , we can conclude that ( ) nGOWPUA zx . Therefore,
1( ) .nz GOWPUA z x  

(iv) Let

1
1

1

( ) ( 1) 1
n

i i

i

GOWPUA w z




 



  
       
x and

1
1

1

( ) ( 1) 1
n

i i

i

GOWPUA w k




 



  
       
v , where

iz and
ik are respectively i

th
 

largest of jx and jv ( 1,2, , )j n  . Since
1 2( , , , )nv v v is any permutation of the arguments

1 2( , , , ),nx x x we can obtain 

that
i iz k for all i. So we obtain that ( ) ( ).GOWPUA GOWPUAx v  

2.2 Families of GOWPUA operator 

Taking special values of the parameters ,  and the weight vector w , the GOWPUA operator degenerates into many different 

aggregation operators including the OWGA operator [19], GOWLA operator [20], OWA operator [14], etc. 

Theorem 1. If 0  , then we have  

1

0
1

lim ( ) exp (ln )
n

i i

i

GOWPUA w z





 


  
      
x . 

Proof. Let ( )G x denote the GOWPUA operator. By taking the natural logarithm of f and using the L’Hôpital’s rule, we have  

 
1 1

0 0
1 1

1
limln ( ) lim ln ( 1) 1 (ln ) .

n n

i i i i

i i

G w z w z

 


 

 
 

 
 

    
            
 x  

Thus,

1

0
1

lim ( ) exp (ln ) .
n

i i

i

G w z





 


  
      
x  

Remark 1. Theorem 1 is just the GOWLA operator [20], meaning that the GOWPUA operator is an extension of the 

GOWLA operator [20]. 

Corollary 1. When 0  , by choosing different parameters of  , we can derive the following aggregation operators. 

(1) If 0  , then the GOWPUA operator reduces to the OWLGA operator [20]:
0, 0

1

lim ( ) exp (ln ) .i

n
w

i

i

G z
  



 
  

 
x  

(2) If 1  , then the GOWPUA operator degenerates to the OWGA operator [15]:
0, 1

1

lim ( ) .i

n
w

i

i

G z
  



x  

(3) If 1,    then the GOWPUA operator becomes:
0, 1

1

lim ( ) exp 1 ln .
n

i i

i

G w z
  



 
  

 
x  

Proof. Based on Theorem 1, we derive

1

0, 0 0
1

lim ( ) limexp (ln )
n

i i

i

G w z





    


  
      
x . By the L’Hôpital’s rule, we have 

0, 0 0
1

1
lim ( ) exp exp lim ln ( )

n

i i

i

G w nz 

     


   
    

    
x

1

exp (ln ) i

n
w

i

i

z


 
  

 
 . 

According to Theorem 1, it is easy to derive the OWGA operator [15] and the ordered generalized weighted logarithm 

harmonic averaging (OWLHA) operator. □ 

Theorem 2. If 1  , then we get

1

1
1

lim ( ) ( 1) 1.
n

i i

i

wG z





 


 
   
 
x  
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Proof. Based on Eq. (3), it is easy to find the conclusion. □ 

Remark 2. Theorem 2 is similar to the GOWA operator [15]. Note that if 1  , then the power utility will 

become ( ) 1,u x x  which is just a linear function. In this case, if the utility function meaning is neglected, Theorem 2 can be 

explained by the fact that when reordering the arguments in descending order, DMs first subtract the constant one for all the 

input arguments, after aggregating the arguments, they should add the constant one so as to maintain the output values 

unchanged.  

Corollary 2. When 1  , by choosing different parameters of  , we can derive the following aggregation operators.  

(1) If 0  ,then we have
1, 0

1

lim ( ) ( 1) 1i

n
w

i

i

G z
  



  x , which has a similar form of the OWGA operator [19]. 

(2) If 1  , then the GOWPUA operator degenerates to the OWA operator [14]. 

(3) If 1,   then we get
1, 1

1

lim ( ) 1 ( 1) 1
n

i i

i

G w z
  



 
   
 
x , which has a similar form of the OWHA operator. 

Proof. According to Theorem 2, by the L’Hôpital’s rule, we derive that 

1, 0 0
1

1
lim ( ) limexp ln ( 1) 1

n

i i

i

G w z 

     


   
     

    
x

1

exp ln( 1) 1
n

i i

i

w z


 
   

 


1

( 1) 1i

n
w

i

i

z


   . 

Thus,
1, 0

1

lim ( ) ( 1) 1i

n
w

i

i

G z
  



  x . Based on Theorem 2, it is easy to obtain OWA operator and similar form of the OWHA 

operator.  

Remark 3. According to Eq. (3), we note that the GOWPUA operator reduces to zero for    . This situation can be 

understood by the meaning of the risk aversion coefficient  . Noting that when aggregating the input arguments, the DM 

adds his/her risk judgment in these arguments. With the decrease of the risk aversion coefficient  , the risk attitude of DM’s 

involved in the judgment of input arguments becomes more prudent and consequently, in the limit    , no aggregation 

takes place.  

Theorem 3. As ,   we have the following statements. 

(1) If 0 1  (or 0  , 1  ),then
1( )G zx (i.e., maximum operator). 

(2) If 0,   then ( ) nG zx (i.e., minimum operator). 

Proof. According to Proposition 1, we derive that
1 2 1 1 1 1( , , , ) ( , , , ) ,nGOWPUA x x x GOWPUA z z z z   where 1 max .i

i
z x  

When ,  by choosing 0 1  (or 0  , 1  )and 0  , we will obtain the opposite results in the following two cases: 

(1) I. If 0 1  and ,  then   
1

1
1

1
1

1 1 1 1

1

( 1) 1 ( 1) 1
n

i i

i

w z w z w z





    



  
          
 . According to the above inequality, by 

taking the limitation on both sides, we get

1
1

1

1 1 1

1

lim ( 1) 1 lim .
n

i i

i

w z w z z




  

  


  
        
  

Therefore, we find that
1lim ( ) ,G z


x which is just the maximum operator.  

II. If 0  , based on Theorem 1, we have that

1 1

1 1
0

1 1

lim ( ) exp (ln ) exp (ln )
n n

i i i

i i

G w z w z z

 

 

 
 

      
                 
 x . 

When   , we get   
1

1

1 1 1
0,

1

lim ( ) lim exp (ln ) lim exp (ln )
n

i i

i

G w z w z z




 

      


  
       
x . Thus, we derive that 1

0,
lim ( )G z

  
x , 

which is just the maximum operator.  
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III. If 1  , according to Theorem 2, similar to the proof  II, we can obtain the conclusion. 

(2) If 0  and ,   we have that .    Similar to the proof I, we can get the minimum operator. 

Theorem 4. When   , we can obtain the following statements. 

(1) If 0 1,  then ( ) nG zx (i.e., minimum operator). 

(2) If 0 1  (or 0  , 1  ), then
1( )G zx (i.e., maximum operator). 

Proof. Similar to the proof of Theorem 3, it is easy to obtain the conclusion. □ 

Theorem 5. If 0  , we have that  
1

0
1

lim ( ) 1 1
i

n
w

i

i

G z








 
   
 
x , which is called the ordered weighted power utility 

geometric averaging (OWPUGA) operator. 

Proof. By the L’Hôpital’s rule, we obtain that

1

0 0
1

1
lim ( ) exp lim ln ( 1) 1

n

i i

i

G w z



 

   


   
     
    

x   
1

1

1 1 .
i

n
w

i

i

z







 
   
 
 Thus, 

 
1

0
1

lim ( ) 1 1 .
i

n
w

i

i

G z








 
   
 
x □ 

Theorem 6. If 1  , we have that

1

1

( )
n

i i

i

G w z







 
  
 
x , which is named as the ordered weighted power utility averaging 

(OWPUA) operator. 

Proof. According to Eq. (3), it is easy to find the conclusion. □ 

Corollary 3. If 1  and 1   ,then the GOWPUA operator will degenerate to the OWHA operator. 

Proof. According to Theorem 6, it is easy to find the conclusion. □ 

Remark 4. If we consider the possible values of the weight vector 1 2( , , , )T

nw w ww  in the GOWPUA operator, a group of 

particular cases can be obtained as follows.  

● The maximum operator is derived if
1 1w  and 0( 1)iw i  .  

● The minimum operator is founded if 1nw  and 0( )iw i n  . 

● The Step-GOWPUA operator is formed if 1kw  and 0( )iw i k  and
kz is the largest of

ix , where ( ) kStep GOWPUA z x .  

● The generalized power utility averaging (GPUA) operator is derived if 
1

iw
n

 , where

1
1

1

1
( ) ( 1) 1 .

n

i

i

GPUA x
n




 



  
       
x  

● The Windows-GOWPUA operator is derived if
1

( 1)iw k i k m
m

     and 0iw  (i k  )and i k m  , where 

1
1

11
( ) ( 1) 1 .

k m

i

i k

Windows GOWPUA z
m




 
 



  
        

x  

Especially, if 1k p  , then the Window-GOWPUA operator reduces to the maximum operator. If 1p  and k n , then the 

Window-GOWPUA operator degenerates to the minimum operator. If p n and 1k  , then it becomes the GPUA operator. 

● The Olympic-GOWPUA operator is obtained if 
1

(2 1)
2

iw i n
n

   


and 0( 1, )iw i n  , where ( )Olympic GOWPUA x

 

1
1

1

2

1
( 1) 1 .

2

n

i

i

z
n




 




  
      


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III. A MODEL FOR DETERMINING THE GOWPUA OPERATOR WEIGHTS 

To determine the weights of the GOWPUA operator, we propose an orness measure of the GOWPUA operator and analyze 

its properties. We further propose a new optimization method, which can aggregate DMs’ opinion and obtain an optimal 

aggregated weight vector for the GOWPUA operator. 

3.1 An orness measure for the GOWPUA operator 

The orness measure of the OWA operator was presented by Yager [14], which is defined as follows. 

Definition 2.  Assuming that orness is an OWA aggregation operator with weight vector 
1 2( , , , )nw w ww  , the degree of 

“orness” associated with this operator is defined as: 

 
1

1
( ) ( ) .

1

n

i

i

orness n i w
n 

 

w  

It can be shown that when (1,0, ,0)w  , ( ) 1orness w ; when (0,0, ,1)w  , ( ) 0orness w ; when  1 ,1 , ,1n n nw  , 

( ) 1 2.orness w  

The orness measure is also called the attitudinal character of the aggregation, which can be regarded as the OWA aggregation 

of the arguments    1ix n i n    for all i. By using this method, Yager [15] presented the orness measure of the GOWA 

operator: 

    
1

1

( ) 1 ,
n

i

i

orness w n i n






 
   
 
w  

where  is a parameter such that ( ,0) (0, )   . If 1  , then the orness measure of the GOWA operator will degenerate 

to the orness measure of the OWA operator.  

Following Yager
 
[15], we can define an orness measure of the GOWPUA operator as follows: 

Definition 3.  The degree of orness associated with the GOWPUA operator is defined as follows: 

1
1

1

( ) 1 1
1

n

i

i

n i
orness w

n









                  

w , 

where  is a parameter such that ( ,0) (0, )   and ( ,0) (0,1)    .  

Remark 5. It can be shown that for the GOWPUA operator: when (1,0, ,0)w  , ( ) 1orness w ; when (0,0, ,1)w  , 

( ) 0orness w . In particular, if 0  , then the orness measure of the GOWPUA operator will degenerate to the case of 

GOWLA operator [20].  

Theorem 7.The orness measure of the GOWPUA operator satisfies 0 ( ) 1orness w . 

Proof. According to Proposition 1, we derive that

1 1
1 1

1 1

1
1 1 ( ) 1 1 .

1 1

n n

i i

i i

n n n
w orness w

n n

 
 

 
 

 

                                                       

 w  

That is, 0 ( ) 1.orness w □ 

3.2      An optimization model for determining GOWPUA operator weights under the orness measure  

Based on the orness measure and the dispersion measure, O’Hagan [22]developed a maximum entropy approach to 

determining the OWA operator weights. Fullér and Majlender [5]provided a minimum variance method, which demands the 

solution to the quadratic programming problem for minimizing the variance of the OWA operator weights under a given 

degree of orness. Wang and Parkan [23]proposed a model for minimizing the maximum disparity between two adjacent 

weights under a given level of orness. 
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The above three approaches all imply the use of more information from all attributes. As Wang and Parkan [29] pointed out, 

except for computational simplicity or complexity, there are no significant differences among the three alternative 

approaches.  

Considering the importance of the OWA weights, Wang et al. [30] constructed the chi-square ( 2 ) model for determining 

the OWA operator weights, which can be expressed as follows: 

                                                              
1

1

1

1
1

1

, 0 1,

1
s. .

2

( ) ( )
1

1, 0 1, 1, , .

n
i i

i i i

n

i

i

n

i i

i

t orne

w w
Minimiz

ss n i w

e

n

w

w i n

w

w








 





 
  

 
 

  


   



w



                                                                   (4) 

However, these approaches mentioned above suppose that any individual weight vector is equal to the optimal weight vector 

and correspondingly, there is only one degree of orness to characterize the DMs’ attitude towards decision-making, and only 

one set of OWA operator weights to be generated. This situation is not consistent with the reality. In fact, different DMs may 

have different perspectives, which can be characterized by different degrees of orness. As a result, there exist different sets of 

OWA operator weights corresponding to different orness degrees. Hence, it is necessary to develop a new method to 

aggregate all the individual sets of weights into an overall set of weights. 

In order to generate such an optimal weight vector for the GOWPUA operator in MAGDM, we propose a new method for 

determining the weights. Let
k be the degree of orness provided by the kth DM ( 1, , )k l  , and  * * * *

1 2, , , nw w ww  an optimal 

aggregated weight vector for the GOWPUA operator. The degree of orness corresponding to such an optimal aggregated 

weight vector  * * * *

1 2, , , nw w ww  is generally not equal to the
k  ( 1, , )k l  provided by the DMs. In other words, 

1
1

* *

1

( ) 1 1 , ( 1, , ).
1

n

i k

i

n i
orness w a k l

n









                    

w   

To measure the differences between *( )orness w and each
k , we introduce the deviation variable: 

*( ) ,( 1, , ).k korness k l   w   

We hope that each deviation variable
k ( 1, , )k l  tends to be zero as much as possible, and meanwhile, following Wang et 

al. [30], the aggregation operator weights should be equally important and all the arguments can be equally aggregated. 

Taking the orness constraint into consideration, the model should be expressed as making all the weights as close to each 

other as possible.  

Based on the above analysis, we can construct a new nonlinear optimization model to determine the operator weights. 

2

1

1
1

1

1

1
1

1 1
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. . 1 1 , 0 1,
1

1, 0, 1, , , 1, , ,
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n j
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w w
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t w
n

w w j n k l
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w w


 

   

  








 



 

 
                    
  

  

 
  

 







  

                                               (5) 

where stands for the relative importance degree of total deviation 2

1

l

k k

k

 


 such that 0 1  , and
k  denotes the relative 

importance weight of the kth DM ( 1, , )k l  .The model (5) is nonlinear and the optimal weight vector  * * * *

1 2, , , nw w ww  can 

be obtained by using Matlab or LINGO software package. 
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If any individual weight vector is equal to the optimal weight vector, then
k will be zero. In this case, the model (5) will 

degenerate to the model (4) with the orness measures of the GOWPUA operator. So, the nonlinear model (5) is in fact an 

extension of the model (4). The main advantage of nonlinear model (5) is that it can not only minimize the differences 

between the degrees of orness provided by each DM and the degree of orness corresponding to an optimal weight vector, but 

also produce as equally important weights as possible. In addition, the model (5) for determining the GOWPUA operator 

weights does not follow a regular distribution, which is also the advantage of the model. 

IV. A METHOD FOR MAGDM BASED ON THE GOWPUA OPERATOR  

For a MAGDM problem, let  1 2, , , mA A A A  be a set of alternatives,  1 2, , , nG G G G  a set of attributes, 
1 2( , , , )lw w ww  a 

weight vector of attributes such that
1

1
n

j

j

w


 and 0jw  ,  1 2, , , lD d d d  a finite set of DMs and
1 2( , , , )n  ω  a weight 

vector of DMs satisfying 
1

1
n

j

j




 and 0j  . Assume that
k is the degree of orness provided by the kth DM ( 1, , )k l  , 

and
k is the relative importance weight of the kth DM ( 1, , )k l  . In addition, we suppose that each DM provides his/her 

own decision matrix   ( 1, , )k k

ij m n
R r k l


   , where k

ijr is given by the DM
kd for the alternative

iA A w.r.t. the 

attributes jG G . 

Since different attributes have different measurement scales in MAGDM problem, it is necessary for the standardization of 

attributes to avoid the variance among different attributes. In this paper, we consider two attributes, i.e., profit type and cost 

type. Let
1I be a set of benefit attributes and

2I a set of cost attributes. Then the decision matrix kR can be transformed into a 

corresponding decision matrix   ( 1, , )k k

ij m n
X x k l


   via the following formulas: 

1, ,
max

k

ijk

ij k

ij
i

r
x j I

r
     2

min
, .

k

ijk i
ij k

ij

r
x j I

r
                                                          (6) 

Based on the above explanation, an approach for MAGDM problem is developed based on the GOWPUA operator and the 

concrete steps are shown as follows. 

Step 1. Standardize the decision matrixes. Based on the formulas (6), the decision matrixes   ( 1,2, , )k k

ij m n
R r k l


   can be 

transformed into standardization matrixes  k k

ij m n
X x


 ( 1,2, , )k l  .  

Step 2. Calculate the weight vector of attributes. By solving the model (5), the GOWPUA weight vector
1 2( , , , )lw w ww  can 

be derived. 

Step 3. Aggregate the decision matrixes into a collective decision matrix. According to Eq. (3), i.e., 1 2( , , , ),l

ij ij ij ijx GOWPUA x x x   

we can aggregate all the decision matrixes ( 1,2, , )kX k l  into a collective decision matrix ( )ij m nX x  . 

Step 4. Calculate the weight vector of the DMs. By solving the model (5), the weight vector of DMs
1 2( , , , )n  ω  can be 

obtained. 

Step 5. Aggregate the collective overall preference value. According to Eq. (3), i.e.,
1 2( , , , ),i i i inx GOWPUA x x x  we aggregate 

the collective overall preference value
ix of the alternative

iA .  

Step 6. Rank the collective overall preference value ( 1,2, , )ix i m  in descending order. 

Step 7. Select the best alternative. Rank all the alternatives ( 1,2, , )iA i m  in descending order and consequently select the 

best one in the light of the aggregated value ( 1,2, , )ix i m  . 
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V. CONCLUSION 

In this paper, we developed the generalized ordered weighted power utility averaging (GOWPUA) operator, which is an 

extension of the GOWLA operator. The main character of the GOWPUA operator is that it introduced the risk attitude of 

DMs in the aggregation process. We investigated some properties of the GOWPUA operator and proved that it was 

commutative, monotonic, bounded and idempotent. In addition, we discussed the families of the GOWPUA operator and 

found that they included a wide range of aggregation operators such as the OWLGA operator, OWGA operator, OWA 

operator, OWHA operator, etc. To determine the GOWPUA operator weights, we addressed an orness measure of the 

GOWPUA operator and analyzed its properties. We developed a new nonlinear optimization model to determine the optimal 

weight vector of the GOWPUA operator. The main character of the model is that it considered different DMs may have 

different degrees of orness, and can aggregate all the individual sets of weights into an overall set of weights. Furthermore, a 

new approach for MAGDM was given based on the GOWPUA operator. This approach is also applicable to different group 

decision-making problems effectively such as human resource management and financial management, etc.  

In further research, it would be very interesting to extend our analysis to the case of more sophisticated situation such as 

introducing the behavior theory of DMs in the GOWPUA operator. Nevertheless, we leave that point to future research, since 

our methodology cannot be applied to that extended framework, which will result in more sophisticated calculation and 

which we cannot tackle here. 
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