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Abstract—In VLSI design, one of the most important detailed routings is the channel routing. Given a channel with length n 

in 2-layer Manhattan model, Szeszler proved that the width (number of tracks required for routing) of  the channel is at most 

4

7
n, and this upper bound can be achieved by a linear time algorithm. In this note, we improve the upper bound 

4

7
n to 

2

3
n, 

which also can be achieved by a linear time algorithm. 
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I. INTRODUCTION 

In VLSI  design, One of the most important detailed routings is the  channel routing [2,5,6]. A channel is defined  by  a  

rectangular  grid  of  size  nw  )2( ,  insisting  of horizontal   tracks (numbered  from  0  to w+1) and vertical columns 

(numbered  from 1 to n), where w  is  the width  and   n  is  the  length  of  the channel. The  horizontal tracks numbered 0 

and w + 1  are  called  the top  and  bottom  of   the  channel, respectively.  Points on the top or bottom are called terminals. 

A net is a  set of   terminals. The  channel routing  problem  (CRP)  is  to  interconnect   all the terminals in the same nets,  

using minimum possible routing  area, that  is,   minimizing the width w with the length n fixed. If all the terminals of each 

net are situated on  one  side,  top or bottom, of the channel, we speak of single row routing problem. 

An instance of the CRP is a set },,{ 1 tNN  of pair wise disjoint nets, each containing at least two terminals. The 

instance is called bipartite if each net 1N contains  exactly  two  terminals,  one  on the top and  the  other  on  the  bottom  of  

the  channel. The instance is dense if each terminal belongs to some net.  A net is  trivial  if it  consists  of  two terminals 

which  are   situated  in   the   same   column  of  the channel. 

II.   MAIN RESULTS 

A solution of a channel routing problem is said to belong to the Manhattan model if consecutive layers contain  wire  

segments  of  different directions only. The following results were obtained by Szeszler [4], which   completely   

characterizes   solvable    CRP instances in   2-layer  Manhattan  model  and   gives upper bounds on the widths, in  terms of 

the lengths, of  the channels. 

Theorem 2.1  (Szeszler [4])  A  channel  routing  problem is not solvable in 2-layer Manhattan model  (with a arbitrary 

width) if and  only  if it is bipartite, dense and has at least one non-trivial net. Moreover, if an instance is solvable, then it can 

be solved with width at most 
2

3
n in the bipartite, and 

4

7
n in the general case, where n is the length of the channel. 

From the above theorem, It seems that the general case requires more routing area than the  bipartite case. Surprisingly, we 

find that this is not necessary to be true.  In the next theorem, we show that the bound 
4

7
n in the above theorem can be 

improved to 
2

3
n, that is, the bound in the general case is the same as that in the bipartite case. 

Theorem 2.2   For a solvable channel routing problem with length n (not necessary to be bipartite) in 2-layer Manhattan 

model, there is a solution with width at most 
2

3
n. 

Proof.  As in [4], we first consider the nets on only one side, top or bottom, of the channel, which is   a   single   row   routing   

problem.  Consider the horizontal constraint graph H with vertex set 

V (H) ={ fall the nets from one side containing at least two terminals}, 
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and an interval is associated with each net, stretching from its  leftmost  terminal to  its rightmost terminal, there  is an  edge  

joining  two vertices (nets) in H if and only if the corresponding intervals intersect. By Gallai  Theorem [1],   the   number   

of  tracks  in an optimal  solution  of the  single row routing problem is   equal  to   the  clique  number   of   its   horizontal 

constraint  graph,  which  can be done in linear time since  it  is  an  interval  graph.  Let tS and bS be the number of tracks in 

an  optimal  solution   for   the single row routing problem on the top and bottom of the  channel,   respectively. Denote  by  

A and  B the sets  of  nets  on  the  top and bottom of the channel, respectively. Since there  is  a clique of size tS  ( bS ) in the 

horizontal constraint graph for the single  row routing  problem on the top (bottom) of the channel, and  each  net  in  the  

clique  contains  at  least  two terminals  (two   columns  of  the  channel), we have that 

bbb

ttt

SnSnSB

SnSnSA





)2(

)2(
 

Without loss of generality, we may assume that bt SS  . Let D be the  set of  nests which contain at least  one  terminal  

from  each  side  of  the top and bottom. We  construct  a  bipartite  routing  problem based  on D as  follows:  if  a  net  N in 

D contains more than one terminal from  the top, we arbitrarily choose one and only one terminal as the terminal of the net; 

similarly, choose one and only one terminal if  it   contains   more  than  one  terminal  from  the bottom.  In  this  way,  we 

obtain a bipartite routing problem with 'D  as its nets, where 

tbt SnSnSnBADD  },min{},min{'      (2.1) 

Let 1D denote the set of nets in D which contain exactly one terminal on the top and let 2D  the  set of nets in D which 

contain at least two terminals on the top. Set 11 dD  and 22 dD  . Clearly tSnDdd  21 .     As seen before,   

each net in the clique  of the horizontal constraint graph for the single  row  routing  problem  contains  at  least two 

terminals, we see that 

                              tSnd 21           (2.2) 

Suppose that },,,{' 21 tNNND   , where 'Dd  . Consider the vertical constraint graph F,  which  is a directed    graph    

based    on  'D , with  vertex   set ')( DFV  and there is a directed edge ji NN  , from iN  to jN , if  and only if  there 

is a column in which the    terminal   on   the   top   belongs to iN  and the terminal on  the  bottom belongs to jN  . Since 

each iN  contains only one terminal from top or bottom, each vertex of F  has both in-degree and out-degree at most one. 

Hence, each nonempty component of F  is either a directed path or a   directed cycle. As shown in  [4],  if    the  nonempty  

component   is  a directed path of t  vertices (nets), then we only need t  tracks for these t  nets. 

Suppose that a nonempty component of F  is a directed   cycle )(
121 iiii NNNNC

t
 .  If C   does not contain any net 

from 2D , then as shown in [4], we need 1t tracks for these t  nets. Otherwise, without loss of generality, let 2DN
ti
 . So 

ti
N  contains at least   two   terminals  ia  and  ja  on the top of the channel. We may assume that ia  is the terminal used in 

'D  and ja  is another terminal, where ia  and ja  are in the columns i  and j , respectively. Let )( ji bb  be the terminal on 

the bottom in the column )( ji . So ib is a terminal of
1i

N . Now, instead of using ia  as a terminal of 
ti

N  in 'D , we use ja  

as a terminal of 
ti

N  and denote this modified 'D  by ''D . 

If jb  is not a terminal of any  net in ''D , then C  becomes a directed path in ''D , and  thus  we  only need t  tracks for 

these t  nets. If jb  is a terminal of some  net kN in ''D ,  since  each  vertex  of V  has both in-degree and out-degree at 

most one, we have that },,,{ 21 tiiik  , and kN  is the initial vertex of a   directed   path P  of   another  component   of 
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F . Suppose that P   contains p  nets. Then, C  and P , together  with   the  directed  edge  from 
ti

N  to kN , form  a  

directed  path  in ''D , and so we only need pt   tracks for these pt   nets on the path. 

From  the  solutions  above,  for a component C  with t  vertices (nets),  where 2t ,  if C   does  not contain  any net  

from 2D , then we need 1t tracks for  the t   net  of C ;  Otherwise,  we  need t  tracks (here we  have  taken  into  account  

of the tS  tracks used   in   the  optimal  solution  for  the  single  row routing  problem  on the top of the  channel). That is to  

say,  using  this solution  at most 1d  nets  belong to  directed  cycles  and  at  least 2d  nets  belong  to directed paths. So by 

Theorem 2.1, routing this new bipartite routing problem need at most 12
2

3
dd   tracks.  It follows that the total number of 

tracks required is at most 

btbt SSddSSddw  112
2

1

2

3

 
Using (2.1) and (2.2), we have that 

nSSn

SSSnSnw

bt

bttt

2

3

2

3

)2(
2

1





 
This completes the proof of Theorem 2.2. 

 

Based on the arguments in the proof of Theorem 2.2, it is easy to construct a linear time algorithm  to give a solution for a 

channel routing problem, using at  most n
2

3
 tracks,  where n   is  the  length  of  the channel. 
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