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Abstract— Papers investigate a Kaldor-Kalecki model of business cycle system with two different delays, which described 

the interaction of the gross product Y  and the capital product K . We derived the conditions for the local stability and the 

existence of Hopf bifurcation at the equilibrium of the system. By applying the normal form theory and center manifold 

theory, some explicit formulate for determining the stability and the direction of the Hopf bifurcation periodic solutions are 

obtained. Some numerical simulations by using Mathematica software supported the theoretical results. Finally, main 

conclusions are given. 
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I. INTRODUCTION 

According to rational expectation hypothesis, the government will take into account the future capital stock in the process of 

investment decision. Business cycle, named economic cycle, refers to the total alternate expansion and contraction in 

economic activities, and these cyclical changes will appear in the form of fluctuation of the comprehensive economic activity 

indicators such as gross national product, industrial production index, employment and income. In the early research of non-

linear business cycle theories, Kaldor [1] assumed that investment depended on gross product and capital stock and proved 

that, through graph analysis, time-varying nonlinear investment and saving function could result in a business cycle. Chang 

and Smyth [2] summarized Kaldor's theory on business cycle, established a nonlinear dynamic system which described the 

gross national product and capital stock changed over time, gave necessary conditions of existence of limit cycles, and 

provided a rigorous mathematical proof of Kaldor's model proposed in 1940. On this basis, Grasman and Wentzel [3] further 

improved Kaldor's business cycle model by considering capital loss speed. Along another view, according to the IS-LM 

model raised by J.R. Hicks and A.H. Hansen, Ackley [4] established a complete Keynes system which reflects the gross 

domestic product and interest rate changes over time, which is also called standard IS-LM model. Kalecki [5] first considered 

investment delay in the business cycle model in 1935, and he claimed capital equipment needed a conceived cycle or delay 

from installation to production. As the theory of delay functional differential equations gradually become more accomplished 

in 1990s, Krawiec and Szydlowski [6,7] first made a qualitative analysis of the impact of the investment delay on the 

business cycle. In addition, some other scholars investigated the dynamic properties like stability, many types of bifurcation, 

existence and stability of periodic solutions in Kaldor–Kalecki model with investment delay [8,9]. The record of business 

cycle has been kept relatively well during the last 200 years, and business cycle theory, as the core issue of macroeconomics, 

has been attracting the widespread interests of many economists. The modern business cycle theory can be traced back to the 

masterpiece of Keynes's theory "The General Theory of Employment, Interest, and Money". Keynes discussed the formation 

of the business cycle from the perspective of psychological factors based on national income theory. The following system 

was formulated by Krawiec and Szydlowski [10] who combined two basic models of business cycle: the Kaldor model and 

the Kalecki model. Kaldor [11] first treated the investment function as a nonlinear (s-shaped) function on Y so that the 

system may create limit cycles, while Kalecki [12] assumed that the saving part is invested, and that there is a time delay due 

to the past investment decision. Therefore, the gross product is available in the market after a time lag. 
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Y  is the gross product and K  is the capital product of the business cycle; 0  measures the reaction of the system to the 

difference between investment and saving; )1,0(  is the depreciation rate of capital stock; RRRSI :,  are 

investment and saving functions of Y  and K , respectively;  is a time lag representing the delay for the investment due to 

the past investment decision. In a business cycle system, delay occurred in the production of investment function not only, 

also released on capital stock, so to introduce the following model. 
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However, for the systems (1.2), the delay that occurs in investment function and happened in the capital stock is not 

necessarily the same, so we set up two different time delay. By quoting the function of investment and capital saving 

function in reference [1], KYIKYI  )(),( , YKYS ),( , 0 , )1,0( . Following model be produced. 
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The rest of this paper is organized as follows. In Section 2, we analyze the distribution of eigenvalues of the linearized 

system of (1.3) and derived the conditions for the local stability and the existence of Hopf bifurcation at the equilibrium of 

the system. In Section 3, by applying the normal form theory and center manifold theory, some explicit formulate for 

determining the stability and the direction of the Hopf bifurcation periodic solutions are obtained. In Section 4, some 

numerical simulations by using Mathematica software supported the theoretical results. Finally, main conclusions are given. 

In Section 5, main conclusions are given. 

II. STABILITY AND ANALYSIS OF LOCAL HOPF BIFURCATION 

Let ),(   KYE  be an equilibrium point of Sys.(1.3), )(   YII , and 
 YYu1 , 

 KKu2 , 

  IYsIsi )()( . Then Sys.(1.3) can be transformed as 
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Let the Taylor expansion [13] of i  at 0 be 
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Then Sys.(2.1) can be transformed as 
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  (2.2) 

Then the linear part of Sys.(2.2) at (0,0) becomes 
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And the corresponding characteristic equation is 
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where ).(,))(( ''   YIbYIa   

Theorem 2.1 When 021  , the characteristic equation of system (2.4) is 

.0)(2  aaba 
     

(2.5) 

All roots of the equation (2.5)has negative part if and only if 

.0,0)( 111011  aabAaAH   

Then the equilibrium point ),(   KYE  is locally asymptotically stable. 

Theorem 2.2 When 0,0 21   , assume that )( 11H  is satisfied. Then (2.2) has a pair of purely imaginary roots 10i  

when 10  . 

Proof.The characteristic equation of system (2.4) is 

.0)()( 12 
  

abea
     

(2.6) 

Clearly, 1i  is a root of Eq.(2.6) if and only if 1i  satisfies 

.0)()sin(cos)( 11111
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Separating the real and imaginary parts, it follows 
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(2.7) 

According to conclusions of Beretta and Kuang [14], the stability of the system changes, when the real part of its 

characteristic root passes through zero point. Therefore, considering the critical situation, let characteristic root   real part 

,0Re  , adding up the squares of both Eq.(2.7), it yields 
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where .)(, 22

11   cv  

Hence Eq.(2.8) has solution 10v and 11v .Where 
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(2.9) 

Noting that 11v  is negative. Eq.(2.9) has one positive root if and only if cabH 22

21)(  . The characteristic Eq.(2.6) has a 

pair of purely imaginary roots .1010 vii   And, hence 
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The proof is completed. 
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Differentiating both sides of (2.6) with respect to 1 , it follows that 
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Obviously, it is greater than zero. So, the transversality condition is meted. By applying Lemmas 2.1 and 2.2 and condition 

)( 21H , we have the following results. 

Theorem 2.3 For system (2.2), if the condition is satisfied, the equilibrium 
E  of system (2.2) is asymptotically stable for 

),0[ 101   . System (2.2) exhibits the Hopf bifurcation at the equilibrium 
E  for 101   . 

Theorem 2.4 When 0,0 21   , assume that )( 13H  is satisfied. Then (2.2) has a pair of purely imaginary roots 02i  

when 02  . 

Proof.The characteristic equation of system (2.4) is 

.0)()( 22 
  

abeaa
     

(2.10) 

Let )0( 22 i  is a root of (2.10). Then 
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Separating the real and imaginary parts, it follows
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(2.11) 

 

Adding up the squares of both Eq.(2.11), it yields 
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(2.12)
 

where .2

2

2 v  

From the analysis above, we can obtain that if all parameter values of the system (2.2) are given, the root of the equation 

(2.12) can be easy to solved by use of the Mathematica software. Therefore, in order to give out the main conclusion in this 

section, the following assumptions is given. 

)( 31H  The equation (2.12) at least has one negative root. 

If the condition )( 31H  is satisfied. Then, the characteristic Eq.(2.12) has an positive root 02v .So, the Eq.(2.10) has a pair of 

purely imaginary roots .0202 vii   And, hence 
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The proof is completed. 
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Differentiating both sides of (2.10) with respect to 2 , it follows that 
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Obviously, it is greater than zero. So the transversality condition is meted. By applying Lemmas 2.4 and condition )( 31H , 

we have the following results. 

Theorem 2.5 For system (2.2), if the condition )( 31H  is satisfied, the equilibrium 
E  of system (2.2) is asymptotically 

stable for ),0[ 202   . System (2.2) exhibits the Hopf bifurcation at the equilibrium 
E  for .202    

Theorem 2.6 When   21 , assume that )( 14H  is satisfied. Then (2.2) has a pair of purely imaginary roots 0i  

when .0   

Proof.The characteristic equation of system (2.4) is 
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(2.13) 

Let )0( i  is a root of (2.13). Then 
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Separating the real and imaginary parts, it follows 
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(2.14) 

Adding up the squares of both Eq.(2.14), it yields 
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where .2 v  

From the analysis above, we can obtain that if all parameter values of the system (2.2) are given, the root of the equation 

(2.15) can be easy to solved by use of the Mathematica software. Therefore, in order to give out the main conclusion in this 

section, the following assumptions is given. 

)( 14H  The equation (2.15) at least has one negative root. 

If the condition )( 14H  is satisfied. Then, the characteristic Eq.(2.15) has an positive root 0v . So, Eq.(2.13) has a pair of 

purely imaginary roots .00 vii   And, hence 
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The proof is completed. 

Differentiating both sides of (2.13) with respect to  , it follows that 
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Obviously, it is greater than zero. The transversality condition is meted. By applying Theorem 2.5 and condition )( 14H , we 

havethe following results. 

Theorem 2.7 For system (2.2), if the condition )( 32H  is satisfied, the equilibrium 
E  of system (2.2) is asymptotically 

stable for ),0[ 0  . System (2.2) exhibits the Hopf bifurcation at the equilibrium 
E  for .0   

Theorem 2.8 When )(0,,0 2021   , assume that )( 51H  is satisfied. Then (2.2) has a pair of purely imaginary roots 
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Proof. Let )0( '
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Separating the real and imaginary parts, it follows 
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(2.16) 

Adding up the squares of both Eq.(2.16), it yields 
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(2.17) 

From the analysis above, we can obtain that if all parameter values of the system (2.2) are given, the root of the equation 

(2.17) can be easy to solved by use of the Mathematica software. Therefore, in order to give out the main conclusion in this 

section, the following assumptions is given. 

)( 51H  The equation (2.17) at least has one negative root. 

If the condition )( 51H  is satisfied. So, the characteristic Eq.(2.17) has an positive root .1

i  Eq.(2.4) has a pair of purely 

imaginary roots .1

 i And, hence 
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The proof is completed. 

Differentiating both sides of (2.4) with respect to 1 , it follows that 
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That is 
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.The transversality condition is meted. By applying Lemmas 2.8 and condition )( 51H , we 

have the following results. 

Theorem 2.9 For system (2.2), if the condition )[0, 202    and )( 51H  is satisfied, the equilibrium 
E  of system (2.2) is 

asymptotically stable for )[0, 11

  . System (2.2) exhibits the Hopf bifurcation at the equilibrium 
E  for .11

  

Theorem 2.10 When )[0,,0 1012   , assume that )( 61H  is satisfied. Then (2.2) has a pair of purely imaginary roots 
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Proof.Let )0( 22   i  is a root of (2.4). Then 
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Adding up the squares of both Eq.(2.18), it yields 
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In order to give out the main conclusion in this section, the following assumptions is given. 

)( 61H  The equation (2.19) at least has one negative root. 

If the condition )( 61H  is satisfied. Then, the characteristic Eq.(2.19) has an positive root 
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The proof is completed. 

Differentiating both sides of (2.4) with respect to 2 , it follows that 
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. So, the transversality condition is meted. By applying Theorem 2.10 and condition 

)( 61H  , we havethe following results. 

Theorem 2.11 For system (2.2), if the condition )[0, 101    and )( 61H  is satisfied, the equilibrium 
E  of system (2.2) is 

asymptotically stable for )[0, 22

  . System (2.2) exhibits the Hopf bifurcation at the equilibrium 
E  for .22

 When 

)[0,,0 1012   , assume that )( 61H  is satisfied. Then (2.2) has a pair of purely imaginary roots 
 2i  when 
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III. DIRECTION AND STABILITY OF THE PERIODIC SOLUTIONS 

In this section, by applying the normal form and center manifold theory [15,16], we discuss the direction and stability of the 

bifurcating periodic solutions for )[0,,0 1012   . Throughout this section, we always assume that system (1.3) meets 

the conditions of the Hopf bifurcation. In this section, we assume that )[0,, 10121   

 . For convenience, let 
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   clearly, 0  is the Hopf bifurcation value of system (1.3). Let /t  and still denote t .Then the system 
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By Riesz's representation theorem, there exists bounded variation functions 
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For ]0,1[' C , we define that operator A  and R  is as follows form. 
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Then the system (3.1) is equivalent to the following abstract differential equation 
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Further, let 1)(),(   qsq , there is .)1( 1
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Next, according to the algorithm in paper [17] and the similar calculation process with the paper [18], following parameters 
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While, 1E  and 2E  be determined by the following equation. 
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In the end, we can calculate the following values of the coefficient. 
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Theorem 3.1 

(i) The direction of the Hopf bifurcation is decided by the symbol of 2 . If 02  , then it's supercritical. If 02  , it is 

subcritical. 

(ii) If 02   ( 02  ), then the bifurcating periodic solutions is stable (unstable). 

(iii) If 02 T  ( 02 T ), then the period of the bifurcating periodic solutions increase (decrease). 
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IV. NUMERICAL SIMULATION 

In this section, we shall conduct some numerical simulations to verify the main conclusions of this paper, and discuss the 

economic meanings of the different dynamic behaviors. In numerical simulations, according to literature [19], we choose the 

parameter. Let 0.4,2.275,0.5, '  q ,088.0'' q ,1.0,8.0    then Eq.(2.2) can be written as 

















.1.0))((088.0)(8.0)(4.0

,)(2202.082.12275.0

2

2

1122112

2

1211

utututuu

uuuu


   

(4.1) 

With calculation by Mathematica software, when 021  , we get 31992.110 A , 

61423.111 A . So the condition )( 10H  is satisfied. When 0,0 21   , we get 10366.2,0.62444 1010   . If 

),0[ 101   , the equilibrium 
E  of system (2.2) is asymptotically stable. Once 1  more than critical value 

2.1036610  , the system (2.2) produce a bunch of periodic solutions nearby the equilibrium point 
E . Numerical 

simulation results are shown in Figs.1 and 2.Similarly, when 0,0 21   , we get 1.2149,1.47391 2020    (Figs.3 

and 4).When 021  , we get 0.95603,1.1152 00    (see Figs.5 and 6).When ),0(2.1,0 2021   , we 

get 0.2342,1.3327 11     (see Figs.7 and 8). Similarly, when ),0(8.1,0 0112   , we get 

0.6286,0.775 22     (see Figs.9 and 10). 

In addition, 06.13442  , .01632.1212  , 011.26632 T
 

By the theorem (3.1), when 

),0(,0 0112   , the Hopf bifurcation produced by the system (2.2) is supercritical, and the period of the bifurcating 

periodic solutions increase. 

0.150.100.05 0.05 0.10 0.15
u1

0.05

0.05

0.10

u2

20 40 60 80 100
t

0.15

0.10

0.05

0.05

0.10

0.15

u1

20 40 60 80 100
t

0.05

0.05

0.10

u2

 

FIGURE 1: THE EQUILIBRIUM 
E  IS LOCALLY ASYMPTOTICALLY STABLE WITH 101 8.1    
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FIGURE 2:THE EQUILIBRIUM 
E  BECOMES UNSTABLE AND A HOPF BIFURCATION OCCURS WHEN 101 2.108    
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FIGURE 3:THE EQUILIBRIUM 
E  IS LOCALLY ASYMPTOTICALLY STABLE WITH 022 3.1    
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FIGURE 4:THE EQUILIBRIUM 
E  BECOMES UNSTABLE AND A HOPF BIFURCATION OCCURS WHEN 022 381.1    
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FIGURE 5:THE EQUILIBRIUM 
E  IS LOCALLY ASYMPTOTICALLY STABLE WITH 1021 0.9    
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FIGURE 6: THE EQUILIBRIUM 
E  BECOMES UNSTABLE AND A HOPF BIFURCATION OCCURS WHEN

1021 0.9565    
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FIGURE 7:THE EQUILIBRIUM 
E  IS LOCALLY ASYMPTOTICALLY STABLE WITH 2.1,0.1 211     
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FIGURE 8:THE EQUILIBRIUM 
E  BECOMES UNSTABLE AND A HOPF BIFURCATION OCCURS WHEN 

2.1,0.235 211     
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FIGURE 9:THE EQUILIBRIUM 
E  IS LOCALLY ASYMPTOTICALLY STABLE WITH 

 221 2.0,1.8 
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FIGURE 10:THE EQUILIBRIUM 
E  BECOMES UNSTABLE AND A HOPF BIFURCATION OCCURS WHEN 

 221 629.0,1.8 
 

V. CONCLUSION 

Since the anticipation of capital stock and its future value are directly interrelated, the government should consider the 

expectation of capital stock in investment decisions at present stage. At the same time, the implementation of past investment 

decisions also need a pregnancy period which leads to production delay. 

In this paper, the main contribution be lied in the following content: the first, we improved the traditional Kaldor-Kalecki 

model with two delays in the gross product and the capital stock. We set up the Kaldor-Kalecki model of differential 

equation with the two delays; The second, we study the stability and Hopf bifurcation. The results indicate that both capital 

stock and investment lag are the certain factors leading to the occurrence of cyclical fluctuations in the macroeconomic 

system. Moreover, the level of economic fluctuation can be dampened to some extent if investment decisions are made by the 

reasonable short-term forecast on capital stock. And finally conduct numerical simulations to prove the conclusions. 

The above arguments are well prepared to the further research work, but there are many undeveloped theory that need further 

explore. The results of this paper can be used as qualitative analysis tool of mathematical economics and business 

administration. 
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