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Abstract— The objective of this paper isto investigate the dynamic characteristics of a flat plate and a beam subjected to a
moving load with the effects of inertia force, Coriolis force and centrifugal force considered. To this end, the theory of
moving mass element for plate and that for beam are presented, where the property matrices of the last elements are derived
based on the superposition principle and the definition of shape functions. It is found that the order of the property matrices

of the moving mass element for plateis 24%24  while that for beamis 1212 Combination of the property matrices of the
moving mass element and the overall property matrices of the plate (or beam) itself gives the overall property matrices of the
entire structural system. Because the property matrices of the moving mass element have close relationship with the
instantaneous position of the moving load, they are time-variant and so are the overall property matrices of the entire
structural system. For validation, the vibration characteristics of the rectangular plate due to a moving load are compared
with those of the beam, with its sizes being the same as those of the plate, due to the same loading conditions and satisfactory
agreement is achieved. Some factors closely relating to the title problem, such as the moving-load speed, acceleration,
inertia force, Coriolis force and centrifugal force, are investigated. Numerical results reveal that all the above-mentioned
parameters affecting the dynamic responses of the plate to some degree.

Keywords— Dynamic responses, Plate, Beam, Moving mass elemgiioving load.

.  INTRODUCTION

Flexible structures undergoing external loadings iatportant research topics. For the structureh slénder shapes, the
theories of beams are usually adopted in the apslydowever, if the structures have plate-likeh@atthan beam-like)
shapes, the theories of beams are no longer alaii@baccurately estimating the dynamic behavioiuthe structures. For
this reason, many researchers have studied thatigibrcharacteristics of structures by means ofpllage theories [1-14].
For instance, Manoach [1] has studied the dynami@abiour of elastoplastic thick circular plates doaifferent types of
pulses by using the Mindlin plate theory. Wu, Lewl & ai [2] have performed the forced vibration gsek of a flat plat
under various moving loads with finite element noetlincorporated with the Newmark direct integratinathod. Gbadeyan
and Oni [3], Fryba [4], Lin [5], Shadnam, RofooeidaMehri [6] and Renard and Taazount [7] have itigated the dynamic
behaviour of beams and plates subjected to movwnge$ and moving masses. Marchesiello et al. [8] @hatterjee and
Datta [9] have, respectively, studied the dynamgbdviour of multi-span bridges and arch bridgeseundoving vehicle
loads, where the bridges are modelled as platd@bBaake [10] has presented a simplified analytiogthod for calculating
the dynamic responses of a rectangular plate viithped thickness and subjected to moving loadssiRGatierrez and
Laura [11] have studied the forced vibration regmsnof a rectangular plate undergoing a statiodestyibuted harmonic
loading. Shadnam, Mofid and Akin [12] have formaththe forced vibration problem of a rectangulatgldue to a single
force (or mass) moving along an arbitrary trajectoy means of the analytical and numerical appreschVu [13] and
Kononov and Borst [14] have researched the vibmativaracteristics of a plate due to forces moviogga circular path,
respectively, using the finite element method drdanalytical approach. From the literature listbdve, it is found that the
effects of inertia force, Coriolis force and cefugial force, induced by the moving load, cannoilgdake into account the
dynamic responses of the plate. To solve this prabthe theory of moving mass element is presanttids paper.

Firstly, under the assumption that the moving l@ategarded as a concentrated mass, the propetticesaof the moving
mass element for plate are derived based on therpogition principle and the definition of shapedtions. Because the
property matrices of the moving mass element hameething to do with the instantaneous positiorhef inoving load, the
last matrices vary with time. Adding the propertgtriitces of the moving mass element to the overal@rty matrices of the
plate itself yields the time-variant overall projyematrices of the entire structural system. Folidesion, the property
matrices of the moving mass element for beam & @ddrived and the vibration characteristics ofrdwangular plate due
to a moving load are compared with those of tharheaith its sizes being the same as those of thte ptue to the same
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loading conditions and satisfactory agreement iBexed. Some pertinent factors closely relatingh® title problem, such
as the moving-load speed, acceleration, inertiaefoCoriolis force and centrifugal force, are stadiNumerical results
reveal that all the above-mentioned parameters sigwéficant influences on the dynamic responsebeilate.

Il PROPERTY MATRICES OF MOVING MASS ELEMENT FOR PLATE

Figure 1 shows thesg‘ plate element subjected to a moving concentratadsmm, at the instant of time. Since the

concentrated mass, is moving along a vibrating path on the plate,ubsgical (Z) velocity and acceleration of the moving
mass are respectively given by

i, 06 3,0) = 5 e Sy (12)
X oy
2 2 2 2
i, (%, y,t)— 0w, >'<2+26 W, ).(y+26 W, >‘<+26 W, y+6 W, y2+6W2 X+aw2 o+, (1b)
xdy oxat dyot ay’ ax ay

where w, =w,(x,y,t), W, (xy,t) and v, (X y,t), respectively, represent the verticad )( displacement, velocity and
acceleration of the moving mass, at position ,y) and timet; x and y, respectively, represent the velocities of the
moving massm, in the X and y directions (cf. Figure 2); whil& and ¥ , respectively, represent the accelerations of that
in the X and y directions. It is noted that the mass is assumdxbtin close contact with the plate at all time.
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FIGURE 1 THE s‘r'f PLATE ELEMENT SUBJECTED TO A MOVING LOAD AT THE INSTANT OF TIME ~ t.
For convenience, Equation (1b) is re-written as
VL (X, Y1) = W2+ 20V WAV + 20V, WPV AWV WAV )

where the superscripts, y and dot, respectively, represent the derivativiéls kespect tox, y and timet ; while V,, = X,

Viy =V, V=X andV, =Y.
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If the plate is vibrating, therx, ¥ and Z force components of the contact point, betweenntbging mass and the plate
element, induced by the vibration and curvaturthefplate element are, respectively, given by

f (%, Y1t) = M 8(X =V, )3y =V 1) (3)
fo (X y,t) = MWy O(x =V, 1) oy =V, 1) (3b)

fi(xa yrt) = mc[W;anfx + ZW;ymeme + ZW;me

. . 3c
+ 20V, + szany +WoV, WV W, ]0(X =V, DAY =V, 1) (3¢)

where o(x-V,,t) and d(y-V,t) represent the Dirac delta function; whiky, =W, (x y,t) and W, =w, (X V,t),

respectively, represent the and y accelerations of the plate element at positiony) and timet .

In such a case, the equivalent nodal ford@‘ﬁ? (k=1 to 24), of thes‘;1 plate element are given by [13]

fP =P f, (X, y.t) (k=1,7,13,19) (4a)
fP = (% y.t) (k=2,8,14,20) (4b)
fP =P £, (x, 1) (k=3,4,5,9,10,11,15,16,17,21,22,23) (4c)
fP=0 (k=6,12,18,24) (4d)

where ®(P (k =1 to 24) are shape functions with the non-zersaieen by [13]
oY =0 = (1-¢,)A-7,) . PP = A+ 2¢,)1-¢,)* A+ 27,)1-77,)°
O = Q+2¢,)1-¢,)°n,A-n,)% 0, OF =-(1-¢,) ¢, L+27,)1-7,)"(,
Y =0 = (A-¢, )7, PP =1+ 2¢,)1-¢,)* (B 27,)7;
P = -+ 26,)1-6,)° A=, )75l oy s P =6, L= 6,)* B= 27,075/
O =01 =¢ 7, Prp = (3-2¢,)¢; (3= 27,)7;
P =-B-26,)65 Q=N )T5l oy P = Q= 6,065 B= 27,0050
P =0 =¢,1-7,), O = (B-2¢,)¢; A+ 27,)L-7,)*
O = (B-2¢,)6,0-1,)%0,,, O = Q-¢,)¢ A+ 27,)1-7n,)%0 X5a

o = XXM/ 11, =YD M), (5b)

where /, and ¢, are respectively the length and width of the negtaar plate element (see Figure 1), whergd@yt) and

y!P (t) are respectively the localandy positions of the concentrated masg at timet.

Based on the superposition principle and the defimiof shape functions, the local, y and z displacements of contact
point, w,, W, and w, , can be obtained from
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= — (P (P) (PP (P)y,(P) P (P

w, =w, =0, ug +OPu” + @y ug’ +®d0 Ug (6a)
=w._ =dP P (P)(P) (P)(,(P) (P)(P)

w, =wy =@7u” + ®PPu” + du” + DU (6b)

=w =P (P)y;(P) (P)y{(P) (P)y(P) (P)y,(P) (p)y,(P)
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PP (P)y(P) Py (P (P)y(P) Py (P PP
TP U DU+ DU+ DU+ Doy U T+ DU

(6c)

where u;p) (i=1to5,7to11, 13 to 17 and 19 to 23) are t@ahdisplacements of the nodes of the plate eleprewhich

the moving concentrated masg applies.
Introducing Equations (3) and (6) into Equation @)d writing the resulting expressions in matarnf yields

{£} =[mPRHUP}+[cP K} + kP Hu} (7a)
{fPy=[£P P .. g0 P (7b)
(WP =[P GP ol oaPrr (7c)
{u® =@ o ... ulP ol (7d)
{u®y = ulfP ouP U (7e)
[MP]=m[mP],4, (8a)
[c™] = 2mV, [€¥ ] 2000 + 2MVy [€ ] 0z (8b)

[k =MV Km0 + 2MV 0V [K P ] iz

. : (8c)
+ chn-zry[k(a)]24x24 + mcvmx[k(4)124x24 + mcvmy[k(S)]24x24

In Equatlon (8)1 a” the CoeffICIentS qm(l)]24><24’ [C(l)]24><24’ [C(Z)]24><24’ [k(l)]24><24’ [k(Z)]24><24’ [k(3)]24><24’ [k(4)]24><24 and

[k®1,..4 are equal to zero except

m® =P (i, j=1713,19) (9a)

m? =P (i, j=28,14,20) (9b)

m® = PP (i, j=345910,11,15,6,17,21,22,23) (9¢)
¢ =k{® =P (i, [=3,459,10,11,15,16,17,21,22,23) (9d)
¢? =k =P’ (i, [=3459,110,11,15,16,17,21,22,23) (9¢)
k® = dPo(™™ (i, j=34,59,10,11,15,16,17,21,22,23) (1)
k® = oPo®™ (i, j=34,59,10,11,15,16,17,21,22,23) (99)
k® =oPoP” (i,j=34,5910,11,15,16,17,21,22,23) (9h)
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It is noted that the superscriptsand y represent the derivatives with respecxt@nd y , respectively.

In Equation (8)[m™™], [c®] and[k'™] are the mass, damping and stiffness matricesegbridisentedoving mass element
for plate. Since the last matrices have something to do thithshape functions of the plate element on wthiehmoving
mass applies (see Equations (5) and (9)), thepepties change from time to time if the positioncohcentrated masi,
on the plate is time-variant.
1I. DYNAMIC RESPONSES OF A FLAT PLATE DUE TO A MOVING LOAD

For a multiple degree of freedom damped structysiem, its equations of motion is given by [15]

[MHG®} +[CHT®Y +IKHT®} ={F (1)} (10)
where[M], [C] and[K] are, respectively, the overall mass, damping difitiesss matrices{q(t)} , {g(t)} and {q(t)}
are, respectively, the acceleration, velocity aispldcement vectors, wheregB ()} is the overall external force vector at
any timet. For a plate subjected to a moving load, the divpraperty matrices[M], [C] and[K], and the external force

vector{F (t)} are determined using the expressions introduc#tkeisubsequent subsections.

3.1 Overall property matrices of the entire structual system

To take the effects of inertial force and centriflifprce of the moving load into account, the ollerass matrix[M], and
stiffness matrix,[K], of the entire structural system must be deterchimg adding the mass and stiffness matri¢es” ]

and[k™], of the moving mass element to the overall ongb@plate itself, i.e.,
[M]=[M ] +[M®],40, (11a)
(K] =[K 14K 5000 (11b)

and imposing the prescribed boundary conditionsviiicth, [M ] and[K ] are, respectively, the overall mass and stiffness

matrices of the plate itself and may be obtaineddsembling all its element mass and stiffnessiceat{16].

In Equation (11), all the coefficients of the massd stiffness matricegM] and [K], are exactly the same as the

corresponding ones ¢M ] and[K ], i.e.,

i =My (12a)
K;=K,; (i,j=1ton) (12b)
except
Moo =M 50 +m (13a)
Koo, =Ko, +ki” (i, =1 to 24) (13b)

In Equations (12)-(13y2 and D, (i =1 to 24) are, respectively, the total degrees of freedbih® entire structural system

and the numberings for the 24 degrees of freedanthi® four nodes of th™ plate element on which the moving load
applies at time.

Due to the fact that the elementary damping maifithe structural system is difficult to find frotihe existing literature, the
overall damping matrifC,] of the plate itself is assumed to be proporti@mal determined by using the Rayleigh damping

theory [15].
Page | 5



International Journal of Engineering Research & Science (IJOER) [Vol-1, Issue-8, November- 2015]

[C,l1=a[M]+B[K] (14a)
_ 20w (§w — W)
R (14b)
_ Z(Ctja)j _5(4)

ﬂ_ C()JZ_CUIZ (14C)

where §; and ¢; represent the damping ratios corresponding tohanynatural frequencies of the structural systegnand

w; , respectively.

In such a case, the overall damping mal@y of the entire structural system can be obtainechfr

[C1=[C,1+1c® 000 (15a)

C,=C,, (i,j=1ton) (15b)
except

Coo, =Cpop, +¢P  (i,j =110 24) (15¢)

where the meanings afand D, (i =1 to 24) are exactly the same as those of Equations (i®)%8).

Because the mass, damping and stiffness matfio€8], [c”] and[k'™], of the moving mass element for plate are time-

dependent, so are the overall mass, damping dfriest matricesjM], [C] and[K], of the entire structural system.

3.2 Overall external force vector
Figure 2 shows a concentrated mags moves, with acceleratioa, on a rectangular plate. If, at any instant ofetimthe

concentrated mass locates at the positigH(t) and y'” (t) of the plate, then the external forces on allribdes of the

plate are equal to zero except the four nodesa)fsihplate element at which the concentrated mass&dd at time:.

{F}=[0mmfP ) fP) £ ) mmf () mmo]’ (16)
where

fP(t) =oPmacosd (i =1,7,13,19) (17a)

fP(t)=oPmasingd (i =2,8,14,20) (17b)

fP (@) =oPmg (i=3,4,5,9,10,11,15,16,17,21,22,23) (17¢)

fP(t)=0 (i =6, 12, 18, 24) (17d)

In Equation (16),fs(p) (t) (i =1 to 24) are the equivalent nodal forces on thel@grees of freedom of th:{‘ plate element.
In Equation (17), Equations (17a) and (17b) aresehdue to the horizontak( and horizontal §) inertia forces of the
moving load, respectively; while Equation (17c) #itese due to the external loaw.g induced by the concentrated mass

m, and located at the local coordinates, [y J=[ x{” (t) , y{P(t)] of the s’ plate element. It is noted that the symbgls
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and @ appearing in the last expressions are respectieygravity acceleration and the angle betweendtrection of
moving concentrated masg, and thex axis (see Figure 2).

L
v

,‘

o /

X7 —

A
A

L

FIGURE 2 A CONCENTRATED MASS "M MOVES, WITH ACCELERATION @, ON A FLAT PLATE .

3.3 Solution of equations of motion

In the present study, the dynamic responses dflahelate due to a moving load, with the effectsnertial force, Coriolis
force and centrifugal force considered, are deteeohiby solving the equations of motion of the ensitructural system
given by Equation (10). The solution proceduresdmscribed in the following.

1.

8.

Since the initial conditions of the structural gystare assumed to be “at rest” in this papg(0)} ={0} , {G(0)} ={0}
and{q(0)} ={0} .
Using Equations (8a)-(8c) to calculate the propemtrices of the moving mass element for plfma®], [c'”] and

[k™], at any timet,,, =t + At (i =0,1,2,...). WhereAt is time interval used for calculating the dynamgsponses of

the structure and taken to be 0.001s in this paper.
Using Equations (11)-(13), and imposing the présci boundary conditions, to determine the overaksnand

stiffness matrices of the entire structural systfh] and[K], at any timet,,, =t +At (i =0,1,2,...).

Determine the natural frequencies, (i =1,2,...), of the entire structural system by mean¥acobi algorithm [16].
Perform the Rayleigh damping theory (see Equat{@Ag)-(14c)) to determine the overall damping matfC ], of
the plate itself and calculate the overall dampiragrix, [C] , of the entire structural system (see Equatio)(15

Evaluate the overall equivalent nodal force veésee Equations (16)-(17)) of the structure due ¢wing load at any
time t,, =t +At (i =0,1,2,...).

Solve the equations of motion of the entire stradtaystem, Equation (10), with Newmark direct gregion method
[16] for its dynamic responses at any time =t, + At (i =0,1,2,...).

Repeat steps 2-7 to obtain the dynamic response structural system at any timg =t, + At (i =0,1,2,...).

Because the property matricgs”], [c'”] and [k”], of the moving mass element for plate are timeéavay so are the

overall mass, damping and stiffness matrices ofetit@e structural system. In such a case, theatlverass, damping and
stiffness matrices must be calculated at each sitep (see steps 3-5). For this reason, the timairestjfor the computer
calculation by the present technique is greaten that required by the existing literature with@oinsidering the inertial
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force, Coriolis force and centrifugal force of tving load(s). However, it is believed that tH®gld be the cost that one
should pay if more satisfactory results are hopeabtain.

V. DYNAMIC RESPONSES OF THE BEAM DUE TO A MOVING LOAD

The dynamic responses of the flat plate due to eingdoad can be determined by means of the fortimula presented in
sections 2-3 of this paper. Because the vibratgmpanses of the flat plate subjected to a moviad khould be close to
those of the beam, with its sizes being the santease of the flat plate, subjected to the samditmpconditions [2], the
formulations for calculating the dynamic responsithe beam due to a moving load are also preséntis section. Thus,
the vibration characteristics of the rectangulateldue to a moving load obtained from the fornimtest of sections 2-3 can
be validated by using those of the beam obtainaa the formulations of this section.

f® ('[)

(D) 00
O T

A0

A < A0
0

x{(t)

FIGURE 3THE S;h BEAM ELEMENT SUBJECTED TO A MOVING LOAD AT THE INSTANT OF TIME t,
Since each beam element consists of two nodes 2ukdrees of freedom (see Figure 3), the mass, idgmapd stiffness
matrices,[m®], [c®] and [k®], of the moving mass elemefar beam are 12x12 matrices and can be derived by using
the similar procedures of section 2, where allabefficients of the above-mentioned matrices ateaktp zero except that

m® =moP o (i,j=1,7) (18a)
m® =mo®o® (i,j=2,6,8,12) (18b)
m® =mo®o® (i,j=3,5,9,11) (18c)
q§b>=2mcqu>§b>q>gb>' (i,j =2,6,8,12) (18d)
ci§b>:2mcvmq>§b>¢gb>' (i,j=3,5,9,11) (18¢e)
ki =mcvjxq>§b)q>§b>" (i,j=2,6,8,12) (18f)
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k? =my2ePo® (i, j=359,11) (189)

whereV__ is the velocity of the moving concentrated massin the X direction; while ®® (t) (i =1 to 4) are the shape
functions with non-zero ones given by [15]
o =1-g,, O =0 =1-3+2}, O =0y =0,
P (1) =@ (1) =[6, ~ 26, +6, 10, PP =gy,
q)éb) - q)gb) - 3<_b2 _ 2%3, (Dﬂ) - q;ig) - [_Cbz " Cbs]fb (19a)
G =X/t (19b)

where x(t) is the distance between the position of the mowragsm, and the left-end of the beam element on which it

applies; while/, is the length of the beam element (see Figuresl3a

To determine the overall property matrices of thére structural system, one requires to add tlopgnty matrices of the
moving mass element for beam and those of theedméiam structure together, i.e.,

[M]=[M,]+[m®™] 0, (20a)

[CI1=[C.]+[c]100, (20D)

[K]=[K,] +[Kk® 150, (20c)
where

M, =M, (i,j=1ton) (21a)

C, =C,; (i,j=1ton) (21b)

K, =K,; (i,j=1ton) (21c)
except that

Moo =Moo +m® (i,j=1to12) (22a)

Coo, =Copp, €7 (i,j=11012) (22b)

Koo, =Kppo, +m (i,j=1t012) (22¢)

In the last expressiongM,], [C,] and [K,] are the overall mass, damping and stiffness nestrif the beam itself,
respectively. In which, the overall damping matri&,], is obtained by means of the Rayleigh damping rh¢tb] (cf.
Equation (14)). MoreoverD; (i =1 to 12) respectively represent the numberingstier2 degrees of freedom of the two

nodes of theD™ beam element on which the moving load appliesra tt

If, at any instant of time, the concentrated mass, is located at the positioR" (t) of the beam (see Figure 4), then the
overall external force vector of the entire beadured by the concentrated mass takes the form

{Fy=[0 0 - fO@t) ¢ mof® @) £ oo o o] (23)
where

& (t) =m,g®® (i=3,5,9,11) (24a)
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fO(t)=0(i=1,24,6,7,8,10,12) (24b)

It is worthy of mentioned that the symbglrefers to the acceleration of gravity and the stipts, s (i=1 to 12) in

Equations (23)-(24) represent the 12 degrees eflinm of thes!' beam element at which the concentrated nrasss
located.

s" beamelement

FIGURE 4 A BEAM SUBJECTED TO A MOVING LOAD .
Finally, one may use the similar procedures presesection 3.3 to solve the equations of motiogudiion (10), of the
structural system for the vibration responses efttbam due to a moving load.
V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, one plate model and one beam moetgbectively, subjected to a moving load areistudn which, the plate
is made of steel with mass densjty = 7820kg/m’, modulus of elasticitye, = 206.8GN/n and Poisson’s ratie' = 0.29,

while its dimensions are: length,, = 1.0m, width L, = 0.5m and thicknesd, = 0.01m (see Figure 5). The entire plate

is modelled with 32 identical 0.12mx 0.125m rectangular plate elements and 45 nodes. For otmnees, the last
rectangular plate with side AB and side CD beingst@ined as pin joints is called Pin-plate.

A

—“»V =10.0m/s ,*
/

Lx=10m

FIGURE 5A PINNED-PINNED RECTANGULAR PLATE (PIN-PLATE) SUBJECTED TO A MOVING LOAD WITH MASS
M =2 3KG AND A CONSTANT SPEED Y =10.0M/S.

Since the vibration characteristics of the rectédangplate, with its bending effects neglected (iRoisson’s ratiav =0), will
be close to those of the beam [2], a beam modak studied in order to validate the availabibfythe presented theory.
The beam model corresponding to Pin-plate is cafliedbeam, where the dimensions and material ptiegeof Pin-beam
are exactly the same as those of Pin-plate (€regth L, = 1.0mand cross-sectional area @& 0.01m, mass density, =

7820kg/m®, modulus of elasticityE, = 206.8GN/n¥). In addition, the finite element model for Pinaoe is composed of 9
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nodes and 8 beam elements (see Figure 6). Thraesvaf Poisson’s ratio/(=0.0, 0.15, 0.29) for Pin-plate were studied,
however, according to the beam theory, the Poissaatio for Pin-beam is equal to zero. Unless sflgcstated, the
damping ratios § ) used for the plate model and the beam modelisfghper are taken to be 0.005 and the time interva

used for calculating the dynamic responses of tiieeestructural system is 0.001s, i.At,= 0.001s.

o/

7 7 7 7 7
/ ’ ’ ’ ’
7% V =10.0m/s ’ ’ ’
/ ’ ’ ’ /
..... D
7 /7 7 7 7
/ / / / /
’ ’ ’ ’ ’
Z ra
----------------- e
L, =10m

FIGURE 6 A PINNED-PINNED BEAM SUBJECTED TO A MOVING LOAD W ITH MASS "™ = 2.3KG AND A CONSTANT
sPeeb V =10.0M/s.

5.1 Validation

The lowest few natural frequencies of Pin-platettfiRoisson’s ratiav =0.0, 0.15 and 0.29, respectively) and Pin-beam are
listed in columns 2, 3, 4 and 5 of Table 1. Becdbeetotal degree of freedom of Pin-plate is mudrerthan that of Pin-
beam, one can find only four of the lowest ten radtfrequencies of Pin-plate to be correspondinthéolowest four natural
frequencies of the Pin-beam, as shown in the fifttumn of Table 1. It is noted that the corresporgebetween the natural
frequencies of Pin-plate and those of Pin-beam rinesnhade based on their corresponding mode shipes. the table, it
can be found that the natural frequencies of PatepWill be close to the corresponding ones ofligiam if the Poisson’s
ratio (v) approaches zero. Based on this result, one nfay ihat the central displacements of Pin-platejestibd to a
moving load will be close to those of Pin-beam sutgd to the same loading conditions if the Poissmatio () of the

plate approaches zero.

TABLE 1
THE LOWEST FEW NATURAL FREQUENCIES @ (Hz) OF PIN-PLATE AND PIN-BEAM.

Pin-plate
Mode No. for Pin- v=0.29 v=0.15 v=0.0 Pin-Beam
Plate
1" 23.6032 23.4487 23.3869 23.3150
2" 63.1528 66.1188 70.0181 | = -
3 96.3655 94.9433 94.4052 93.2379
4m 146.4804 150.3048 155.8149 | = -
5™ 215.1707 212.2335 213.6403 | = -
6" 221.5174 217.402 215.8878 209.8451
7" 264.8742 267.1878 272.0683 | = -
g™ 283.4873 285.2118 292.2830 | = -
o" 380.7570 3851473 | — |
10" 403.5357 395.9960 393.2355 373.7035
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If a load with massmn, = 2.3kg moves with a constant spe¥d = 10.0nvs from side AB to side CD, along the centrelines,

of Pin-plate (see Figure 5) and Pin-beam (see Ei@)y then the verticalZ) central displacements of Pin-plate and Pin-
beam are shown in Figure 7, where the solid liig, (the solid line with triangled{AO ) and the solid line with circles
(O oO) represent the verticalZ() central displacements of Pin-plate with Poissordatio v= 0.0, 0.15 and 0.29,
respectively, while the dashed line (----) représéhose of Pin-beam. From the figure, it is séw the curves for Pin-plate
are close to the curve for Pin-beam when the vafueoisson’s ratio ¥ ) approaches zero. This agrees with the numerical
results presented in reference [2].

2.00E-005
D

1.00E-005 —

— — — for beam /
0.00E+000 4 for plate with v=0.0
.00E+ —

ﬂi for plate with v=0.15 /

—@7 for plate with v=0.29
-1.00E-005 —
-2.00E-005 —
-3.00E-005 —

-4.00E-005 —|

-5.00E-005 —|

-6.00E-005 —|

Vertical (3) central displacements of the plate and the beam (m)

-7.00E-005 —|

-8.00E-005 T T T T T T T T I

0.00 001 002 003 004 005 006 007 0.08 0.09 0.10
Time (sec)

FIGURE 7 VERTICAL (7) CENTRAL DISPLACEMENTS OF PIN-PLATE AND PIN-BEAM.

From all the numerical results presented in thisseation, it is believed that the presented thédmwvailable for the title
problem and will be used for further studies irsttgsearch.

5.2 Influence of moving-load speed

- L, =10m >

FIGURE 8 A PINNED-PINNED PLATE (PIN-PLATE ) SUBJECTED TO A MOVING LOAD WITH MASS "™ ~2.3KG AND
MOVING SPEED V .
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In this subsection, a load of mass =2.3kg moves with a constant spe®d from point E (x, =0.2m, y, =0.12m) to point F
(X,=0.8m, y,=0.4m) of the Pin-plate (see Figure 8) is investigatéigure 9 shows the time histories for the vertica)

displacements of the centre point of Pin-plate, itthe solid curves with circle§1(O0 ) represent the time histories with
moving-load speed/ =5.0nVs, those with crossed(+0 ) represent the ones witti = 10.0m/s and those with triangles
(O AO) represent the ones wit =20.0m/s. From the figure, one sees that the larger theimgeload speed, the larger the
maximum vertical £ ) central displacements of the flat plate.

2.00E-005

V=5.0 m/s

——f—— v=100mss
A

V=20.0 m/s

1.00E-005 —

0.00E+000 A

-1.00E-005 —

-2.00E-005 —

-3.00E-005 —

-4.00E-005 —

-5.00E-005 —

-6.00E-005 —

-7.00E-005 —

Vertical () central displacements of the plate (m)

-8.00E-005 —

-9.00E-005 —

-1.00E-004 T T T T T T T T T

0.00 010 020 030 040 050 060 070 080 090 1.00
VGex (-0 1V (e x)P+ (v )

FIGURE 9 VERTICAL (2) CENTRAL DISPLACEMENTS OF PIN-PLATE DUE TO A MOVING LOAD WITH A
CONSTANT SPEED: (A) VY =5.0M/s, (B) V =10.0M/s AND (C) V =20.0Mm/s.

5.3 Influence of acceleration

If the massm, moves, with initial velocityV =0.0 nVs and constant acceleratiorss=1.0, 4.0 and 8.0 nfisfrom point E
(x,=0.2m, y,=0.12m) to point F (X,=0.8m, y,=0.4m) of the Pin-plate, then the time histories for thertical (Z)
displacements of the centre point of Pin-platesdm@wn in Figures 10(a), 10(b) and 10(c), respelstiva which, the solid
curves with circlesl{ OO ), the solid curve with crosseS @[ ) and the solid curves with trianglds (A0 ) represent the
responses corresponding to the accelerations.0, 4.0 and 8.0 nfisrespectively. From the figures, one finds thatldrger
the acceleration of the moving mass, the larger the maximum verticat § displacement of the centre point of Pin-plate.

Since the acceleration of the moving mass hasse clelation with its velocity and the latter sigeahtly affects the vertical
(Z) responses of the Pin-plate, one must also congidesffect of velocity in addition to the accelgon.

5.4 Influence of inertia force

From the formulation of this paper, one can setttimeffect of inertia force induced by the movingss is to appear in the
mass matrixm®] of the moving mass element for plate as one mayfrsen Equation (8a). Hence, if the mass matrix of

the moving mass element is taken to be zero,[i?)] = [0], then the effect of inertia force due to tneving mass will
disappear.
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FIGURE 10INFLUENCE OF ACCELERATION ON THE VERTICAL (7) CENTRAL DISPLACEMENTS OF PIN-PLATE
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FIGURE 12INFLUENCE OF CORIOLIS FORCE ON THE VERTICAL (Z) CENTRAL DISPLACEMENTS OF PIN-PLATE
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Figure 11 shows the time histories for the vert{) displacements of the centre point of Pin-platemwthe massn,=2.3
kg moves with a constant spe®d from point E (X, =0.2m, y, =0.12m) to point F (X, =0.8m, y,=0.4m) of the flat plate. In

which, the curves with circles1(O0O and -O--), crosses[{l +0 and --+--) and triangles{ ALl and -A--) represent the
time histories with moving-load spe&i=5.0m/s, V =10.0n/sandV =20.0ms, respectively. Besides, the solid and dashed
curves represent those with the effect of inediad of moving load considered and neglected. Rtanfigure, one sees that
the maximum vertical Z ) central displacement with the effect of inertacke considered is larger than that with the eftéct
inertia force neglected. Thus, the effect of ireftirce is important and should be consideredérfdnmulations.

5.5 Influence of Coriolis force

Similarly, one can ignore the effect of the Cosdiorce due to moving load by taking the dampindrixaf the moving
mass element for plate to be zero, i[e!”’] = [0]. The same example as that of the last suioseis studied and the vertical

(z) displacements of the centre point of the flateplare shown in Figure 12. The legends for the esuim the figure are
exactly the same as those in Figure 11 exceptlieahertia force is replaced by the Coriolis foreeom the figure, one sees
that the Coriolis force affects the vertica X central displacements of the plate to some degree

5.6 Influence of centrifugal force

In this subsection, the effect of centrifugal forhee to moving load is ignored by taking the s&fa matrix of the moving
mass element for plate to be zero, i[&”] = [0]. The same plate as that of the last subsedst investigated and the

vertical (z) and central displacements of the Pin-plate aosvehin Figure 13. The legends for the curves amcty the
same as those in Figure 12 except that the Cofmii® is replaced by the centrifugal force.

From Figure 13, one sees that the influence ofctrgrifugal force on the verticalz() central displacements of the plate
increases with increasing the moving-load speeds Bhbecause the magnitude of the centrifugalefappearing in the

stiffness matrix[k‘™] of the moving mass element for plate is propogticl the square of the moving-load speed (see
Equation (8c)).

VI. CONCLUSION

1. To take account of the effects of inertia forceri@le force and centrifugal force of the movingth the theory of the
moving mass elemerfior plate and thatfor beam are presented. In which, the property matricethefmoving mass
elements are derived based on the superpositionipke and the definition of shape functions. lfdand that the order
of the property matrices of the moving mass elerf@mlate is 24x 24, while thatfor beamis 12x12 .

2. Combination of the property matrices of the movingss element and the overall property matricehefpiate (or
beam) itself gives the overall property matricesttef entire structural system. Because the propedirices of the
moving mass element for plate and that for beane lsmmething to do with the instantaneous positioth@ moving
load, both the property matrices of the moving n@sment and the entire structural system are tianant.

3. The moving speed, acceleration, inertia fo@ayjolis force and centrifugal force of the movilogd have significant
influences on the verticalz() dynamic responses of the flat plate. Thus, aldhove-mentioned parameters should be
considered in the formulations.
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