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Abstract— A successfully designed bike should possess safety and comfort for the riders. A safe bike means that its 

structure must be strong enough to prevent from damage due to various external loads and a comfortable bike means that its 

suspension systems must be excellent enough to reduce the transmissibility of disturbance coming from the uneven roads to 

the rider. In order to achieve the above goals, various methods have been presented; however, most of them assumed that 

each part of a bike is a “rigid body” except the helical (coil) springs. For the last reason, this paper tries to use more 

versatile finite element method (FEM) to perform the static and free vibration analysis of a bike. It is believed that a finite 

element model with all parts of a bike replaced by the “elastic” elements or lumped masses should be more realistic. In this 

paper, the entire bike structure is modeled by using three kinds of beam elements: pinned-pinned (P-P), pinned-clamped (P-

C) and clamped-clamped (C-C) beam elements. Among the main parts of a bike structure, the main frame and rim are 

modeled by the C-C elements, the elastic effect of each tire is modeled by using a P-C element, and each spoke or each 

“spring-damper unit” is modeled by a P-P element. The key point of this paper is to study the influence of some pertinent 

parameters on the lowest several natural frequencies and mode shapes of the bike. It is found that the radius of the hub 

(disks), the pretension of each spoke, the mass of various attachments or rider, and the riding gesture of a rider have 

significant influence on the free vibration characteristics, the static deformations and internal forces (and moments) of the 

pertinent structural members of a bike. Because the mass of a rider is much greater than that of the bike structure itself, the 

static and dynamic characteristics of a bike with and without a rider on it must be studied, separately. 

Keywords— Rider, Bike, Suspension System, Finite Element Method, Elastic Element, Lumped Mass, Main Frame, Rim, 

Tire, Spoke, Natural Frequency, Mode Shape 

 

I. INTRODUCTION 

In Ref. [1], Champoux et al. have indicated that “the more manufactures can learn and understand about the dynamic 

response of their products, the more they will be able to benefit both current and potential riders”. It is the last reason, some 

researchers have devoted themselves to the study of vibration characteristics of bikes [1-4]. Besides, under the assumption 

that each part of the bike is a “rigid body” except the helical (coil) springs, some researchers paid their attentions to the 

design of rear suspension system of mountain bikes to improve the riding performance and rider comfort [4-8]. Since the 

conventional finite element method (FEM) with the entire bike structure replaced by a number of “elastic” members and 

lumped masses is more able to model a bike “accurately” and “realistically”, and it can be used to study both the dynamic 

and static characteristics of bikes appearing in the foregoing literature [1-8], the objective of this paper is to continue the 

static and dynamic analyses of mountain bikes of Ref. [4] by using the FEM. 

In general, an entire bike is composed of several sub-systems, such as the power transmission system, speed adjusting 

system, braking system, turning system, main frame and wheels. Among various parts of the entire bike, only those affecting 

its stiffness matrix are modeled by finite elements and those contributing to the overall mass matrix only are considered as 

the lumped masses attached to the associated nodes. Based on the last concept, the particulars for the finite element model of 

the bike studied in this paper are stated as follows: (i) The head tube, the front fork and the main frame (including top tube, 

down tube, seat post, seat stay and chain stay) are modeled by using the two-node clamped-clamped (C-C) beam elements 

[9], and a few of the last C-C beam elements are replaced by the pinned-clamped (P-C) ones [10] if one of two nodes of a C-

C beam element is pinned. (ii) The front and rear rims are similar to the circular rings, thus, each on them are modeled by 

using a number of two-node C-C straight beam elements [11]; for convenience, the total number of beam elements for each 

rim is taken to be the same as that of the spokes on each rim. (iii) Since the stiffness of front or rear hub is much greater than 

the stiffness of each of the attaching spokes, thus, either front or rear hub is assumed to be a rigid body and each spoke 
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connecting a hub and the associated rim is modeled by a pinned-pinned (P-P) beam element. (iv) The total mass of each tire 

is uniformly distributed along the circumference of the associated rim and considered as part of the rim mass per unit length 

(i.e., the effective mass density of the rim is determined by tirerim  r  with rim denoting the mass density of the rim 

material itself and tire  denoting the equivalent mass density of the tire with respect to the volume of the rim). The elastic 

effect of each tire is modeled by using a P-C beam element with its axial stiffness k determined by Fk  , where F denotes 

the vertical load on a wheel and   is the vertical deflection of the tire. (v) The “spring-damper unit” in the front or rear 

suspension mechanism is modeled by using a P-P beam element with its axial stiffness k determined by the similar way like 

that of the tire. 

For the dynamic analysis, the main objective of this paper is to investigate the influence of the next parameters on the free 

vibration characteristics (such as natural frequencies and mode shapes) of the bike: (i) the masses of the attachments; (ii) the 

radius of hub (disks); (iii) the pretension of each spoke; (iv) the mass (and riding gesture) of the rider. For the static analysis, 

the influence of the last parameters on the deformations and internal forces (and bending moments) of any structural 

members may be studied. However, to save space, only the influence of the mass (and riding gesture) of the rider on those of 

some pertinent members is studied.  

II. FORMULATIONS OF THE PROBLEM 

The equation of motion for the free vibrations of an un-damped structural system is to take the form, 0}]{[}]{[  ukum  , 

where [m] is the overall mass matrix, [k] is the overall stiffness matrix, {u} is the overall displacement vector and }{u is the 

associated acceleration vector. Thus, the information required for constructing the matrices [k] and [m] are presented in this 

section. 

2.1 Stiffness and mass matrices for the three kinds of beam elements 

The three kinds of beam elements adopted in this paper are shown in Fig. 1. Each element has two nodes represented by  

and , respectively. Fig. 1(a) shows the pinned-pinned (P-P) beam element, there are two degrees of freedom (dof’s) at each 

node. The force-displacement relationship for this P-P beam element is given by [9] 

               PPPPPP ukS }{][}{         (1) 

where 

T

PP SSSSS ][}{ 4321       (2a) 

T

PP uuuuu ][}{ 4321       (2b) 

          





















44434241

34333231

24232221

14131211

][

kkkk

kkkk

kkkk

kkkk

k PP       (2c) 

In the above expressions, PPS}{ and PPu}{ represent the node force vector and node displacement vector of the P-P beam 

element, respectively, and PPk][  is the corresponding stiffness matrix with its coefficients given by Eq. (A.1) in Appendix A. 

Furthermore, the symbols  , E, A and   appearing in Fig. 1(a) represent mass density, Young’s modulus, cross-sectional 

area and length of the beam element, respectively. 
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Fig. 1(b) shows the pinned-clamped (P-C) beam element, there are two dof’s at node  and three dof’s at node . The force-

displacement relationship for this P-C beam element is given by [10] 

PCPCPC ukS }{][}{         (3) 

where 

T

PC SSSSSS ][}{ 54321      (4a) 

T

PC uuuuuu ][}{ 54321      (4b) 
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where PC
S}{ , PC

u}{  and PC
k][  represent the force vector, displacement vector and stiffness matrix of the P-C beam 

element, respectively, and the coefficients for PC
k][  is given by Eq. (A.3). In addition to the symbols,  , E, A and  , have 

been defined previously, the other symbol appearing in Fig. 1(b), I, represents the moment of inertia of the cross-sectional 

area A. 

Fig. 1(c) shows the clamped-clamped (C-C) beam element, there are three dof’s at each node. The force-displacement 

relationship for this C-C beam element is given by [9] 

 

CCCCCC ukS }{][}{         (5) 

where 

T

CC SSSSSSS ][}{ 654321     (6a) 

T

CC uuuuuuu ][}{ 654321      (6b) 
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Where CC
S}{ , CC

u}{  and  CC
k][  represent the force vector, displacement vector and stiffness matrix of the C-C beam 

element, respectively, and the coefficients of  CC
k][  is given by Eq. (A.5). 
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 In addition to the above-mentioned stiffness matrices defined by Eqs. (A.1), (A.3) and (A.5), free vibration analysis of a 

structural system also requires the mass matrix for each of the constituent members. The mass matrices, PPm][ , PCm][  and 

CCm][ , for the P-P, P-C and C-C beam elements are given by Eqs. (A.2), (A.4) and (A.6 ) in Appendix A, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 1 THE THREE KINDS OF TWO-NODE BEAM ELEMENTS ADOPTED IN THIS PAPER: ( a ) P-P, (b ) P-C AND ( c ) 

C-C BEAM ELEMENTS 

 

2.2 Transformation matrices for the three kinds of beam elements 

The element stiffness matrix [k]q and mass matrix [m]q (q = PP, PC or CC) introduced in the last subsection are obtained with 

respect to the local coordinate system xy. In the conventional FEM, the overall stiffness matrix ][K  and mass matrix ][M  

are obtained from the element stiffness matrix qk ][  and mass matrix qm][  for each of the structural members composed of 

the entire structure, by using the numerical assembly technique. Where qk ][  and q
m][  are the property matrices with respect 

to the global coordinate system yx . In other words, each element stiffness matrix [k]q and mass matrix [m]q must be 

transformed into 
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qq

T

qq kk ][][][][        (7a) 

qq

T

qq mm ][][][][        (7b) 

then they may be used for assembly.  

In Eq. (7), the symbol q][  denotes the transformation matrix for the q-type beam element. For the P-P beam element as 

shown in Fig. 2, its node displacements with respect the local xy coordinate system, iu  ( 41i ), and the corresponding 

ones with respect to the global yx  coordinate system, iu  ( 41i ), have the following relationship 

PPPPPP uu }{][}{ 
      (8) 

where Tuuuuu ][}{ 4321  and Tuuuuu ][}{ 4321  represent the displacement vectors with respect to the local xy  

and global yx  coordinate systems, respectively, while PP][  is the transformation matrix of the P-P beam element given by 

[9] 
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FIG. 2 THE NODE DISPLACEMENTS OF A P-P BEAM ELEMENT WITH RESPECT TO THE LOCAL xy  COORDINATE 

SYSTEM, iu  ( 41i ), AND THE CORRESPONDING ONES WITH RESPECT TO THE GLOBAL yx  COORDINATE 

SYSTEM iu  ( 41i ). 
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In the last expressions,   is the angle between positive x-axis and positive x -axis as one may see from Fig. 2. In practice, the 
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where ),( 11 yx  and ),( 22 yx  are the global coordinates of node  and node  of the beam element as shown in Fig. 2, 

respectively. 

Similarly, the transformation matrix for the P-C beam element is given by [10] 
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and the transformation matrix for the C-C beam element is given by [9] 
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2.3 Geometric stiffness matrices for various beam elements 

In order to investigate the effect of pretension s
T  in each of the spokes on the free vibration characteristics of a bike, the 

geometric stiffness matrix qG
k ][  for the relevant beam elements are presented in this subsection [12]. 

For a spoke modeled by using the P-P beam element, the pretension s
T  in it will increase its axial stiffness. Thus, its 

geometric stiffness PPG
k ][  is given by 
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where s  represents the length of each spoke. 

For a spoke modeled by using the P-C beam element, the pretension s
T  in it will increase its stiffness associated with both 

the axial dof’s and transverse dof’s. Thus, its geometric stiffness PCG
k ][  is given by 
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From Fig. 1(b) one sees that, for a P-C beam element, its 1st and 3rd dof’s are in the axial direction, and its 2nd and 4th dof’s 

are in the transverse direction, thus, in Eq. (15), the matrix coefficients 
mnG

k
,

 with nm, 1 or 3 represent the contribution of 

pretension s
T  to the stiffness of axial dof’s, and those with nm, 2 or 4 represent the contribution of pretension s

T  to the 

stiffness of transverse dof’s of the P-C beam elements. Furthermore, since the pretension does not affect the stiffness of 

rotational dof’s with displacement 5u  (cf. Fig. 1(b)), the matrix coefficients 
5,mG

k and 
nG

k
5,

 with 51, nm  are equal to 

zero in Eq. (15). 

When there exists pretension sT  in each spoke, the front or rear rim will subjected to the compressive force rT . Since the rim 

is modeled by a number of C-C beam elements, the geometric matrix CCGk ][  for each of the rim elements is given by 
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where r  represents the length of each rim element. It is noted that, in Eq. (16), all diagonal coefficients are “negative” and 

all off-diagonal ones are “positive”. This result is opposite to Eqs. (14) and (15), because sT  in Eqs. (14) and (15) is a tensile 

force and rT  in Eq. (16) is a compressive force. Furthermore, for a C-C beam element as shown in Fig. 1(c), its 3rd 

displacement 3u  and 6th displacement 6u  belong to the rotational dof’s, the associated matrix coefficients in Eq. (16) are 

equal to zero, i.e., 0
6,3,


mGmG
kk  for 61m  and 0

6,3,


nGnG
kk  for 61n . 

2.4 Rim force induced by pretension of spokes 

For simplicity, in order to determine the rim force r
T  (appearing in Eq. (16)) induced by the pretension of all spokes in a rim, 

it is assumed that the tensile force s
T  in each spoke directs to the center H of the hub (cf. Fig. 3). If the total number of 

spokes is s
N  and the average radius of the rim is r

r , then the average central force per unit length of the rim is given by 

r

ss

r

TN
p

 2
        (17) 

 

For the free-body diagram of the half rim shown in Fig. 3, the force equilibrium in y-direction requires that  
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From Eqs. (17) and (18) one obtains 
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For the present paper, the total number of spokes in each rim is 36
s

N , it is seen that 73.5
sr

TT  according to Eq. (19). 

If the pretension s
T  in the spokes is considered as the “distributed” load, then the compressive force r

T  in the rim is 

equivalent to the “concentrated” load. In general, the effect of “distributed” load is much less than the “concentrated” load if 

the summation magnitude of the former is equal to the magnitude of latter. Since the effect of pretension s
T  is to raise the 

stiffness of spokes and that of compressive force r
T  is to reduce the stiffness of the rim, it is evident that the overall effect of 

increasing the pretension s
T  will reduce the overall stiffness of the sub-structural system composed of hub (disk), spokes and 

rim. This is the reason why the lowest several natural frequencies of the bike decrease with the increase of pretension s
T  as 

one may see from the subsequent numerical examples. 

 

 

 

 

 

 

 

 

 

 

FIG. 3 FREE-BODY DIAGRAM OF THE HALF RIM SUBJECTED TO UNIFORM CENTRAL FORCE p  PER UNIT 

LENGTH 

 

2.5 Global coordinates for the two nodes of each spoke 

In the finite element analysis, preparation of input data is one of the heaviest tasks. For the bike studied in this paper, the total 

number of spokes in each wheel is 36sN . Thus, according to Eqs. (11a) and (11b), one must input the computer 72 pairs of 

data concerning the global coordinates of the two nodes  and  of each spoke, ( 1
x , 1

y ) and ( 2
x , 2

y ), then one can obtain 

the transformation matrix q
][  of all spokes. For simplicity, the technique for determining the values of ( 1

x , 1
y ) and 

( 2
x , 2

y ) are presented in this subsection. 

For the 36 spokes in each wheel, each of them is modeled by a two-node P-P beam element. The 1st node  of each spoke is 

located on the rim, however, the 2nd nodes  for one half of the 36 spokes are on the 1st (hub) disk and those for the other 

half of the 36 spokes are on the 2nd (hub) disk as shown in Fig. 4 and Table 1. Because the 36 nodes are uniformly 

distributed on the rim (or hub disks), the subtended angle between any two adjacent nodes is given by Δθ = 360° / Ns = 10° . 
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For convenience, the 36 nodes on the rim (or hub disks) are denoted by 1, 2, …, 36 and the associated spokes by (1), (2), …, 

(36), respectively, beginning from θi = 0 (or θj = 0) as one may see from Fig. 4. It is noted that the numbering for node  (on 

the rim) of i-th spoke is i, however, the numbering for node  (on the hub disks) of the same i-th spoke is j as shown in 

Table 1. From Table 1, one sees that the 2nd nodes  of the spokes with “odd” numberings are on (hub) disk 1 and those 

with “even” numberings are on (hub) disk 2, and, in Fig. 4, the odd numbering spokes are denoted by the solid lines (——) 

and the even numbering spokes by the dashed lines (------).  

Based on the last descriptions and Fig. 4, the global coordinates for the two nodes of the arbitrary  i-th spoke are given by 

irhi rxx ,1,1 cos , 
irhi ryy ,1,1 sin       (for node )     (20a) 

                   (for node )                       (20b) 

with 

  )1(,1 ii          (21a) 

  )1(,2 ji          (21b) 

sN 2
          (21c) 

where ( h
x , h

y ) are the global coordinates of hub center H, r
r  and h

r  are the radii of the rim and the hub disks, respectively, 

while 
i,1

  and 
i,2

  are the angles between the radii at nodes  and  and the “negative” x -axis, respectively. From Eqs. 

(20a) and (20b), one sees that 
hi

xx 
,2

 and 
hi

yy 
,2

 if the radius of the hub disks is very small so that 0
h

r .  

Since the stiffness of the hub (disk) is much greater than that of each of the spokes, it is reasonable to assume that the hub 

(disk) is a “rigid body”, for simplicity. Furthermore, since the bike wheel is to rotate about its central axle, the center of the 

hub must be pinned. Based on the last assumptions, the translational displacements of node  of any i-th spoke are identical 

to those of the hub center H, i.e.,  

hxi uu ,,3 
         (22a) 

hyi uu ,,4 
         (22b) 

Eqs. (22a) and (22b) mean that the “numberings” for the degrees of freedom of 2nd node  of each spoke are the same as 

those of the hub center H. However, the global coordinates (
i

x
,2

,
i

y
,2

) given by Eq. (20b) required for the determination of 

the transformation matrix i
][  of the i-th spoke are different from each other for each of the spokes. 

From Fig. 4 one sees that the “moment arm” for the tensile force in each spoke with respect to the hub center H increases 

with the increase of radius h
r  of the hub disk, so does the restoring moment induced by the spoke tension. Thus, the effective 

stiffness of the sub-structural system composed of the rim, spokes and hub (disks) increases with the increase of h
r , this is 

the reason why the lowest several natural frequencies of the entire bike structure increase with the increase of h
r  as one may 

see from the numerical examples given in the latter section 5. 

 

 

 

 

ihhi rxx ,2,2 cos ,  ihhi ryy ,2,2 sin  
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TABLE 1  
THE NUMBERINGS FOR NODES  AND  OF EACH SPOKE I ( 361i ) IN A RIM. 

 

Spokes ( i ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Node  ( i ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Node  

( j ) 

*Odd 7  33  11  1  15  5  19  9  23  

*Even  32  10  36  14  4  18  8  22  12 

 

 

 

 

FIG.4 ( a ) SIDE VIEW AND ( b ) FRONT VIEW OF THE BIKE WHEEL “WITH HUB PINNED”. THE COORDINATES OF 

THE 2ND NODE  OF THE i TH SPOKE ON THE RIGID HUB DISK ARE GIVEN BY 
ihhi

rxx
,2,2

cos  AND 

           
ihhi

ryy
,2,2

sin  WITH 
i,2

  DENOTING THE ANGLE BETWEEN THE RADIUS h
r  OF THE HUB DISK H AT 

                 NODE  AND THE “NEGATIVE” x -AXIS. 
 

Spokes ( i ) 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

Node  ( i ) 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

Node  

( j ) 

*Odd 13  27  17  31  21  35  25  3  29  

*Even  26  16  30  20  34  24  2  28  6 

)(i
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
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Rim

1

2

3

),(
,1,1 ii

yxi

3
2

1

)1(  spoke1st  i
)2(  spoke  2nd i
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
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o

disk  Hub

)(a

36 )36(



36

r
r

),(
,2,2 ii

yxj

Hub

z

y

o

)(b

Rim

1Disk  

2Disk  

*Note: The 2nd nodes  for the spokes with “odd” numberings are on hub disk 1 and those with “even” 

numberings are on hub disk 2 (cf. Fig. 4). 
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III. NATURAL FREQUENCIES AND MODE SHAPES OF THE BIKE 

Based on the stiffness matrix q
k][ , mass matrix q

m][ , geometric stiffness matrix qG
k ][  and the transformation matrix q

][ , 

one may obtained the property matrices of various beam elements with respect to the global coordinates and assembly of the 

latter will define the equation of motion of the entire bike structure 

0}{][}{][
11


 NNNNNN
uKuM 

     (23a) 

After imposing the boundary conditions with all the constrained dof’s eliminated, one obtains 

0}~{]
~

[}~{]
~

[
1

~~~
1

~~~ 
 NNNNNN

uKuM 
     (23b) 

In the above two equations, ][M  (or ]
~

[M ) is the overall mass matrix, ][K  (or ]
~

[K ) is the overall stiffness matrix, ][u  (or 

]~[u ) is the overall displacement vector and ][u  (or ]~[u ) is the overall acceleration vector. Furthermore, N  and N
~

 are the 

total dof’s (including unconstrained and constrained ones) and the total unconstrained dof’s, respectively. 

  For free vibrations, one has 

tieUtu }{)}({ 
       (24) 

where }{U is the amplitude of )}({ tu ,  (rad/sec) is the natural frequency of the vibrating system and 1i . 

Substituting Eq. (24) into Eq. (23a) leads to 

0}]){[]([ 2  UMK 
      (25a) 

Similarly, from Eq. (23b) one may obtain 

0}
~

]){
~

[]
~

([ 2  UMK 
      (25b) 

Eq. (25a) or (25b) is a standard characteristic equation, from which one may determine the r-th natural frequency r
  and the 

corresponding mode shape 
r

U }{ (or r
U}
~

{ ), ,...3,2,1r , of the vibrating system. In this paper, the Jacobi method [13] is 

used to solve Eq. (25), and the rth mode shape is determined by using the following global coordinates of all nodes 

)()( ~~ r

xii

r

i UxX   ( nni 1 )      (26a) 

)()( ~~ r

yii

r

i UyY   ( nni 1 )      (26b) 

where ( i
x , i

y ) are global coordinates of node i  required for the determination of transformation matrix q
][  of the 

associated beam element as one may see from Eq. (11), 
)(~ r

xi
U  and 

)(~ r

yi
U  are displacement components of node i  in the x  

and y  directions, respectively, and n
n  is the total number of nodes of the entire vibrating system. It is noted that 

)(~ r

xi
U  and 

)(~ r

yi
U  are parts of the components of the r-th mode shape r

U}
~

{ determined from Eq. (25b), and the displacement components 

of the “constrained” dof’s are equal to zero. In this paper, the original configuration of the bike is obtained from the global 

coordinates ( i
x , i

y ) with n
ni 1  and the r-th mode shape is obtained from the global coordinates (

)(~ r

i
X ,

)(~ r

i
Y ) with 

n
ni  1 .  
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IV. REACTIVE FORCES AND MEMBER FORCES 

For a static “constrained” structural system, its force-displacement relationship is given by 

}
~

{}~]{
~

[ FuK 
       (27) 

where ]
~

[K  and }~{u  have been defined in Eq. (23b), and }
~

{F  is the associated external force vector. Once the external load 

}
~

{F  is given, then from Eq. (27) one may obtain the node displacement vector 

}
~

{]
~

[}~{ 1 FKu 
      (28) 

If the i-th dof of the structural system is constrained, then the associated reactive force (or moment) is determined by 

j

N

j

iji ukR ˆˆ

1






       (29) 

where 
ij

k  are the matrix coefficients of the unconstrained stiffness matrix 
NN

K


][  defined by Eq. (23a), j
û  are components 

of the displacement vector
1

}ˆ{
N

u composed of the non-zero components
1

~}~{
N

u given by Eq. (28) and the zero components 

corresponding to the “constrained” dof’s. The reactive forces i
R̂  obtained from Eq. (29) are with respect to the global yx  

coordinate system. 

   Based on the node displacement vector 
1

}ˆ{
N

u , one may obtained the node force vector 
)(}ˆ{ sF  of the s-th member (or 

beam element) with respect to the global yx  coordinate system 

)()()( }ˆ{][}ˆ{ sss ukF 
      (30) 

where 
)(][ sk  and 

)(}ˆ{ su  are the stiffness matrix and displacement vector of the s-th beam element. The former 
)(][ sk  has 

been determined before it is used to assemble the overall stiffness matrix 
NN

K


][  and the latter 
)(}ˆ{ su  is part of the 

components of 
1

}ˆ{
N

u . In structural design, one requires the force vector 
)(}{ sF  of the s-th member with respect to the local 

xy  coordinate system. In such a case, the values of 
)(}{ sF  may be obtained from 

)()()( }ˆ{][}{ sss FF 
      (31) 

where 
)(][ s  is the transformation matrix of the s-th beam element. 

V. NUMERICAL RESULTS AND DISCUSSIONS  

The finite element model studied in this paper is shown in Fig. 5. For convenience, the entire bike is subdivided into three 

subsystems: the bike body, the front wheel and the rear wheel. The bike body is composed of 40 beam elements connected by 

35 nodes, either front wheel or rear wheel is composed of 36 spokes, 36 rim elements, one tire and one hub. The diameter of 

each spoke is 2 mm and is modeled by a two-node pinned-pinned (P-P) beam element. The approximate cross-section of 

each rim is to take the form as shown in Fig. 6, its sectional area is 2mm 61.60rA , moment of inertia of r
A  about its 

neutral axis n-n is 
4mm 3259.1362rI , the average radius of rim (based on the neutral axis n-n) is mm 5.277rr (cf. Fig. 

6), each rim element is modeled by a clamped-clamped (C-C) beam element. The mass of each tire is assumed to uniformly 

distribute along the circumference of the attached rim and combined with the rim so that the effective mass density of the rim 

is given by tirerim  r , where 
3

rim mkg 7850 is the mass density of the rim material itself and tire  is the equivalent 

mass density of the tire with respect to the rim volume and given by rimtire  tm with tm  denoting total mass of each tire 

and rim  denoting total volume of each rim. For the present example, one has kg 0.1tm  and 
33

rim m 1010663.0  , 

thus, 
3

tire mkg 9378 . The spring constant for each tire is assumed to be N/m 109.4002.08.9100 5 Wkt , 
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where N 8.9100W  is the weight of a 100 kg rider and m002.0  is the deflection of the tire when it is subjected to the 

load of the rider. For convenience, the stiffness k of the spring-damper unit for front or rear suspension system is assumed to 

be k = N/m 100.5 5 . The outer diameters of various tubes for the bike body are shown in Table 2, for convenience, the 

thickness of each tube is assumed to be 2.0 mm. The masses of some attachments are shown in Table 3. 

From Fig. 5 one sees that the total number of beam elements for the entire (structural) system is 186 and the total number of 

nodes is 109. Thus, the total degrees of freedom (dof’s) is 325 and the total unconstrained dof’s is 321 with the final 4 dof’s 

of the two nodes attaching the ground constrained. Besides, unless particularly stated, the numerical results of this paper are 

based on the assumption that Young’s modulus 211 N/m 10068.2 E , mass density of metal materials 3mkg 7850 , 

and there is no rider on the bike. 

 

TABLE 2  

THE OUTER DIAMETERS OF VARIOUS TUBES FOR THE BIKE BODY EACH WITH THICKNESS 2.0 mm  

 

TABLE 3 

 THE MASSES OF SOME PARTS 
 

 

 

 

 

 

 

 

a
The chain mass is assumed to be equally shared by the rear axle and the crank shaft.  

b
The mass of each tire is considered as the distributed mass on the associated rim. 

c
Some of the attachments (e.g., the braking system) are not included. 

 

 

 

 

Name of tubes Outer diameters (mm) 

Head tube 22 

Headset bearing tube, front fork tubes 34 

Top tube 28.5 

Down tube 34 

Seat tube 28.5 

Seat post, seat stay tubes, chain stay tubes 25.4 

Item Name of parts Mass (kg) Location 

(Node No.) 

Remarks 

1 Handlebar  0.4 1 *Mass of rider isn’t considered, yet. 

2 Saddle 0.5 18 *Mass of rider isn’t considered, yet. 

3 aChain 0.3/2 = 0.15 23, 34 Uniformly shared by Nodes 23 and 34 

4 Front hub and axle 0.7758 35  

5 Rear hub, axle and 

attached sprockets 

1.5758 34 Combined with item 3 for node 34 

6 Crank set, pedals and 

attachments 

1.5 23 Combined with item 3 for node 23 

7 bTwo tires 1.0×2 ― Distributed on the associated rims 
cSummation 7.0516 ― ― 
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FIG. 5 THE FINITE ELEMENT MODEL OF THE BIKE (WITH 0hr ) STUDIED  (CF. FIG. 4 FOR THE CASE WITH 0hr ) 

 

FIG. 6 THE APPROXIMATE CROSS-SECTION OF RIM (UNIFORM THICKNESS: 1.1 mm ). 

 

5.1 Influence of attachments 

The influence of lumped masses of attachments (as shown in Table 3) on the lowest five natural frequencies of the bike 

without rider is shown in Table 4. From the table one sees that the lumped masses of attachments (no matter whether masses 

of the two tires being included or not) significantly affect the lowest five natural frequencies of the bike. This result is under 

our expectation, because the ratios between the lumped masses of the attachments (or the two tires) and the total mass of the 

186 beam elements are high. From Table 3 one sees that the total mass of the attachments (excluding the two tires) is 5.0516 
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kg, that of the two tires is 2.0 kg, and from the computer output one sees that the total mass of the 186 beam elements is 9.98 

kg ( 10 kg). It is seen that the mass ratios of the above-mentioned attachments (or the two tires) to the structural members 

(contributed to the stiffness of the entire bike) are as high as about 50% (or 20%). For this reason, in the subsequent studies 

in this paper, the effect of all attachments (including the two tires) as shown in Table 3 are taken into consideration. It is 

noted that some of the attachments (e.g., the braking system) are not included in Table 3. 

TABLE 4  

INFLUENCE OF LUMPED MASSES OF ATTACHMENTS ON THE LOWEST FIVE NATURAL FREQUENCIES OF THE 

BIKE WITHOUT RIDER 

 

5.2 Influence of radius of hub disk 

In most of the existing bikes, the radius of hub disk is 
h

r 25.0 mm, therefore, all the numerical results of this paper are 

based on the last value of h
r . In order to study the influence of h

r  on the free vibration characteristics of the bike, four 

values of h
r  are investigated in this subsection: 

h
r 25.0, 15.0, 5.0 and 0.0 mm. The lowest five associated natural 

frequencies are shown in Table 5. From the table one sees that decreasing the radius of hub disk ( hr ) will reduce the lowest 

several natural frequencies of the bike as has been shown in previous subsection 2.5 and the influence is most significant on 

the 1st natural frequency ( 1
 ) and decreases with increasing the vibration modes. It is seen that the influence of radius of 

hub disk ( h
r ) on the 5th natural frequency ( 5

 ) is very small so that the corresponding 5th mode shapes for the four values 

of h
r  look similar (cf. Figs. 7( 5

a ) and ( 5
b )). 

To save the space, only the lowest five mode shapes for 
h

r 25.0 and 0.0 mm are shown in Figs. 7( 51
aa  ) and ( 51

bb  ), 

respectively. In which, Figs. 7( 1
a - 5

a ) denote the lowest five mode shapes for 
h

r 25.0 mm, and Figs. 7( 1
b - 5

b ) denote 

those for 
h

r 0.0 mm. From Fig. 7( 1
a ) one sees that the 1st mode shape is major in (vertical) up-and-down vibration of the 

sub-structure in the “rear” suspension system (composed of the seat stays and chain stays) with respect to node 23. This is a 

reasonable result, because node 23 is a pivot and there exist a linear spring (cf. beam element No. 26 in Fig. 5) with its 

stiffness (k = N/m 100.5 5 ) much smaller than the stiffness of the other beam elements in the “rear” suspension system. Figs. 

7( 2
a ) and ( 3

a ) reveal that the 2nd and 3rd mode shapes are major in the heave and pitch motions of the entire bike, 

respectively. Fig. 7( 4
a ) reveals that the 4th mode shape is major in (vertical) up-and-down vibration of the sub-structure in 

the “front” suspension system, this is because there exists a soft linear spring (cf. beam element No. 5 in Fig. 5) in the front 

fork. The 5th mode shape shown in Fig. 7( 5
a ) is more complicated, because the vibrations of both the front and rear 

suspension systems are coupled. It is noted that the 1st natural frequency for 
h

r 0.0 mm is near zero ( 
1

 0.00037 

Conditions Natural frequencies, v  (rad/sec) 

1  2  3  4  5  

No attachments 223.37730 260.44416 404.32388 455.83124 798.58902 

With attachments 

(including two tires) 

168.05399 207.60573 274.94635 311.38074 587.16357 

With attachments 

(excluding two tires) 

178.76463 216.50521 302.74445 383.54492 647.78378 
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rad/sec) as one may see from Table 5, this leads to the corresponding mode shape shown in Fig. 7( 1
b ) looking like a rigid-

body motion in (horizontal) front-and-back direction. 

TABLE 5 

 INFLUENCE OF RADIUS OF HUB DISK, h
r , ON THE LOWEST FIVE NATURAL FREQUENCIES OF THE BIKE  

 

 

 

 

Radius of hub disk 

hr  (mm) 

Natural frequencies, v  (rad/sec) 

1  2  3  4  5  

25.0 (cf. Table 4) 168.05399 207.60573 274.94635 311.38074 587.16357 

15.0 105.91116 175.50561 236.21839 282.04038 585.10492 

5.0 36.63954 123.17002 226.12836 278.43011 584.15505 

0.0 0.00037 114.78185 225.45303 278.07291 583.95400 
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FIG. 7 THE LOWEST FIVE MODE SHAPES OF THE BIKE: ( 51 aa  ) FOR hr 25.0 MM , AND ( 51 bb  ) FOR hr 0.0 MM 

. 
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FIG. 7 ( 51 bb  ) (CONTINUED) 

 

5.3 Influence of pretension in spokes 

A bicycle wheel is composed of rim, hub, spokes and tire. Among the components, the rim and hub are connected together to 

constitute a strong structure system by relying on the pretension of the spokes. However, for simplicity, the pretension s
T  in 

each spoke is assumed to be zero in the conventional finite element analysis and all numerical results of this paper are also 

obtained under this assumption except those presented in this subsection. Table 6 shows the influence of pretension s
T  in 

each of the spokes on the lowest five natural frequencies of the bike beginning from s
T = 0 with increment 

s
T 100 N. 

From the table one sees that increasing the pretension s
T  will reduce the lowest five natural frequencies of the bike as has 

been shown in the previous subsection 2.4. Since a strong wheel relies on enough pretension s
T  in each spoke and too high 

value of s
T  will lead to buckling of the rim, determination of the appropriate pretension s

T  in each spoke should be an 

optimum problem.  

 

TABLE 6  

INFLUENCE OF PRETENSION s
T  IN EACH OF THE SPOKES ON THE LOWEST FIVE NATURAL FREQUENCIES OF 

THE BIKE  

 

Pretension in each 

spoke, sT  (N) 

Natural frequencies, v  (rad/sec) 

1  2  3  4  5  

0 (cf. Table 4) 168.05399 207.60573 274.94635 311.38074 587.16357 

100 166.28904 207.23125 274.11550 309.22295 587.07923 

200 164.48525 206.83240 273.22357 307.11718 586.99563 

300 162.64151 206.40621 272.26276 305.07272 586.91278 

400 160.75661 205.94937 271.22524 303.09923 586.83066 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

0.0

0.2

0.4

0.6

0.8

1.0

Rh=0.0 mm

Original configuration

5th mode shape

)( 5b



International Journal of Engineering Research & Science (IJOER)                                     Vol.-1, Issue-7, October-2015] 

Page | 78  

  

 

5.4 Influence of rider mass (riding gesture) on the free vibration characteristics 

In the previous subsections, the effect of rider mass is neglected and it will be studied in this subsection. It is well known that 

the mass of a rider is shared by the saddle and handlebar depending on the gesture of the rider. In this subsection, it is 

assumed that the total mass of the rider is 75 kg and it is shared by saddle and handlebar in three riding gestures: (i) 
1

m 25 

kg and 
18

m 50 kg; (ii) 
1

m 18.75 kg and 
18

m 56.25 kg; (iii) 
1

m 12.5 kg and 
18

m 62.5 kg. Where the subscripts of 

m, 1 and 18, refer to nodes 1 and 18 for the handlebar and saddle, respectively, as one may see from Fig. 5. It is noted that, 

for the last three riding gestures, the handlebar shares 1/3, 1/4 and 1/6 of the total rider mass, respectively, and the remaining 

2/3, 3/4 and 5/6 of the total rider mass are shared by the saddle, respectively. For convenience, the above-mentioned three 

cases are called cases 1, 2 and 3 in Table 7, respectively, and the situation of no rider is called case 0. From Table 7 one sees 

that, in either riding gesture, the rider mass significantly affects the lowest five natural frequencies of the bike. To save the 

space, only the lowest five mode shapes of the bike for case 1 are shown in Fig. 8. Comparing with the lowest five mode 

shapes of the bike for case 0 shown in Fig. 7( 51
aa  ), one sees that the rider mass also significantly affects the lowest five 

mode shapes of the bike. From the foregoing analyses one sees that the influence of rider mass (and riding gesture) on the 

free vibration characteristics of a bike is a complicated problem and use of the information presented in the existing literature 

with rider mass neglected should be careful.  

TABLE 7 

 INFLUENCE OF RIDER MASS (75 kg ) ON THE LOWEST FIVE NATURAL FREQUENCIES OF THE BIKE  

 

 

 

Case Conditions Natural frequencies, v  (rad/sec) 

1  2  3  4  5  

0 No rider (cf. Table 4) 168.05399 207.60573 274.94635 311.38074 587.16357 

1 kg 25
1
m , kg 50

18
m  46.94273 72.29379 142.25082 182.86937 300.60258 

2 kg 75.18
1
m , kg 25.56

18
m  45.86708 73.52113 151.45699 193.60493 300.66467 

3 kg 5.12
1
m , kg 5.62

18
m  44.76827 74.62326 164.76774 215.10436 300.89367 
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FIG. 8 INFLUENCE OF RIDER MASS (CASE 1) ON THE LOWEST FIVE MODE SHAPES OF THE BIKE 
 

5.5 Influence of rider gesture on node displacements and internal forces of members 

In the last subsection, it has been shown that different gesture of the rider will lead to different distribution of his mass on the 

handlebar and saddle. Of course, the gravitational forces on the bike induced by the rider are also dependent on the rider 
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gesture. For convenience, in this subsection, the rider gestures are assumed to be the same as those shown in Table 7, i.e.: (i) 

2458.9251 F N and 4908.95018 F N; (ii) 75.1838.975.181 F N and 

25.5518.925.5618 F N; (iii)  8.95.121F 5.122 N and  8.95.6218F 5.612 N. Where the negative sign 

(-) indicates that the force 1F  (or 18F ) is downward. The displacements of nodes 2, 11, 23, 34 and 35 (cf. Fig. 5) for the 

above-mentioned three cases are shown in Table 8(a) and the internal forces (and bending moments) of the five beam 

elements, 3, 9, 13, 37 and 40 are shown in Table 8(b). It is noted that the node displacements (
x

u  and 
y

u ) are with respect to 

the global yx  coordinate system with positive 
x

u  agreeing with positive x -axis and positive 
yu  agreeing with positive y -

axis (cf. Fig. 5). However, in the structural design, one requires the internal forces (and bending moments), xF , yF  and zM , 

at the two ends (with their node numberings  and ) of each beam element to be with respect to the local xy coordinate 

system (instead of the global yx  system) as shown in Table 8(b). 

Based on Figs. 4 and 5, and case 1 of Table 8(b), one may obtain the free-body diagrams of beam element Nos. 3, 9, 13, 37 

and 40 in the local xy coordinate systems as shown in Figs. 9(a)-(e), respectively. From Fig. 9(a) one sees that beam element 

No. 3 is subjected a “compressive” force with magnitude 9.311xF N and from Fig. 9(d) one sees that beam element No. 37 

is subjected a “tensile” force with magnitude 01.436
x

F N. It is believed that the “tensile” force in chain stays (436.01 N) 

as shown in Fig. 9(d) being much greater than the “compressive” force in the front fork (311.9 N) as shown in Fig. 9(a) 

should be in agreement with the actual situations. Furthermore, the conditions of equilibrium,   0xF ,   0yF  and 

  0zM , are satisfied for each of the free-body diagrams shown in Figs. 9(a)-(e). In which, the length i
  for the i-th 

beam element is determined by 
2

,1,2

2

,1,2 )()( iiiii yyxx   (i = 3, 9, 13, 37 or 40), with ),(
,1,1 ii

yx  and ),(
,2,2 ii

yx  

representing the global coordinates of its node  and node  as shown in Fig. 2, respectively. It is noted that, in  

TABLE 8 ( a ) 

INFLUENCE OF RIDER’S GESTURE ON THE NODE DISPLACEMENTS  

 

Cases Displacements 

(m) 

Numberings of nodes 

2 11 23 34 35 

1 

245
1

F N 

490
18

F N 

xu  -0.2854E-03 -0.2470E-03 -.3349E-03 -.3380E-03 .3180E-03 

yu  -0.1626E-02 -0.1683E-02 -.1600E-02 -.9467E-03 -.6238E-03 

2 

75.183
1

F N 

25.551
18

F N 

xu  -.3909E-03 -.2914E-03 -.3031E-03 -.3064E-03 .2865E-03 

yu  -.1539E-02 -.1708E-02 -.1610E-02 -.1005E-02 -.5656E-03 

3 

5.112
1

F N 

5.612
18

F N 

xu  -.4964E-03 -.3358E-03 -.2713E-03 -.2749E-03 .2550E-03 

yu  -.1452E-02 -.1734E-02 -.1619E-02 -.1063E-02 -.5073E-03 
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Figs. 9(a)-(e), the counterclockwise (CCW) moments (
iz

M
,1

 or 
iz

M
,2

) are positive because they are the bending moments 

about the positive z (or z )-axis. Similar to Figs. 9(a)-(e), one may obtain the free-body diagrams of the beam element Nos. 3, 

9, 13, 37 and 40 for the other cases of Table 8(b). 

The configurations of the bike after deformations for the above-mentioned three cases (cf. Table 8) are shown in Figs. 10(a)-

(c), respectively. In each case, all deformations (or displacements) of the nodes induced by the external forces 
1

F  and 
18

F  

are normalized by the maximum one in that case and then multiplied by a factor 0.05 to obtain the appropriate dimensions of 

the deformed bike for plotting. Because the external loads,
1

F  and 
18

F , are downward and 
181

FF  , all the vertical node 

displacements ( y
u ) as shown in table 8 are in negative (-) y -direction and all the horizontal node displacements ( x

u ) as 

shown in same table are in negative (-) x -direction (except those for node 35). It is the last reason, the deformations of the 

entire bike for the three cases have the same trend of tilting leftward, so that the deformed configurations of the bike for the 

three cases shown in Figs. 10(a)-(c) look similar. However, because the vertical force on the handlebar (
1

F ) is maximum in 

case 1 and minimum in case 3, so is the vertical deformation of node 2 near the handlebar (cf. Fig. 5) as one may see from 

Figs. 10 (a)-(c). 

 

TABLE 8 (b ) 

INFLUENCE OF RIDER’S GESTURE ON THE INTERNAL MEMBER FORCES AND MOMENTS 

Cases Nodes Forces (N) 

or 

moments  

(Nm) 

Numberings of beam elements 

(Numbering of 1st node Numbering of 2nd node) 

3 

(34) 

9 

(89) 

13 

(1213) 

37 

(2331) 

40 

(3334) 

1 

245
1

F N 

490
18

F N 

 
x

F  .31190E+03 .46246E+03 -.46448E+03 -.43601E+03 -.43601E+03 

y
F  -.32154E+02 .16723E+03 -.60647E+02 .13000E+01  .13000E+01 

z
M  -.17975E+02 .13434E+02 .48521E+01 *0 -.40949E+00 

 
x

F  -.31190E+03 -.46246E+03 .46448E+03 .43601E+03 .43601E+03 

y
F  .32154E+02 -.16723E+03 .60647E+02 -.13000E+01 -.13000E+01 

z
M  .14380E+02 .83103E+01 -.12255E+02 .13650E+00 .54599E+00 

2 

75.183
1

F N 

25.551
18

F

N 

 
x

F  .28249E+03. .46990E+03 -.50805E+03 -.48138E+03 -.48138E+03 

y
F  -.29705E+02 .17371E+03 -.73535E+02 .14543E+01 .14543E+01 

z
M  -.16606E+02 .12482E+02 .21355E+01 0 -.45809E+00 

 
x

F  -.28249E+03 -.46990E+03 .50805E+03 .48138E+03 .48138E+03 

y
F  .29705E+02 -.17371E+03 .73535E+02 -.14543E+01 -.14543E+01 

z
M  .13285E+02 .10104E+02 -.11112E+02 .15270E+00 .61079E+00 

3  
x

F  .25308E+03 .47734E+03 -.55162E+03 -.52676E+03 -.52676E+03 
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      * Pivot at node 23. 

 

 

 

 

 

5.112
1

F N 

5.612
18

F N 

y
F  -.27256E+02 .18019E+03 -.86424E+02 .16086E+01 .16086E+01 

z
M  -.15237E+02 .11531E+02 -.58119E+00 0 -.50669E+00 

 
x

F  -.25308E+03 -.47734E+03 .55162E+03 .52676E+03 .52676E+03 

y
F  .27256E+02 -.18019E+03 .86424E+02 -.16086E+01 -.16086E+01 

z
M  .12189E+02  .11898E+02 -.99682E+01 .16890E+00 .67559E+00 
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FIG. 9 FREE-BODY DIAGRAMS FOR NOS. ( a ) 3, ( b ) 9, ( c ) 13, ( d ) 37 AND ( e ) 40 BEAM ELEMENTS BASED ON 

FIGS. 4 AND 5, AND CASE 1 OF TABLE 8( b ). ALL BEAM ELEMENTS ARE C-C EXCEPT NO. 37 BEAM ELEMENT 

IN ( d ) BEING P-C. 
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FIG. 10 THE DEFORMED CONFIGURATIONS OF THE ENTIRE BIKE SUBJECTED GRAVITATIONAL FORCES OF 

THE RIDER: ( a ) CASE 1; (b ) CASE 2; ( c ) CASE 3.  

 

VI. CONCLUSION 

Based on the foregoing numerical-analysis results, the following conclusions are drawn: 

1. Because the ratio of the lumped masses of attachments (including the two tires) to total mass of the structural members 

(contributed to the stiffness of the entire bike) is high (near 50%), the dynamic analysis of a bike should be conducted 

with the effect of its lumped masses of attachments considered. 

2. The “moment arm” for the tensile force in each spoke with respect to the hub center increases with the increase of 

radius h
r  of the hub disk, so does the restoring moment induced by the spoke tension. Thus, the effective stiffness of 

the sub-structural system composed of the rim, spokes and hub (disks) increases with the increase of h
r  and so do the 

lowest several natural frequencies of the entire bike. 

3. Because the compressive force r
T  in a rim induced by the pretension of all its spokes is much larger than the pretension 

s
T  in each spoke, in spite of the fact that the pretension s

T  can raise the stiffness of each spoke and the compressive 

force rT  can reduce the stiffness of the rim, the overall effect of increasing the pretension s
T  will reduce the overall 

stiffness of the sub-structural system composed of hub (disk), spokes and rim, thus, the lowest several natural 
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frequencies of the bike will decrease with the increase of pretension s
T . Since a strong wheel relies on enough 

pretension s
T  in each spoke and too high value of s

T  will lead to buckling of the rim, determination of the appropriate 

pretension s
T  in each spoke should be an optimum problem.  

4. The free vibration characteristic of a bike is significantly affected by the mass of its rider. Thus, for a bike to 

accommodate various riders, some of its pertinent parameters (e.g., the axial stiffness of the “spring-damper units” for 

rear and front suspension systems) should be adjustable. In addition, most of information obtained from the bike 

without a rider in the existing literature, its applicability in practice seems to need further studies.  

5. For a bike subjected to the gravitational forces of a rider, its node displacements and internal forces (and bending 

moments) of the structural members are significantly affected by the riding gesture of the rider. Based on the theory 

presented and the computer program developed for this paper one may easily obtain the last information, this should be 

benefit for designing a save and comfortable bike. 
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Appendix A 

Stiffness and mass matrices of the P-P, P-C and C-C beam elements 

The stiffness matrix PPk][  and mass matrix PPm][  for the P-P beam element are given by [9] 

























0000

00

0000

00

][




EAEA

EAEA

k PP          (A.1) 
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



















0000

0306

0000

0603

][




AA

AA

m PP




 

 

 

                                          (A.2) 

The stiffness matrix PCk][  and mass matrix PCm][  for the P-C beam element are given by [10] 












































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EIEIEI

EIEIEI

EAEA

EIEIEI

EAEA

k PC

3  3      0    3    0    

33        0    3 0    

     0             0                0  

3   3     0     3   0    

     0            0              0     

][

22

233

233

                     (A.3) 


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
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
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275.1    25.12  0     5.3  0  

25.12  75.113    0    5.170  

   0           0        140     0   70 

5.3       5.17     0      35   0  

   0           0         70     0   140

420
][






A

m PC


                     (A.4) 

The stiffness matrix CCk][  and mass matrix CCm][ for the C-C beam element are given by [9] 
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