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I.  INTRODUCTION

The study of dynamic equations on time scales, which goes back to its founder Stefan Hilger [16], is an area of mathematics
that has recently received a lot of attention. It has been created in order to unify the study of differential and difference
equations. Many results concerning differential equations carry over quite easily to corresponding results for difference
equations, while other results seem to be completely different from their continuous counterparts. The study of dynamic
equations on time scales reveals such discrepancies, and helps avoid proving results twice-once for differential equations and
once again for difference equations.

The general idea is to prove a result for a dynamic equation where the domain of the unknown function is a so-called time
scale, which may be an arbitrary closed subset of the reals. This way results not only related to the set of real numbers or set
of integers but those pertaining to more general time scales are obtained. The three most popular examples of calculus on
time scales are differential calculus, difference calculus, and quantum calculus. Dynamic equations on a time scale have
enormous potential for applications such as in population dynamics. For example, it can model insect population that are
continuous while in season, die out in say winter, while their eggs are incubating or dormant, and then hatch in a new season,
giving rise to a nonoverlapping population (see Dosly et al. [10]).

Several authors have expounded on various aspects of this new theory, see the survey paper by Agarwal et al. [3] and the
references cited therein. The first course on dynamic equations on time scales as in Bohner et al. [7]. For advance of dynamic
equations on time scales as in Bohner et al. [6]. For completeness, we give a short introduction to the time scale calculus.
the introduction of the paper should explain the nature of the problem, previous work, purpose, and the contribution of the
paper. The contents of each section may be provided to understand easily about the paper.

Definition 1.1: A time scale is an arbitrary nonempty closed subset of the real numbers R. Thus
R,Z,N,Ny,
i. e., the real numbers, the integers, the natural numbers, and the nonnegative integers are examples of time scales,

as are
[0,1]U[2,3], [0,1]] U N, and the Cantor set, while

Q, R\Q, C,(0,1),
i. e., the rational numbers, the irrational numbers, the complex numbers, and the open interval between 0 and 1,
are not time scales.
Throughout this paper, a time scale is denoted by the symbol T and has the topology that it inherits from the real
numbers with the standard topology.
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To reference points in the set T, the forward and backward jump operators are defined.
Definition 1.2: For t € T, the forward operator o: T —T is defined by
ot)=inf{seT:s>t},
and backward operator p:T — T is defined by
pt)=sup{seT :s<t}.

If T has a maximum t*, and a minimum t*, then o(t") =t*, and p(t*) =t*. When o (t) # t then t is called
right scattered. When p(t) #t then t is called left scattered.

Points t such that
pt)<t<o(t), p(t)<t=supT, or o(t) ~t=infT,

are called isolated points. If a time scale consists of only isolated points, then it is an isolated (discrete) time scale.
Also, if t<supT and o(t) =t, thentis called right-dense, and if t > inf T and p(t) =t, thent is called left-

dense. Points t that are either left-dense or right-dense are called dense.

Finally, the graininess operator z:T — [0,0) is defined by u(t)=o(t)—t and if f:T — R is a function,
then the function f?:T — R is defined by

fo(t) = f (o)) for all teT,

i.e f7=foo is the composition function of f with 9 .

f:T>R

Definition 1.3: Assume is a function and let L€ T | If t is an isolated point, then we define

Isim f(s)=f(t)
and we say f is continuous at t. When t is not isolated point, then when we write
Isiﬂ? f(s)=L,
it is understood that s approaches t inthe time scale (SeT, s#t). Wesay f iscontinuouson T. provided
Isim f(s)=f(t) forall teT.

In particular, we have that any function defined on an isolated time scale (since all of its points are isolated
points) is continuous. We say f :[a,b], — R is continuous provided f is continuous at each point in (a,b);,

f is left continuous at a, and f is right continuous at b .

In the time scale calculus, the functions are right-dense continuous which we now define.
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Definition 1.4: A function f:T — R is called right-dense continuous or briefly rd-continuous provided it is

continuous at right-dense points in T. and its left-sided limits exist (finite) at left-dense points in T.. The set of
rd-continuous functions f : T — R will be denoted in this paper by

Crd = Crd (T) = Crd (T!R)
In the next theorem we see that the jump operator is rd-continuous.
Theorem 1.1 (Bohner et al. [5]): The forward operator o: T —T is increasing, rd-continuous, and

ot)>t forallteT,

and the jump operator is discontinuous at points which are left-dense and right-scattered.

Remark 1.1: The graininess function g :T — [0,) is rd-continuous and x is discontinuous at points in T
that are both left-dense and right-scattered.

When T =7, the rational dynamic equation on discrete time scales

X(o(t)) = ax(t) +bx(p (1)) ,teT, where a>0, b,c,d >0and m,m, >1,
c+d(x(t)™ (x(p(t)™

becomes the recursive sequence

_ax, + bx, ,

= L n=12,.., 1.1)
cH+dx X%

n+1

where a>0, b,c,d >0 and m;,m, >1.

Now, the difference equations (as well as differential equations and delay differential equations) model various
diverse phenomena in biology, ecology, physiology, physics, engineering and economics, etc.[21]. The study of
nonlinear difference equations is of paramount importance not only in their own right but in understanding the
behavior of their differential counterparts.

There is a class of nonlinear difference equations, known as the rational difference equations, each of which
consists of the ratio of two polynomials in the sequence terms. There has been a lot of work concerning the global
asymptotic behavior of solutions of rational difference equations [1, 2, 4, 8, 9, 11--15, 17-27].

This paper addresses, the global stability, periodicity character and boundedness of the solutions of the rational
dynamic equation on discrete time scales

ax(t) +bx(p(t)) teT 1.2)
c+d(x@O)"(x(p)™ "

X(o (1) =

where a>0, b,c,d >0 and m;,m, >1.

When T =Z and m, =m, =1, our equation reduces to equation which examined by Yang et al. [27].
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Also,when T=Z and m,=m,=b=c=d =1and a=0, our equation reduces to equation which examined
by Cinar [8].

Here, we recall some notations and results which will be useful in our investigation.

Let | be some interval of real numbers and let f be a continuous function defined on | x| . Then, for initial
conditions X(p(t,)), X(t,) € | , it is easy to see that the dynamic equation on discrete time scales

x(o(t)) = T (x(0), x(p(1))), teT, 1.3)
has a unique solution {X(t) :t € T}, which is called a recursive sequence on time scales.
Definition 1.5: A point o is called an equilibrium point of equation (1.3) if
o= T(o o).
Thatis, X(t) = for t €T , is a solution of equation (1.3), or equivalently, o is a fixed point of f .

Assume @ is an equilibrium point of equation (1.3) and u=—f, (@, ), and v=——1f, . (@, @). Then the

linearized equation associated with equation (1.3) about the equilibrium point @ is

Zyoy TUZo) TVZ oy =0 @.4)
The characteristic equation associated with equation (1.4) is

A2 +ud+v=0. (1.5)
Theorem 1.2 (Linearized stability theorem [18]):

@If Julxk1l+v and v<1, then @ is locally asymptotically stable.
(2)If Jul<|1+v]|and |v|<1, then @ isarepeller.

(3)If |ul~|1+Vv|and u® > 4v, then @ is asaddle point.

(4)If |ul=1+v|, then @ is anon—hyperbolic point.

Definition 1.6: We say that a solution {x(t) :t € T} of equation (1.3) is bounded if
[ X(t)[< A for all teT.
Definition 1.7: (a) A solution {X(t) :t € T} of equation (1.2) is said to be periodic with period v if
X(t+v)=x() forallteT. (1.6)

(b) A solution {x(t):teT} of equation (1.3) is said to be periodic with prime period v, or v-cycle if it is
periodic with period v and v is the least positive integer for which (1.6) holds.

Definition 1.8: An interval J < | is called invariant for equation (1.3) if every solution {x(t):teT} of
equation (1.3) with initial conditions (X(p(t,)), X(t,)) € J xJ satisfies x(t) e J for all teT.
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For a real number X(t,) and a positive number R, let O(X(t,), R) ={x(t) :| x(t) — x(t,) [< R}.
For other basic terminologies and results of difference equations the reader is referred to [18].

Il MAIN RESULTS
2.1 Local asymptotic stability of the equilibrium points

Consider the rational dynamic equation on discrete time scales

) +bx(p()
o) = oy oy T (21

where a>0, b,c,d >~0and m,m, >1.

' a ' c ' d - -
Let a =5 c =5 and d =1 Then equation (2.1) can be rewritten as

O ax®+x(e()
XoO) = o a ey ooy @2

The change of variables y(t) = (d')™x(t), m=m, +m,, followed by the change Y(t) =x(t) reduces the above
equation to

 pexe) .
W)= oy ey T (23)

,_a y_C . . . .
where p=a :B, and g=c :B. Hereafter, we focus our attention on equation (2.3) instead of equation

(2.1). Assume that,

Ky

— kZ
2n, +1°

2n, +1’

m, and m, = k.,k,eZ,, and n,n, e Z {0}

When m is the ratio of odd positive integers, equation (2.3) has only two equilibrium points

a =0, and ﬂz«m/p+1—q.

When m is positive rational number and numerator's even positive integers, equation (2.3) has unique
equilibrium point

a=0if q>p+1,

and three equilibrium points:

a=0, B=0p+1-q, and y=—p+1-q if p+1=q.
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2k, +1

Furthermore, suppose that, at least one of m__and m, = , KN €Z,.

3

Then, in this case, we consider x(t) >0 forall teT.
When > p+1, equation (2.3) has unique equilibrium point
a=0.

When p+1>q, however, equation (2.3) has the following two equilibrium points:

a =0, and ﬂz«m/p+1—q.

The local asymptotic behavior of & =0 is characterized by the following result.

THEOREM 2.1:
(1) If g> p+1, then « is locally asymptotically stable.
(2) If g=<1-p,then « isarepeller.
(3) If |g—1]< p, then « is a saddle point.

Proof: The Linearized equation associated with equation (2.3) about the equilibrium point o =0 is

z(a(t))—gz(t) —%z(p(t)) _0,teT.
Now, when T =7, then equation (2.4) becomes

z —an—izn_lzo, nez.

n+l q q

The characteristic equation associated with equation (2.5) is

A? —3/1—1=0, where z(t) = A",
q q

when T =r", r =1, then equation (2.4) becomes
1
Zwu——2,——2,,=0,neN.
q r

The characteristic equation associated with equation (2.7) is

22-P o 1o where 2(t)=2"*",
q q

when T =hZ, then equation (2.4) becomes

p 1
Zoinsy — — Zon T " Loy = 0,neZ.

q q

(24)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)
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The characteristic equation associated with equation (2.9) is

22-P a1 0 where z2(t) = A", (2.10)
a

andwhen T = N%, then equation (2.4) becomes

p 1 _
2y —a Zo=—Z 42 = 0, neN,. (2.11)

The characteristic equation associated with equation (2.9) is

22-2 21 0 where 2(t) =" (2.12)
q q

Hence, the characteristic equation associated with equation (2.4) is

2-Pi 1 0 forallter. (2.13)
a  q
Let u:—B, and v:—l.
q q

(1) The result follows from Theorem 1.2 (1) and the following relations

|u|—(1+v):£—(1—1):w<0, and v:—1<0<1.
q q q q

(2) The result follows from Theorem 1.2(2) and the following relations

1 -1 1- —(-
IU|—|1+v|=£—|1__|=£_|q_|:£_ q_9-( p)<0,
g 9 4 d d d q

and

|VF1>L

(3) The result follows from Theorem 1.2 (3) and the following relations

|1_1|=£_| q_1|= p_lq_1|>_0’

lu|—|1+vj= P
¢ q q q

and|
u’—4v= (E)2 2y 0.
q q
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Now, the local asymptotic behavior of § and y are characterized by the following result.

that heorem 2.2: Assume that

P ,and m, < p+2

+1>q, m < _,
P G M p+1-q p+1-q

then both £ and y are locally asymptotically stable.

Proof : The Linearized equation associated with equation (2.3) about the equilibrium £ is

o)+ MPH=D =Py M(PHI=A) =Ly e, (2.14)
p+1 p+1

Hence, the characteristic equation associated with equation (2.14) is

ﬂz+m1(p+1—Q)—p/1+m2(p+l_Q)_1=0, forall teT.
p+1 p+1

Let g mp+1-a)-p 4, _M(p+l-0)-1
p+1 p+1

Then, from Theorem 1.2 (1) and the following relations

—v+1) ml(p+1—q)—p|_ mz(p+1—q)—1+1): p-m(p+1-q) m,(p+1-0g)+ Py

u
] +1 p+1 p+1 p+1
_-m(p+1-9)
p+1 ’
and

V= m2(p+1_q)_1_<1’
p+1

we conclude that S is locally asymptotically stable. Similarly, we can prove that y is locally asymptotically
stable.

2.2 Boundedness of solutions of equation (2.3)

In this section, we study the boundedness of solution of equation (2.3).

Theorem 2.3: Suppose that pP+1<q and M, is positive rational number and numeraor's even positive integers,

i =1,2. Then the solution of equation (2.3) is bounded forall t €T .

Proof: We argue that | X(t) |< A for all t € T by induction on t.
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Case(1): If T =7Z. Given any initial conditions | X, |[< A and | X, |< A, we argue that | X, |[< A forall neZ by
induction on n . It follows from the given initial conditions that this assertion is true for N =—1,0. Suppose the assertion is

true for N—2 and n—-1(n>1). That s,
X, , < Aand | x ,|< A

Now, we consider X, where we put N instead of (N+1) in equation (2.3),

(p+DA
X <mem X o |+]X — 7 2.15
I I o (P X DS e (2.15)
Since,
g+ XX, |= g+ X X2, > q >0,
;sl. (2.16)
lad+X%% ] 9
From (2.15) and (2.16), we obtain,
x < PHEDA A for all
q

Case(2): If T =hZ ={hk:h>=0 and k € Z}. Given any initial conditions | X , |< A and | X, |< A, we argue that
| X, < A forall neZ by induction on n. It follows from the given initial conditions that this assertion is true for

=—1,0. Suppose the assertion is true for N—2 and n—1(n>1). That s,
| Xh(n—2) |'< A and | Xh(n—l) |'< A

Now, we consider X, , where we put hn instead of h(n+1) in equation (2.3),

X [ (P Xy |+ Xy 0y D < — DA (2.17)
(n-1) h(n-2)
|G+ Xin) X2 | |G+ Xty Xt oy |
Since,
|q+ er:zln—l) XrT(znfz) =g+ er:zln—l) XrT(anz) >q >0,
1 1
= (2.18)
lq+ Xh(n—l)xh(n -2 | q

From (2.17) and (2.18), we obtain,
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(p+DA

| X, < < A for all n.

Case (3): If T=N,={n*:neN_}. Given any initial conditions |X |<Aand|X,|< A, we argue that
| x |< A forall k=n? neN, by induction on K . It follows from the given initial conditions that this assertion is true

for k = 0,1. Suppose the assertion is true for (N—2)* and (n—1). That s,

| X n_2y? |< Aand | x < A

(n-1)?

Now, we consider X ,, where we put N instead of (n+1) inequation (2.3),

X 8 o P X 14 D= qux'“?A - (2.19)
(-1 X(n-2) (n-1? "(n-2)
Since,
|q+x(n 1)2X(n 2)? = q+x(n 12 (n -2)? 200,
! <1 (2.20)

m < —
| q + X(n 1) (nz,z)z I q

From (2.19) and (2.20), we obtain,
+DA
| X, |< u< A for all k.
q
Case(d): If T=r",r=1 Given any initial conditions |X,, |[<Aand|x|<A, we argue that

|X < A forall ker", neN by induction on K. It follows from the given initial conditions that this assertion is true

for kK =1/r,1. Suppose the assertion is true for kK =r"? and k =r"*, where ne N. That s,

| X oz < Aand | X ra < A

Now, we consider X , , where we put N instead of (n+1) in equation (2.3),

| X0 [€ == (P X [+ X0z [) < ﬂ. (2.21)
|+ X X2, |G+ XX,
Since,
|q+x xnz_q+x nz_q
|q+x xn2| q
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From (2.21) and (2.22), we obtain,

| X, < M< A for all k.
q

This completes the proof.
(2.3) Periodic solutions of equation

In this section, we study the existence of periodic solutions of equation (2.3).

The following theorem states the necessary and sufficient conditions that this equation has a periodic solutions.

Theorem 2.4: Equation (2.3) has prime period two solutions if and only if
p+qg>1land 0< p=1 where m =m, = the ratio of odd positive integers.
Proof: First, suppose that, there exists a prime period two solution
U7, V1, /S

of equation (2.3). We will prove that P+ > 1. We see from equation (2.3) that

—M n V/=M k=m1=m2.

q+ (o) a+(pp)*

Then,

_Py-9)t+(p-y)

2 4

q+(pw)"
Since, p— #0, 1= 1-p -
q+(py)
Therefore,
oy =X1-p-q, (2.23)
and so,
+1)(p+
(oﬂy:(p )(o kw)_
q+(py)
Hence,
(p+y)lad—p-1+(py)“1=0. (2.24)

From (2.23) and (2.24), we obtain

(p+y)la—p-1+1-p-q]=0.Then, (p+y)(-2p)=0.
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Since, p >0,
(p+y)=0. (2.25)
It is clear now, from equation (2.23) and (2.25) that ¢ and  are the two distinct roots of the quadratic equation
t?+¥1-p-q=0o0r t*+4p+q-1=0,
So, p+q-1>0. Then, p+q>1.
Second, suppose that P+ > 1. We will show that equation (2.3) has a prime period two solutions. Assume that
p=4p+q-1 and y=—4/p+q-1
Therefore @ and  are distinct real numbers. Set,
x(p(t,)) =@ and x(t,) =y, t, €T.
We wish to show that

X(o (%)) = x(p(t)) = .

It follows from equation (2.3) that

X(O'('[O)) _ px(t0)+ X(p(to)) _ (1- p)'\k/ p+q-1 _ @a- p)«k/ pP+(q _1.

q+(X(t)x(pt,)*  q-(p+q-1) 1-p

since, p=1, X(o(t,))=4p+g-1=0¢.
Similarly as before one can easily show that
X(o(t)) = ¢, where x(p(t)) =@ and x(t) =y.
Thus equation (2.3) has the prime period two solution
e QYO

where @ and i are the distinct roots of the quadratic equation (2.3). The proof is completed.

To examine the global attractivity of the equilibrium points of equation (2.3), we first need to determine the

invariant intervals for equation (2.3).

2.4 Invariant intervals and global attractivity of the zero equilibria
In this subsection, we determine the family of invariant intervals centered at o = 0.

Theorem 2.5: Assume ( > P +1. Then for any positive real number

A<(g-(p+D)'™,
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The interval O(0, A) = (—A, A) is invariant for equation (2.3).
Proof: We consider T =7, hZ ={hk :h>=0and ke Z}, N> ={n*:neN_}, and r", r =1.

Case (1): If T =Z. Given any initial conditions | X ; |< A and | X, |< A, we argue that | X, |< A forall neZ by
induction on n . It follows from the given initial conditions that this assertion is true for N =—1,0. Suppose the assertion is
true for N—2 and n—1(n>1). Thatis,

%2 <R AS(q=(p+1)"" and [ x,; <K A<(q—(p+1)™".
Now, we consider X, , where we put N instead of (N+1) in equation (2.3). Since,

q+X Xz =q—A">q-(q—(p+1)=p+1>0,

p—+1_ (2.26)
|+ X% X%,
Thus,
1
| %, < IqXW(D|X“|+|an|)
+1
< (e max{ X, 1%, [}
[ g+ XX,

< max{| x, , |,| X. , |}=< A forall neZ.

Case (2): If T =hZ ={hk :h =0 and k € Z}. Given any initial conditions | X , |< A and | X, |< A, we argue that
| X, < A forall neZ by induction on n. It follows from the given initial conditions that this assertion is true for

n =—h,0. Suppose the assertion is true for N—2 and n—21(n >1). That s,
X K A (@=(P+1)"" and | X, < A< (a—(p+D)"".
Now, we consider X, , where we put hn instead of h(n+1) in equation (2.3). Since,
0+ Xnto 1y Xn(nzy = d— A" 2q—(q—(p+1)=p+1>0,

p+1

| q + er:?n—l) erln(zn—Z) |

<1, (2.27)

Thus,
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(P Xy 1+ X0y 1)

|th |S I

q+ h(n -1) h(n 2) |
p+1
< o —
19+ Xt Xna 2 |

< max{| X,y |s| Xyn_z) [} < A forall neZ.

) max{] Xy o1y s Xon2) [}

Case (3): If T=N2={n":neN,}. Given any initial conditions |X |< Aand |X,|< A, we argue that
| x |< A forall k=n? neN, by induction on K . It follows from the given initial conditions that this assertion is true

for k = 0,1. Suppose the assertion is true for (N—2)* and (n—1). That s,

<A<(@@-(p+D))"™and |x ., |< A<(q—(p+D))"™.

| X(n_z)z (n-1)?

Now, we consider X2 where we put N instead of (N+1) in equation (2.3). Since,

q+x(n1) (n2)2>_q A">gq-(q-(p+D))=p+1>0,

p+1 <1, (2.28)
|q + X(n -1)2 (n—2)2 |
Thus,
|X . |< (pIx o l+I% .10
m (n-1) (n-2)
| +X(n -1)? X(n 2)? |
+1

< (P ymax{|x, . L%, . [}
|q + X(n 1y X(n 22 | (n-1) (n-2)

<max{| X . LI, . [}=<A forall k= n’.

Case (4): If T=r",r>=1Given any initial conditions |X, |[<Aand|x|<A, we argue that
| X |< A forall ker", neN by induction on K. It follows from the given initial conditions that this assertion is true

for K =1/r,1. Suppose the assertion is true for K =" and k =r"", where ne N. That s,
/ /
| X, K A<(q—(p+1)"" and | x .. < A<(q—(p+1)"".
Now, we consider X2 where we put N instead of (N+1) in equation (2.3). Since,
q+XmXe, =q-A">q-(q-(p+1))=p+1>0,

p+1

————<1. 2.29
| g+ XX, | (2.29)

Thus,
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1
X, |[€————(p| X0 | +] X
| X | QXX (P X [+ X0z 1)
p+1
SG——m—m ) max{ X [ Xz [}
| g+ XX |

<max{| X ., [,|X..[}=< A forall n.

This completes the proof.

Now, we investigate the global attractivity of the equilibrium point o =0.

Lemma 2.1: Assume that T =7, g > p+1, and m is positive rational number and numerator's even positive integers.

Furthermore, suppose that
R=(a-(p+1)™,
and consider equation (2.3) with the restriction that
f:0(0,R)x0O(0,R) - O(0,R).
Let {X.} be a solution of this equation and

1+p

N e D)

Then,

R €(0,1) and|x, |<R"?xmax{| X, || %[}, n=12....

Proof: From Theorem 2.5, we have

|X < A<R,n=-1012.. |,

where we put N instead of (N +1) in equation (2.3). Then,

(max{| x, |,| %, [H™ < R™
Thus,

q—(max{| X .| % IN" =q—R" =1+ p>0.

Hence,

0= 1+p _
g — (max{| X, |,| % [})

(2.30)

(2.31)

(2.32)

< 1. Thismeansthat R, € (0,1).
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Now, we prove that (2.32), by induction on N . From equation (2.3), we have

| X, |$m(p| Xoa |+ X2 1)
< (ﬁ) maxq] X, 1 %, , [} (2.33)
< max{| X, , |,| X, , |}, from (2.26). (2.34)
Then, from (2.33), we obtain
1% [ (ﬁ) maxg %, | X [} (2.35)

But

|+ %" X2 |2 q—] %" || X% [ q—(max{] %, |,| X, D™ =q—R™ =1+ p>0.

Then,

19+ X} |2 g —(max{] %, |.| X, [})" > 0.

From (2.35), we have

p+1 p+1
P e X, < -
g+ XX %o A= T e X 1)

< Ryxmax{] x, |, [F=< Ry xmax{] x|, % [},

And from (2.33) and (2.34), we obtain

| % [<( max{| x, |,| x_; [}

p+1 p+1
| %, [€ (=) max{| x || X, [} < —max{| x, [,| X, [}
2T g XX | “ T g (max{] x, 1%, [3) s
p+1
< —xmax{max{| x, [,| X, [}, X, [}
q — (max{max{] x, [,[ x_, [},1 %, [}) A
p+1

< —xmax{| X_, [,| X, [}= R xmax{| x_, .| X, [}
a-(max{| x, L% }) B Y

Thus, the inequality (2.32) holds for N =1, 2. Suppose that the inequality (2.32) holds for N—1 and N—2(n>3),
respectively. By (2.34), we have

| X, |< max{| x, || x_, [} forall n.

So,
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p+1 < p+1 < p+1 B
LA+ | A= % M, ™ g = (max{] x, |1 %, 1)

R,.
Then, from (2.33), we have

p+1

| %, 1€ () max{] X, [ X, , 1< Romaxd] x, || %, , [}
| q + Xn—lxn—Z

< (n-1)/2 (n-2)/2

< Ry max{R™ " max{] X, || X, [} R max{] X, |, %, [}}

< R max{R}"* max{| X, |, x_ [}, max{| x, |.| x_; [}}

< RM max{] x, |, x, [}-

This completes the inductive proof of (2.32).

Lemma 2.2: Assume that T =hZ ={hk :h €(0,1) and k € Z}, g > p+1, and m is positive rational number and

numerator's even positive integers. Furthermore, suppose that (2.30) holds and consider equation (2.3) with the restriction
that

f:0(0,R)x0O(0,R) - O(0,R).
Let {X,, :h € (0,1) and n e Z} be a solution of this equation and

_ 1+p
o —(max{] x., 1.1 % ("™

R, (2.36)

Then,
R €(0,1) and|x. . [<R™*xmax{| X, |,| % [}, n=12,... . (237)
Proof: From Theorem 2.5, we have
X, K A<R,n=-101.. |,

Where we put hn instead of h(n+1) inequation (2.3). Then,

(max{] X, || %, )™ < R™
Thus,

q—(max{| x_, .| % [H" = q—-R™ =1+ p 0.
Hence,

< 1+p
q—(max{] x, I % [H)"

< 1. Thismeansthat R, € (0,1).
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Now, we prove that (2.37), by induction on n. From equation (2.3), we have

1
| X [< (P Xy [+ Xyazy 1)
" g+ Xr:n(ln—l)xh(zn—Z) | neD "2
p+1
< max{| X o X 2.38
(l q+ X:?nfl)xﬂznfz) |) {l h(n-1) | | h(n-2) |} ( )
< max{| X1 Il Xyn_z [}, from (2.27). (2.39)
Then, from (2.38), we obtain
p+1
| %, [< (=) max{] X, .| X, [}- (2.40)
|a+x5" X

But

|+ %X |2 q—] %" || X% [ q—(max{] %, |.| X, D" =gq—R" =1+ p>0.

Then,

|9+ X" X2 2 g —(max{] X, .| x.,, )" > 0.

From (2.40), we have

p+1 p+1
|Xh |S (ﬁ m

| g+ Xy X% q — (max{] X, .| Xy, 1})
< Ry xmax{] X, |, X, [}=< R xmax{| %, .| X, [},

And from (2.38) and (2.39), we obtain

ymax{] X, |,[ x4 [} <

max{| %, |, Xy [}

p+1
g — (max{] x, [, X, [H"

p+1
| %o IS (l 4+ XK |) max{| x, .| %, [} < max{] x, |, X, [}
n %o

- p+1
g — (max{max{] x, [.| X, [}, %, [})"
- p+1
g — (max{] x_;, [, %, [H"

< R xemax{] X, ||| %, [}-

xmax{max{]| X, [,[ X, [}.] %, [}

xmax{]| X_, |,| %, [}= R xmax{| x_, |,| X, [}

Thus, the inequality (2.37) holds for N =1, 2. Suppose that the inequality (2.37) holds for h(n—1) and h(n—2)(n>3),
respectively. By (2.39), we have

| X, |< max{| x, |,| x_, [} forall n.

So,
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0= p+1 < p+1 < p+1

Then, from (2.38), we have

p+1
| q + XrT(ln—l) XfT(zn—z) |
< R1 max{| Xh(n—l) |1| Xh(n—z) |}S th max{| Xh(n—l) |’| Xh(n—Z) |}

< R"max{R"" " max{] x, .1 x_,, [} R max{| %, 1.1 x., [}

<RI max{R]"” max{] %, L x., [} max{] %, |1 %, [}}
<R™?max{| x, |,| x_, [}.

| th |S ( )maX{l Xh(n—l) |1| Xh(n—2) |}

This completes the inductive proof of (2.37).

[0+ Xty Xntoy | A= 1 X0y ™ Xoay ™ A= (max{] %, | %, D"

R,.

Lemma 2.3: Assume that T = N2 ={n”:neN_}, > p+1, and m is positive rational number and numerator's even

positive integers. Furthermore, suppose that (2.30) holds and consider equation (2.3) with the restriction that

f :0(0,R)x0O(0,R) — O(0, R).

Let {x, :k =n* and ne N} be asolution of this equation and

- 1+p . 2.41
R maxdix [ )" (240
Then,
R €(0,)) and| x |<R“* xmax{|x || % [} k=14,.. . (242

Proof: From Theorem 2.5, we have

X, K A<R, k=12,..

where we put n instead of (N +1) in equation (2.3). Then,

(max{] x ;| %, [})™ < R™.
Thus,

q—(max{| x |,| %, )" =q-R™ =1+ p>0.
Hence,

0< 1+p _
- (max{] x, [,[ %, [})

< 1. Thismeansthat R, €(0,1).
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Now, we prove that (2.42), by induction on K . From equation (2.3), we have

1
| X I< T (PIX e 11X e 1)
QX x| (n-2
< (| _|_Xn[1:1)+:|.m2 |) max{| X o N X o2y [} (2.43)
4+ Xnw X2y
< max{| X o1y || X -2y [}, from (2.28). (2.44)
Then, from (2.43), we obtain
p+1
| % [< (=) max{] X, |, X, [} (2.45)
| a+ x5 | ’

But

[ g+ Xt > 0= Xt || %™ [> q—(max{] X, |,| x, )™ >q—R™ =1+ p > 0.

Then,

|G+ %™ [ g — (max{] , .| %, [H" > 0.

From (2.45), we have

p+1 p+1
_PHL % L% [ < _
G+ XX | o M= T el % 1% 1)

< Roxmax{] %, || % [}=< R xmax{] %, ||| %, [},

| % [<( max{| X, |, %, [}

And from (2.43) and (2.44), we obtain

p+1 p+1
1% b (—P 2y maxg) x, 1) % [} < _max{] x, ||| %, [}
g e S T % o 1) L%
p+1
< e max{R, max{] %, |\ % [}, % [}
q— (max{max{] % |1 %, (1 % [}) X% :
p+1

< _x Ry xmax{] %, |,| %, [} < R?xmax{| x, |,| , [}
PRV PATIC b S

< R semax{] x, |, %, [}

Thus, the inequality (2.42) holds for N'=1,2. Suppose that the inequality (2.42) holds for (n—1)* and (n—2)°,
respectively. By (2.44), we have

| X, [< max{] x }forall neN,.

(n-1)? |'| X(n—Z)2 |

So,
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p+1 < p+1 < p+1

| g+x", X

0< < < =
(n-1)* "(n-2)* | a-| Xy ™ Xn-2y ™ g = (max{| X, .| % [})"

R,.
Then, from (2.43), we have

| [=(

| q 4 Xml sz |) max{l X(n—l)z |’| X(n,2)2 |} S Rl max{l X(n,]_)z |’| X(n,2)2 |}
(-1 "(n-2)?

<max{R"™"2 max{] X, |,| [}, R™ "2 max{] x, |,| x, [}}
<R™2Zmax{| x, |,| X, [}, n=3,4,...

<R" 2 max{| X, || % [}, n=1,2,...

This completes the inductive proof of (2.42).

Lemma 2.4: Assume that T=r",1<r<2,q> p+1 and m is positive rational number and numerator's even

positive integers. Furthermore, suppose that (2.30) holds and consider equation (2.3) with the restriction that
f :0(0,R)xO(0,R) — O(0, R).
Let {X :k=r", neN and 1< r <2} be asolution of this equation and

_ 1+p
q—(max{] x,, .| % [H"

R, (2.46)

Then,
R €(0.1) and| x, [< R*"xmax{] x,, .| x, [} (2.47)
Proof: From Theorem 2.5, we have
X < A<R, k=r",neN,and 1<r<2,

where we put n instead of (N +1) in equation (2.3). Then,

(max{] %, ;| % [H™ < R™
Thus,

q—(max{| %, |,| % [})" =gq-R" =1+ p>-0.
Hence,

0< 1+p _
q— (max{] x,, |.[ % [})

<1. Thismeansthat R, € (0,1).

Page | 21



International Journal of Engineering Research & Science (IJOER) [Vol-1, Issue-6, September- 2015]

Now, we prove that (2.47), by induction on n. From equation (2.3), we have

X, |[€ ————(p| X | +| X
| X0 | Qe X, |(|0| o |+ Xz )
+1
< (P ymax{| .. I x,.. I} (2.48)
| g+ XX 2,
< max{| X .. |,| X... [}, from (2.29). (2.49)
Then, from (2.48), we obtain
p+1
| X [€ (=) max{| X, || % [}- (2.50)
|+ XX | l/
But
|q+x"x 2 A= [ X5 2 q—(max{] %, ||| % [H" = q-R" =1+ p ~0.
Then,

| o+ X8 [> g — (max{] x,, || x [H™ > 0.

From (2.50), we have

p+1 p+1
1%, 1 (—P Ly maxqIx,, 1| x [} < max{| %, 1| % I}
e | e b %, L% 1) Kur bl %

= Rix maX{| X1/r |!| Xl |}'< er/Z x max{| X1/r |'| X1 |}1

And from (2.48) and (2.49), we obtain

1 1
X0 [ (=Y max{] x, |,| %, [}-< i max{] x, || x, [}

|9+ X% | q—(max{| X, [,| , [})"
p+1

= a— (max{max{| %, [1% [11% )"
p+1

<

q—(max{] x,, |,| x D"
< R xR semax{| x,, |,| % [}=< R x R xxmax{] x,, |,| [}
272 e max{] %y, |, % [} < R xmax{] %, |, % [}

x max{R}"* max{] x,, .| % [}, % [}

xR xmax{] . 1% [}

<

Thus, the inequality (2.47) holds for k= r,rz. Suppose that the inequality (2.47) holds for
k=r"2and k=r"", neN, respectively. By (2.49), we have

| X [€max{| X, |,| .. [} forall n.
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So,

- p+1 < p+1 < p+1 _
A+ XX | =X X0 ™ = (max]] xy,, L1 x ()"

R.
Then, from (2.48), we have

| X 1< (

p+1
| q-+ Xn:\l—l Xn:&z )maX{l XrIH |'| Xr”’2 |} = Rl maX{| Xr"’l |1| Xr”’z |}
r r

<max{R"""2 max{| x,,, |l x [}, R "2 max{| x,, |, % [}}
<R xmax{| %, ||| % [}}, n=3,4,..
<R xmax{| X, LI % [}, n=1,2,3,...

This completes the inductive proof of (2.47).

Theorem 2.6: Assume that > p+1, and m is positive rational number and numerator's even positive integers.
Furthermore, suppose that (2.30) holds, and consider equation (2.3) with the restriction that

f :0(0,R)xO(0,R) = O(0,R).
Then the equilibrium point & =0 of the equation (2.3) is a global attractor.

Proof: From Lemmas 2., 1=1,2,3,4, Xx(t) > a =0 when t — oo, then the equilibrium point =0 of the
equation (2.3) is a global attractor.

Next, we determine the family of invariant intervals centered at £ ="1%/(p+1)—q when p+1>q.

2.5 Invariant intervals and global attractivity of the nonzero equilibria

In this subsection, we consider the discrete time scales

T=7hZ={hk:h=0and keZ}, N2={n*:neN.J}, and r', r>=1,m=m,=1 and (p+1)>q.

This means that, we determine the family of invariant intervals centered at B =./(p+1)—q when p+1>g. To this
end, we establish the following relation.

DO xo)_pBep
M o)
_ PO X)X, | pB X))
arxOKe) 0+ Axo) Qo) arp
_ pg—x*(p(t)) ~
~ @@ s P

q-pp’ .
' (q+ Bx(p®))(q+ L% (x(p (1)) - p).-

In view of ﬁz = p+1—q, the above equality is reduced to

Page | 23



International Journal of Engineering Research & Science (IJOER) [Vol-1, Issue-6, September- 2015]

L pg—x*(p(1)) ~
o) =F = G rx@xeona=+ pxioa) 0 7P
_9-p _
T R OIGORY)
Thus,
X(ot) - A< Pq—x (p(V) ToN]

(a+ XOX(eM))(@+ Ax(p(1)
A —2=P o) - Bl

q+Bx(p(1))
< pa—x*(p(1) 4—9=P
(@+x@Ox(pON@+Lx(p®) a+px(p(0)
xmax{| x(p(t)) = A1 x(t) - B[} (2.5

Consider the function

9(x.) @@+ 8y) @By Y e0.p) (252

The following result is obvious.

Lemma 2.5: The function ¢ is strictly decreasing in X and decreasinginy .

Consider the function

_ __ pg-x lp-al _
"0 =90 = (e T o XSGRO

We have the following result.
Lemma 2.6: Assumethat ¢ > p. Then, h(x)<1 for xe(0,4/pq).

Proof: Clearly, h is strictly decreasing in X . Since > p, then

2
h(X) pg—X + P—q

S @+X°)(Q+BX) (@+px)

The result follows from h(0) =1.
Now, we are ready to describe the family of nested invariant intervals centered at £ .

Theorem 2.7: Assume that max{l, p} < q < p+1.
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i-1f g > , then for every positive number A < /3, the interval

4(p+1)
44+ p
O(B,AN=(B-AB+A

is invariant for equation (2.3).

4(p+1
i-1f g < %, then for every positive number A<./pq — /£, the interval
+P

O(B.A=(B-AL+A)
is invariant for equation (2.3).

Proof: First, we note that
pg- 4% = pa—[(p+1)-ql=(+ p)(q-1) > 0.
Thatis, £ between O and \/m Now assume

if qzm

B )
A<min{g,pq - p}= P
{ﬂ pq ﬂ} {m_ﬁ it q<451;:)1)_
Case (1): If T =Z, given any initial conditions
X, =Bk Aand |x,— BI< A
we argue that

| X, — B < A for all n byinductionon n.
The proof is similar to the proof of Theorem 4.4 in [27 ] and will be omitted.
Case 2: If T =hZ, given any initial conditions
X, —fIRAand |x,—BI< A
we argue that

| ., — A= A for all n byinductionon n.
It follows from the given initial assertion is true for N =-1,0.
Suppose the asseration is true for h(n—2) and h(n—1).. That s,

| Xh(n—2) _IB |"< A and | Xh(n—l) _ﬂ |'< A

Now, we consider X, where we put hn instead of h(N+1) in equation (2.51), Lemma 2.5 and Lemma 2.6, we have
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Pq — Xr?(nfz) g-p
o PR I+ D¢ max{] Xy~ Xz~ 1}
h (q+Xh(n—l)xh(nfz))(q+ﬁxh(n,2)) q+ﬁxh(n—2) h(n-1) h(n-2)
<( Pq _Xﬁ(nfz) q-—p

+ )< MaxXq| Xy, 4y = Bl X0y — B}
g+ Xh(n-1) Xh(n—z))(q + ﬁxh(n—z)) g+ ﬂxh(n—z) " "
< G (Xnn-1y» Xngn_2) X MaX{| X0 1) = B Xonoy = B}

< g(Min{X; 5 1) X203 MIN{X 01y X020 3) X MX] X0 0y = B X0 = B 1}
< h(MIN{X, 1)+ %oz D) X MaX{] X gy = B Xy = B 1}
<max{] X,y = B 1| Xy~ BIF< A

This completes the inductive proof.

When T =N€ and r", r =1, the proof will be omitted.

By an analogous argument to that for Theorem 2.7, we can obtain the following result about the family of nested
invariant intervals centered at 7 .

Theorem 2.8: Assume that max{l, p} <q < p+1.

4(p+1
i-I1f > %, then for every positive number A <| 7|, the interval
+p

O(r.A=(r—Ay+A)
is invariant for equation (2.3).

4 1
i- If g < %, then for every positive number A<./pg—|y|, the interval
+p

O, A=(r-Ar+A
is invariant for equation (2.3).

Now, we investigate the global attractivity of the equilibrium point £ and y.
Lemma 2.8: Assume that T = 7Z, and max{l, p} <q < p+1. Suppose that

R=min{s,\/pq -},

and consider equation (2.3) with the restriction that

(2.53)

f:O(8,R)xO(f,R) > O(5,R).

Let {X,} be a solution of this equation and
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BT EF s B TRy 1 A AlR k2
Gy g p AR Alex, <A
(a+(2p- X_B?)quf pRB-x,) a+ ﬂcgz_ﬂp— ) TIamARIX-Al&x A (254)

Then,

M e(0,1) and|x —BIKM"?xmax{|x,— B | %, — B} n=12,... (2.55)

The proof is similar to the proof of Lemma 6.1 in [27 ] and will be omitted.
Lemma 2.9: Assume that T =hZ ={hk :h e (0,1) and k € Z}, and max{l, p} < q < p+1. Suppose that (2.53)
holds and consider equation (2.3) with the restriction that

f:0(B8,R)xO(B,R) - O(5,R).
Let {X,, :h €(0,1) and n € Z} be a solution of this equation and

(q+><%(;(;)§ﬁxo)+qq+_ﬂzo It Ix, = Bll%-Bl&x < p,
(Q+(2,6’—Xog)g)(_qxiﬁ(Zﬁ—xo)) " q+ﬂq(2—;_ ) if | X, = BI<I % —B1&X, = B,
(q+ xgj)(_qx+h,3xh) i i_ﬂsh it [x,, - BRI%—Bl&x, <p,
Q+(@2p —xhp)?)_(c;( T X)) g+ ﬂ?z_ﬂp_ o Tl ARI-plEx, =f (256)

Then,

M e(0,1) and|x. —BIKM™2xmax{| x_, — S| %, — B} n=12,... (2.57)

Proof: The result that M € (0,1) follows from Lemma 2.6. Next, we prove equation (2.57) by induction on n. First, set

,B_Xo if |X—h_ﬂ|§|Xo_ﬂ|&XoSﬂ,
A= Xo_ﬂ if |X—h_ﬂ|S|X0_ﬂ|&XOZﬂ)
_{ﬂ_x—h if |X_h_ﬁ|Z|X0_ﬂ|&X_hSﬂ,

X p _ﬂ if |X—h _ﬁlgl Xo_ﬂl&x_h Zﬂ-
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Then, A< . ByLemma 2.5 and Theorem 2.7, we derive that for all n,

2

PA — X, (n-2) N g-—p <M
(q+ X (n-1) Xh(n—z))(q + ﬂxh(n—z)) a+ BXyn-2)

where we put hn instead of h(n+1). By equation (2.51), we have

pg x5, 4] _9-P
@+ XX )@+ BX4) - a+ B,
<M xmax{| %, = BLIx4 =~ B}
<M xmax{|x, - 811 x., - B[}, and

RN

xmax{| x, =B, x., = B}

~ Pg—Xg 9-P . _ _
o= BE e S g a Ml %=L~ A1

<M xxmax{| X, — £, M xmax{| x, — B .| x, — B }}
<M xmax{| %, — B,/ x, - B}
<M P2 xmax{| x, — B .| x, - B}

So equation (2.57) holds for n =1, 2. Suppose that equation (2.57) holds for h(n—1) and h(n-2), respectively.
By the inductive hypothesis, we have
pgq-— Xﬁ(nfz) n a-p
(A + X0 X002 A+ BXng) A+ BXyn g
<M max{M """ xcmax{| x, — 1| X, = B} M D xmax{] x, - B, x, ~ B}}
<M " max{M """ x max{]| X = BlLIx,—BHM n-212 % max{] X —BLIx, - B3}
<M ™ max{M " x max{| X, = B 1,1 x_, = B}, max{| x, — 1| X, — B[}}
<M™2max{| %, ~ B X, ~ B}

This completes the inductive proof of equation (2.57).

| X0 = B (

) x max{| Xi(n-1) - Bl Xn(n-2) - B}

Lemma 2.10: Assume that T =N ={n’ :ne N}, and max{L, p}<q =< p+1. Suppose that (2.53) holds and
consider equation (2.3) with the restriction that

f:O(B,R)xO(B,R) > O(5,R).

Let {X, 1k =n* and n e N} be a solution of this equation and
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pa-x . 4-p
(@+%)(Q+5%) g+ %

Pa—% L 9-p
(q+(zﬂ_xo)2)(q+ﬂ(2ﬂ_xo)) q+B(2L—X,)
(q+><F}q)(q)f1+ﬂxl)+qq+ﬁ€<1 ARG -FlEN A

pg—x L 9-p
@+@28-x))a+B2A-x)) q+pB(2B-xX)

if |Xl_ﬁ|S|X0_ﬂ|&XO <p,

i 1% =Bl %~ B1&% = B,
M ={

if |%,-ARI%-Bl&x2p.  (258)

Then,
M e(0,1) and|x, —BI<K M 2 xmax{| x, — B,| %, — B} k=L4,.. . (2.59)

Lemma 2.11: Assume that T =r", 1<r <2, and max{l, p}=<q =< p+1. Suppose that (2.53) holds and consider
equation (2.3) with the restriction that

f :0(8,R)xO(S,R) — O(5,R).

Let {X K =r",1<r <2, and n € N} be a solution of this equation and

pa-x;  4-p
@) @+Ax) a+p%

pa—x L 4-p
@+@B-%))a+BR2A-x)) a+B2B—xX)
(q+&??)(qxirﬂxl,r)+qjﬂz/r e PR AI8 X =P

PY—%¢ L 9-p
@+@2B-x,)" )+ BRE-%,.))  d+BR2L—x,)

it [ Xy, = BI<Ix - Fl&x < B,

it X, = BI<Ix = f|&x 2 p,

it %y, ~B21% ~B1&%, > 5. (2.60)

Then,
M € (0.2) and|x, — £1< M2 xmax{| x,, ~ A1.| % ~ A} (2.60)
Theorem 2.9: Assume that max{l, p} < q < p+1, and (2.53) holds. Consider equation (2.3) with the restriction that
f:0(8,R)x0O(8,R) > O(5,R).
Then the equilibrium point £ of the equation (2.3) is a global attractor.

Proof: From Lemmas 2., i=28,9,10,11, we obtain x(t) —» p when t — oo, then the equilibrium point B of the
equation (2.3) is a global attractor.

At the end of this section , we can establish the following results related to the global attractivity of 7 .
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Lemma 2.12: Assume that T =7, and max{l, p} < q < p +1. Suppose that

R=min{| 7|,\/pa—| 7}, (2.62)

and consider equation (2.3) with the restriction that

f:O(y,R)xO(y,R) »> O(y,R).

Let {X,} be a solution of this equation and

pa—x q-p
@+X)(Q+7%)  q+7X%

pa—% L 9-p
(A@+2r —%))A+72r—%))  a+7(2y—x,)
pg-x%  _ 4-p
(@+X°)@+7x,) a+rx,

if | X, =71 X =7 &%, <7,

if | X, =7 [ -r|&X, 27,

N ={
It X, =y RI%—7|&x, <7,

p‘j_xi PR bl Y it [x,—y2I% —7|&x, 27  (2.63)
@+@y—-x))a+y2y-x,)) d+r@2yr—-x,)

Then,

NE(O):L) and|xn—ﬂlganZXmaX{lx_l—]/HXO—]/l}, n=1,2,... . (264)
Lemma 2.13: Assume that T =hZ ={hk :h e (0,1) and k € Z}, and max{l, p} < q < p +1. Suppose that (2.62)
holds and consider equation (2.3) with the restriction that

f:O(y,R)xO(y,R) > O(y, R).
Let {X,, :h €(0,1) and n € Z} be a solution of this equation and

pa-x q-p
@+x)(@+7%)  q+7%

pa—% L 9-p
(q+(27_xo)2)(q+7(27_xo)) q+7(2y —X%,)
pa—x’, . q-p
@+X2)A+rx,)  d+rx,

if X, =7 [<I% -7 &% <7,

if |X_h—]/|S|XO—}/|&XO 27,

N ={

if |, =7 RIx-rl&x, <y,

pqz_xfh 4 4-p if X, —7 2% —7|&X, 27 (2.65)
(A+@y—xp))A+72r-x4)) a+y@2y—-x,)

Then,

Ne(0,1) and|x. —7|<N™2xmax{|x 7 || % —7}Hh n=L2,. . (2.66)
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Lemma 2.14: Assume that T =N3={n’:neN_}, and max{l, p} < q =< p+1. Suppose that (2.62) holds and
consider equation (2.3) with the restriction that

f:O(y,R)xO(y,R) > O(y, R).
Let {X, :k =n* and n e N} be a solution of this equation and

Pa-% . 4-p
@+x)@+7%) a+7X%

Pd—% L 4-p
(q+(27/—XO)2)(q+7(27/—X0)) q+y(2y —X,)
pa-x  , 4-p
@+x)@+7x) a+rx

pq_xiz + q_p Ifl
Rl -y &% >y (2.67)
@+ 27 x))a+72r %) qrr@r—x) o TTISREY

if | —y£[X—7|&X% <7,

it %~y 1] % 7 1&% > 7,

N ={

it % =y I%—r|&x <y,

Then,

N e(0,1) and|x —7[< N*xmax{|x, —y || % —7 |} k=14,... . (2.68)

Lemma 2.15: Assume that T =r", 1<r <2, and max{l, p}<q =< p+1. Suppose that (2.62) holds and consider
equation (2.3) with the restriction that

f:0(»,R)xO(y,R) = O(,R).
Let {X 1K =r",1<r <2, and n € N} be a solution of this equation and

pa-x . 4-p
@+x)@+7%)  a+rx
pa—x L 4a-p
@+ @2y =x))a+7@2y-x))  d+r(2y-x)
PA-X, ., 4-p
(@+X5)(A+7%,)  q+7%y,
PY =X L 9-p
@+@2r =%, )N +7@2r=x,))  a+7(27—xy,)

it %, =y <} -yl&x <y,

if %, 7% -y|&x 27,
N ={
If |X1/r_7|Z|X1_7/|&X1/rS7/'

it %, —yRIx-yl&x, 2y (269

Then,
N e (0’1) and | Xy _7|S Nk/z XmaX{l Xy _yl’l X1_7|} (270)
Theorem 2.10: Assume that max{l, p} < g < p+1, and (2.62) holds. Consider equation (2.3) with the restriction that

f:O(y,R)xO(y,R) »> O(y,R).
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Then the equilibrium point y of the equation (2.3) is a global attractor.

Proof: From Lemmas 2.1, i =12,13,14,15, we obtain x(t) — y when t — oo, then the equilibrium point » of the
equation (2.3) is a global attractor.
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