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Abstract— In this paper, QR-decomposition method for solving the complex fuzzy linear equation Cz w  in which C  is 

a crisp complex matrix and w  is an arbitrary complex fuzzy vector is considered. Some examples are given to illustrate the 

proposed method. 
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I. INTRODUCTION 

Many real-world engineering systems are too complex to be defined in precise terms, imprecision is often involved in any 

engineering design process. Fuzzy systems have an essential role in this fuzzy modeling, which can formulate uncertainty in 

actual environment. In many linear systems, some of the system parameters are vague or imprecise, and fuzzy mathematics is 

a better tool than crisp mathematics for modeling these problems, and hence solving a fuzzy linear system [11] or a fuzzy 

differential equation is becoming more important. The concept of fuzzy numbers and arithmetic operations with these 

numbers were first introduced and investigated by Zadeh [22]. A different approach to fuzzy numbers and the structure of 

fuzzy number spaces was given by Puri and Ralescu [16], Goetschell and Voxman [12] and Wu and Ma Ming [20]. 

Since Friedman et al. proposed a general model for solving an n n  fuzzy linear systems whose coefficients matrix is crisp 

and the right-hand side is an arbitrary fuzzy numbers vector by an embedding approach, many works have been done about 

how to deal with some advanced fuzzy linear systems such as dual fuzzy linear systems (DFLS), general fuzzy linear systems 

(GFLS), full fuzzy linear systems (FFLS), dual full fuzzy linear systems (DFFLS) and general dual fuzzy linear systems 

(GDFLS). These works were performed mainly by Allahviranloo et al. [2,3,4,5], Abbasbandy et al. [1,7], Zheng et al. [1,9] 

and Dehgham et al. [10] and so on. In traditional fuzzy linear systems, the uncertain elements were usually denoted by the 

parametric form of fuzzy numbers. Based on arithmetic operations of the fuzzy number, the fuzzy linear systems could be 

extended into crisp function linear systems. Therefore the solutions of the fuzzy linear systems can be obtained by solving 

the model by means of ordinary analytical and numerical methods. 

However, very few researchers have developed methods to solve fuzzy complex system of linear equations. The fuzzy 

complex numbers was introduced by J.J.Buckley in 1989 [9]. The n n  fuzzy complex linear systems have been studied 

by M.A. Jahanigh [15]. Solution of fuzzy complex linear system of linear equations was described by Rahgooy et al. [18] and 

applied to circuit analysis problem. In 2014, Behera and Chakraverty [8] discussed the fuzzy complex system of linear 

equations by adding and subtracting the left and right bounds of the fuzzy complex unknowns and the right-hand side is 

fuzzy complex vector. 

In this paper complex fuzzy linear system is investigated. A numerical procedure for calculating the fuzzy solution is 

designed. Finally, some examples are given to illustrate our method. The structure of this paper is organized as follows: 

In Section 2, we recall the triangle fuzzy number and present the concept of the complex fuzzy linear systems. The 

computing model to the complex fuzzy linear systems is proposed in detail and the fuzzy approximate solution of the 

complex fuzzy linear systems is obtained by solving the crisp systems of linear equations using QR- decomposition method. 

Some examples are given to illustrate our method in Section 4 and the conclusion is drawn in Section 5. 

II. PRELIMINARIES 

There are several definitions for the concept of fuzzy numbers. 

2.1 The fuzzy number 
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Definition 2.1.  A fuzzy number is a fuzzy set like  : 0,1u R I  which satisfies: 

(1) u  is upper semi-continuous, 

(2)  u  is fuzzy convex, i.e.,  ( 1 ) min{ ( ), ( )}u x y u x u y    for all  , , 0,1x y R   , 

(3)  u is normal, i.e., there exists 0x R such that 0( ) 1u x  , 

(4)  sup { ( ) 0}pu x R u x   is the support of the u , and its closure cl(supp u ) is compact. 

Let 
1E  be the set of all fuzzy numbers on R . 

Definition 2.2.  A fuzzy number u in parametric form is a pair  ,u u  of functions    , ,0 1u r u r r  ;which satisfies 

the requirements: 

(1)   u r is a bounded monotonic increasing left continuous function, 

(2)   u r  is a bounded monotonic decreasing left continuous function, 

(3)      ,0 1u r u r r   . 

A crisp number x is simply represented by    ( , ) ( , ),0 1u r u r x x r   . By appropriate definitions the fuzzy number 

space    { , }u r u r becomes a convex cone 
1E  which could be embedded isomorphically and isometrically into a Banach 

space. 

Definition 2.3 Let          , , , ,0 1,x x r x r y y r y r r    and k R . Then 

(1)             , ,x y iff x r y r x r y r    

(2)          , ,x y x r y r x r y r     

(3)          , ,x y x r y r x r y r     

(4)  
 

 

, , 0
,

, , 0

k x k x k
kx

k x k x k

 


 


 

Definition 2.4 An arbitrary fuzzy complex number may be represented as X p iq  , where 

    ,p p r p r and     ,q q r q r  for all 0 1r   are two real fuzzy number. Hence one may have 

         , ,X p r p r i q r q r  . 

Definition 2.5 For any two arbitrary complex fuzzy numbers ,x p iq y u iv     where , , ,p q u v are fuzzy numbers, 

their arithmetic is as follows: 

(1)     1 2 1 2 1 2 ;z z x x i y y      

(2)  , ;kx kp ikq k R    
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(3)           1 2 1 2 1 2 1 2 1 2 .z z x x y y i x y y x          

2.2 Complex fuzzy linear systems 

Definition 2.6. The linear system equation 

11 1 12 2 1 1

21 1 21 2 2 2

1 1 2 2

...

...

...

...

n n

n n

n n nn n n

c z c z c z w

c z c z c z w

c z c z c z w

   


   


    

       (2.1) 

where ,1 ,ijc i j n   are complex numbers and ,1 ,iw i j n   are complex fuzzy numbers, is called a complex fuzzy 

linear system(CFLS). 

Using matrix notation, we have  

Cz w           (2.2) 

A complex fuzzy numbers vector  

 1 2, ,...,
T

nz z z z  

is called a fuzzy solution of the complex fuzzy linear system (2.1) if z satisfies (2.2). 

III. SOLVING COMPLEX FUZZY LINEAR SYSTEM OF EQUATION 

3.1 Equivalent fuzzy linear system 

Theorem3.1. The n n  complex fuzzy linear system (2.1) is equivalent to a 2 2n n  order fuzzy linear system  

Gx b           (3.1 ) 

where                                 

               , ,
A B p u

G x b
B A q v

     
       
     

      (3.2) 

Proof.   We denote , , n nC A iB A B R    and w u iv   where ,u v are fuzzy number vectors. We also suppose the 

unknown vector z p iq   where ,p q are two unknown fuzzy number vectors. 

Since Cz w , we have  

( )( )A iB p iq u iv     

i.e.  

  ( )Ap Bq i Aq Bp u iv     . 

Comparing with the coefficient of i , we have 

Ap Bq u

Aq Bp v

 


 
 

i.e. 

A B p u

B A q v

    
    

    

, 
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It admits a 2n  order fuzzy linear system. 

We express it in matrix form as follow: 

Gx b  

3.2 The model 

When ,z w  of fuzzy linear equation (2.3) are denoted by the parametric form i.e. 

       1 2[ , ,..., ] , [ , ] [ , ],T
j jj jn j j jw w w w w u iv u r u r i v r v r      

       1 2[ , ,..., ] , [ , ] [ , ],T

n j j j j jj j
z z z z z p iq p r p r i q r q r     1,2,..., ,0 1.j n r    

Some results for solving fuzzy linear equation (3.2) are obtained by the following analysis. 

Theorem 3.2. The fuzzy linear equation (3.2) can be extended to a crisp function linear system as follow  

   SX r Y r         (3.3) 

Where 

 

 
 

 

 
, ( ) ,

x r b rG G
S X r Y r

G G x r b r

 

 

    
                 

   (3.4) 

in which the elements ijg
 of  matrix G


 and ijg

 of  matrix  G


are determined by the following way: if 

0,ij ij ijg g g  else  0,1 , ;ijg i j n     if 0,ij ij ijg g g  else 0,1 , .ijg i j n     

Proof.  Let    [ , ],0 1b b r b r r    and [ ( ), ( )].x x r x r Suppose G G G   in which the elements ijg
 of 

matrix G


and ijg
of matrix G


are determined by the following way: if 0,ij ij ijg g g  else 0,1 , ;ijg i j n    if 

0,ij ij ijg g g   else  0,1 , .ijg i j n     The fuzzy linear equation Gx b  can be expressed as  

        ( )[ , ] [ , ].G G x r x r b r b r    

Since                                                          
    
   

, , 0

( , ), 0

jj

j

j j

k x r k x r k
kx

k x r k x r k

 
 



 

We have                                                  

    

    

, , 0

, , 0.

Gx r Gx r G
Gx

Gx r Gx r G

 


 


  

So the equation (3.4) be rewritten as  

               [ , ] [ , ] [ , ] [ , ],G x r x r G x r x r G x r G x r G x r G x r         

           [ , ] [ , ].G x r G x r G x r G x r b r b r       

Thus we have                         
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     

     

G x r G x r b r

G x r G x r b r

 

 

  


 

 

or                                                                   
     

     

( )

( )

G x r G x r b r

G x r G x r b r

 

 

   


   

 

Expressing in matrix form , we have  

 

 

 

 
.      

x r b rG G

G G x r b r

 

 

    
             

 

Remark 3.1 If Cz w , then z z  and z z are the solutions of complex fuzzy linear system, i.e., 

   C z z w w    and    .C z z w w    

Remark 3.2 If Cz w , then z z  is the solution of complex fuzzy linear system, i.e.,    C z z w w    and 

   .C z z w w     

In order to solve the fuzzy system of linear equation (3.2), we need to consider the systems of linear equations (3.4). It seems 

that we have obtained the minimal solution of the fuzzy linear system (3.2) as 

 

 (3.5) 

i.e.,                                                                  
 

 

 

 

†

.     
x r b rG G

G Gx r b r

 

 

    
            

   (3.6) 

where 
†S  is the Moore-Penrose generalized inverse of matrix S . 

Definition 3.1.  Let       , ,1 2jjX r x r x r j n     denotes the minimal solution of (2.5). The fuzzy number 

vector        [ , ] [ , ],1j jj j
Z p r p r i q r q r j n     defined by  

         

         

min{ , , 1 , 1 },

max{ , , 1 , 1 },

1,2,..., ,0 1,

j jj jj

j jj jj

p r x r x r x x

p r x r x r x x

j n r





  

     (3.7) 

         

         

min{ , , 1 , 1 },

max{ , , 1 , 1 },

1, 2,..., 2 ,0 1.

j jj jj

j jj jj

q r x r x r x x

q r x r x r x x

j n n n r





    

     (3.8) 

is called the fuzzy minimal solution of the fuzzy linear systems (2.3). If    , ,1 2jj
p r q r j n   are all fuzzy numbers 

then        {[ , ] [ , ],1 }j jj j
z p r p r i q r q r j n     is called a strong complex fuzzy minimal solution of the 

complex fuzzy linear systems (2.1) . Otherwise, z  is called  weak complex fuzzy minimal solution. 

   †X r S Y r
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3.3 QR-decomposition method  

Theorem 3.3 If eq.(3.4) S m n  , then there exist an orthogonal Q m n   and an upper triangular R m n   so that 

S QR . 

Proof. Suppose 1n  and that Q  is Householder matrix so that if 
TR Q S then  2 : 0R m  .It follow that S QR  

is a QR  factorization of S . For general n  we partition S , 

1[ ]S S v  

Where  :,v S n . 

By induction, there exists an orthogonal 
1

m mQ R   so that 
1 1 1

TR Q S  is upper triangular. Set 
Tw Q v  and let 

  2 2:w n m Q R  be the QR  factorization of    :w n m  .If  

1

1

2

0

0

nI
Q Q

Q

 
  

 
 

Then                                                                 
 

1

2

1: 1w n
A Q R

R


  

is a QR  factorization of S .  

Lemma 3.1 If A  is an m n  matrix with full column rank, then A  can be factored as A QR , where Q  is an m n  

matrix whose column vectors form an orthonormal basis for the column space of A  and R  is a n n  invertible upper 

triangular matrix. 

Theorem 3.4. If Eq.(2.5) S  is  a matrix with full column rank , and if S QR  is a QR decomposition  of A , then 

the system for SX Y  can be expressed as  

TRX Q Y         (3.11) 

and  the solution can be expressed as  

1 TX R Q Y         (3.12) 

Proof. According to Lemma 3.1., we have  

S QR  

Where Q  is 4 4m n  orthogonal matrix , R  is a 4 4n n  invertible upper triangular matrix . The fact that Q  has 

orthonramal column implies that 
TQ Q I , so multiplying both side of S QR  by on the left side  

TR Q S         (3.13) 

Therefore, the system for SX Y  can be expressed as  

TRX Q Y . 

In order to obtain the solution, due to R  is invertible upper triangular matrix, so 

      
1 TX R Q Y .       
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3.4 A sufficient condition for strong fuzzy solution  

The key point to make the solution matrix being a strong fuzzy solution is that  †S Y r  is fuzzy matrix , i.e., each element 

in which is a triangular fuzzy number. By the analysis, it is equivalent to the condition
† 0S  . 

Theorem 3.5. If  

   
† †

† †( ( ) ) 0,( ( ) ) 0,G G G G G G G G                

the complex fuzzy linear equation(2.1)  has a strong complex fuzzy minimal solution as follows: 

       [ , ] [ , ],0 1j jj j
z p r p r i q r q r r         (3.10) 

Where                                                         

 
 

 
   

 
 

 
   

† †

† †

1
(( ) ( ) )

2

1
(( ) ( ) )

2

p r
x r Eb r Fb r

q r

p r
x r Fb r Eb r

q r

E G G G G

F G G G G

   

   

  
    
   


 

        

    


    


 

Proof. The proof is straight forward 

IV. NUMERICAL EXAMPLE 

In this section, we will demonstrate the efficiency and superiority of the proposed method using numerical examples. 

Example 4.1 Consider the following CFSLE:  

~ ~

1 2

~ ~

1 2

( , 2 ) (1 ,3 )

3 (4 ,7 2 ) ( 4, 1 2 )

z z r r i r r

z z r r i r r


     


              

 (4.1) 

Let 
__ __~ ~ ~

1 1 1 1 1 1 1( , ) ( , ),z p i q p q i q q   
~ ~ ~

2 2 2 2 2 2 2( , ) ( , ).z p i q p q i q q   
 
The extend maxtrix is 

1 0 0 1 0 0 0 0

1 3 0 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 1 3 0 0 0 0

0 0 0 0 1 0 0 1

0 0 0 0 1 3 0 0

0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 3

S

 
 
 
 
 
 
 
 
 
 
 
 
 

 

And Rank(S)=8,so we obtain 
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0.7071 0.6396 0.2023 0.2236 0 0 0 0

0.7071 0.6396 0.2023 0.2236 0 0 0 0

0 0.4264 0.6068 0.6708 0 0 0 0

0 0 0.7416 0.6708 0 0 0 0

0 0 0 0 0.7071 0.6396 0.2023 0.2236

0 0 0 0 0.7071 0.6396 0.2023 0.2236

0 0 0 0 0 0.4264 0.6068 0.6708

0 0 0 0 0

Q

  

 

  




  

 

  

0 0.7416 0.6708

 
 
 
 
 
 
 
 
 
 
 
  

 

1.4142 2.1213 0 0.7071 0 0 0 0

0 2.3452 0.4264 0.6396 0 0 0 0

0 0 1.3484 2.4271 0 0 0 0

0 0 0 1.7889 0 0 0 0

0 0 0 0 1.4142 2.1213 0 0.7071

0 0 0 0 0 2.3452 0.4264 0.6396

0 0 0 0 0 0 1.3484 2.4271

0 0 0 0 0 0 0 1.7889

R

   
 

  
  
 
 
   
 

  
  
 
 
 

 

Now by using (3.2),we have 

1

2

1

2 1

1

2

1

2

1.375 0.625

4 0.875 0.125

1 0.125 0.625

4 1.375 0.125

2 0.2875 0.875

2 7 1.375 0.375

3 1.625 0.875

2 1 0.875

T

p
r r

p
r r

q r r

q r r
R Q

r rp

r rp
r r

q
r

q



 
  

      
   
  

      
     
  

    
     

         
 

.

0.375r

 
 
 
 
 
 
 
 
 
 
 
 
 

 

The solution may be written as 

 

 

Example 4.2 Conside a simple RLC circuit with fuzzy current and fuzzy sourse in Figure 1.The CFSLE for the circuit is as 

follow： 

~

1

~

2

(1.375 0.125 ,2.875 0.875 ) (0.125 0.625 ,1.625 0.875 )

(0.875 0.125 ,1.375 0.375 ) ( 1.375 0.125 , 0.875 0.375 )

z r r i r r

r r i r r
z

 
                    

 
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~ ~

1 2

~ ~

1 2

(10 7.5 ) (6 5 ) (4 ,6 ) ( 1 ,1 )

(6 5 ) (16 3 ) ( 2 , ) ( 3 , 1 )

i z i z r r i r r

i z i z r r i r r


         


                 

 (4.2) 

Let 
~ ~ ~

1 1 1 1 1 1 1( , ) ( , ),z p i q p p i q q   
~ ~ ~

2 2 2 2 2 2 2( , ) ( , ).z p i q p q i q q    The extend matrix is  

10 0 7.5 0 0 6 0 5

0 16 0 0 6 0 5 3

0 5 10 0 7.5 0 0 6

5 3 0 16 0 0 6 0
.

0 6 0 5 10 0 7.5 0

6 0 5 3 0 16 0 0

7.5 0 0 6 0 5 10 0

0 0 6 0 5 3 0 16

S

 
 
 
 
 
 
 
 
 
 
 
 
 

 

And we obtain   

0.6785 0.0383 0.2174 0.3857 0.0239 0.3954 0.4249 0.0629

0 0.8876 0.1659 0.3010 0.2183 0.0736 0.0590 0.1938

0 0.2774 0.7365 0.1883 0.0879 0.2058 0.2931 04573

0.3392 0.1473 0.2181 0.7970 0.3458 0.1555 0.1656 0.0966

0 0
Q

  

  

    

  


 .3382 0.0622 0.2472 0.8283 0.0528 0.3188 0.1839

0.4071 0.0230 0.1699 0.0013 0.1107 0.8671 0.1014 0.1747

0.5088 0.0287 0.2804 0.0160 0.2873 0.0628 0.7580 0.0169

0 0 4730 0.1694 0.2090 0.1146 0.1272 0.8213







    

   

   

    











 
 
 

  

14.7394 1.0177 7.1238 9.7019 0 13.1281 7.1238 3.3923

0 18.0268 2.3715 3.7792 10.7340 0.7411 7.5305 4.1354

0 0 12.0838 4.9730 6.2713 4.0395 5.4090 12.5773

0 0 0 13.8874 2.9250 1.9066 4.9705 1.0086

0 0 0 0 7.3583 0.4
R

     

     

  

   


  347 5.9185 2.2809

0 0 0 0 0 11.5309 0.7967 1.1572

0 0 0 0 0 0 4.4908 1.8456

0 0 0 0 0 0 0 11.3242

 
 
 
 
 
 
  
 

 
  
 
 
   
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Now by using (3.2),we have 

1

2

1

2 1

1

2

1

2

4 0.3164 0.0378

2 0.0347 0.0307

1 0.0708 0.0378

3 0.2380 0.0307

6 0.3920 0.0378

0.0961 0.0307

1 0.1464

1

T

p
r r

p
r r

q r r

q r r
R Q

r rp

r rp
r

q
r

q



 
   

       
    
  
       
     
  

   
    

        
 

.

0.0378

0.1765 0.0307

r

r

 
 
 
 
 
 
 
 
 
 
 
  

 

The solution may be written as 

~

1

~

2

(0.3164 0.0378 ,0.3920 0.0378 ) (0.0708 0.0378 ,0.1464 0.0378 )

(0.0347 0.0307 ,0.0961 0.0307 ) ( 0.2380 0.0307 , 0.1765 0.0307 )

z r r i r r

r r i r r
z

 
                    

 

 

V. CONCLUSION 

In this work we presented a model for solving complex fuzzy linear equation Cz w  where C  is a crisp complex matrix 

and w  is an arbitrary complex fuzzy vector, respectively. The complex fuzzy linear system is converted to a high order 

linear system    SX r Y r . We use the QR-decomposition of the coefficient matrix S  to obtain fuzzy solution of 

complex fuzzy linear systems. In addition, numerical examples showed that our method is feasible to solve this type of 

complex fuzzy linear systems. 
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