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Abstract— The paper continues study of dipole-exchange spin excitations in a spherical ferromagnetic nanoshell started by 

the author in the previous paper. The proposed model considers the magnetic dipole-dipole interaction, the exchange 

interaction, the anisotropy effects and the damping effects. A new method of obtaining the values’ spectrum of the 

wavenumbers for the investigated excitations – the method based on the application of general boundary conditions – is 

proposed. Consequently, the values’ spectra of the wavenumbers and the frequencies of the investigated excitations are 

obtained in addition to the previously obtained dispersion law. Exploitation of the above-mentioned method essentially 

extends the area of application of the obtained results compared to the previous paper. The obtained dependence of the 

wavenumber on the angular mode number is shown to be weak and close to linear. On the other hand, the obtained 

dependence of the wavenumber on the radial mode number is shown to be essential. The obtained spectrum of wavenumbers’ 

values is shown to transform to a quasi-one-dimensional form once specific conditions are satisfied; these conditions are 

found. 
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I. INTRODUCTION 

Nowadays, a rapidly developing sub-field of information technologies is dedicated to creating data storage, transfer and 

processing devices based on the applications of spin waves in nanosystems [1-3]. One of the key problems for developing 

such technologies is theoretical modeling of spin-wave processes in these nanosystems. Such modeling is required not only 

for direct applications of spin waves, but also for synthesizing materials with preset magnetic properties as these properties 

are often influenced by spin-wave processes. This modeling, in turn, requires deeper understanding of the corresponding 

processes in magnetic nanosystems. In the proposed paper, one of the problems of the above-described type is solved. 

As it has been shown by numerous studies (see, e.g., the review [4]), properties of nanosystems – in particular, spin-wave 

properties – depend essentially on their size and shape. Unfortunately, a general theory of spin waves in magnetic 

nanosystems has not been created at the moment. Therefore, spin waves in nanosystems of different geometries are studied 

separately. Among the variety of magnetic nanosystems of different configurations, a special class is represented by shell-

type ferromagnetic nanosystems (nanoshells, nanotubes and others). These nanosystems exhibit unique – not inherent to 

traditional continuous nanosystems – properties that are prospective for numerous technical applications. In particular, 

magnetic properties of such nanosystems can be regulated more flexibly than properties of corresponding continuous 

nanosystems [5]. However, such nanosystems remain poorly researched at the moment. In particular, study of spin-wave 

processes in synthesized recently ferromagnetic nanoshells [5-7] represent and actual topic of research. 

The paper continues the study of dipole-exchange spin excitations in a spherical ferromagnetic nanoshell started by the 

author in the paper [8]. The magnetic dipole-dipole interaction, the exchange interaction, the anisotropy effects and the 

damping effects are considered. In the previous paper of the author [8], a dispersion relation for the above-described spin 

excitations has been obtained. However, for complete description of such excitations, this relation should be complemented 

by a values’ spectrum of the wavenumber (in particular, this allows to obtain the spectrum of values of the spin excitations’ 

frequencies). For the most nanosystems, that represents more challenging task than just finding the dispersion relation. In the 

paper [8], the above-mentioned spectrum has been obtained only for a very specific particular case (the material outside the 

nanoshell has been assumed to be a high-conductivity metal) thus essentially limiting the area of application of the entire 

obtained result. The proposed paper overcomes this limitation by applying a different – essentially more general – method of 

obtaining the above-mentioned spectrum. As a result, the values’ spectrum of the spin excitation wavenumbers and 
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frequencies – that can be applied for much wider range of nanoshell configurations – are obtained for an essentially more 

general case of the nanoshell configuration. The obtained spectrum of wavenumbers is shown to transform to a quasi-one-

dimensional form once specific conditions are satisfied; these conditions are found. 

II. PROBLEM STATEMENT: MODEL DESCRIPTION 

Let us consider a spherical ferromagnetic nanoshell composed of a uniaxial ferromagnet of the "easy axis" type. Let us 

denote the ferromagnet parameters as follows: the exchange constant α, the uniaxial anisotropy parameter β, the 

gyromagnetic ratio γ, the ground state magnetization 
0M


 (is considered constant in absolute value inside the shell), the 

dissipation parameter αG (the Hilbert term is used for consideration of the dissipation). We assume that the external magnetic 

field is absent, and the easy magnetization axis – and, therefore, the ground state magnetization – is directed radially inside 

the nanoshell. Let us denote the internal shell radius a and the external radius b (see Fig.1.). 

 
FIGURE 1. The spherical nanoshell that is studied in the paper. 

Let us consider a spin wave (spin excitation in a form of standing wave, to be exact) propagating in the nanoshell so that the 

magnetization m


 and the magnetic field h


 of the wave are small perturbations of the overall magnetization M


 and the 

magnetic field inside the ferromagnet 
 iH


, correspondingly (linear wave). Thus, the relations 

0Mm


 , )(

0

iHh


  

fulfill, where )(

0

iH


 is the ground state internal magnetic field (so that mMM


 0
,     hHH ii


 0

). Let us find the 

dispersion relation and the wavenumber values’ spectrum for such linear spin excitations. 

For the investigated spin excitation, let us use the magnetostatic approximation, assuming that the magnetic potential Φ exists 

and, therefore, h


. After introducing amplitudes 
0m


, 

0h


 for the magnetization and the magnetic field perturbations, 

correspondingly (so that      tirmtrm exp, 0


 ,      tirhtrh exp, 0


 , where ω is the wave frequency), we can write 

down the following relations for the magnetic potential: 
00 h


,  tiexp0 . The outside material is considered 

non-magnetic so the relations 00 m


, ΔΦ0=0 fulfill outside the investigated ferromagnet. After combining the linearized 

Landau-Lishitz equation with the Maxwell equation   MdivHdiv i


4  and eliminating the magnetization amplitude in the 

resulting system of equations, the following equation for the magnetic potential of the investigated waves can be obtained: 
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(see [8]), here the spherical coordinates (r,θ,φ) are used and the value 
0

)(

0

~
MH i  .  

In order to obtain the values’ spectrum of wavenumbers of the investigated spin excitation, let us use the boundary conditions 

for the magnetic field. Assuming that standard boundary conditions fulfill for the ground state magnetization and the 

magnetic field, we can write down b1n=b2n, h1τ=h2τ on the boundary of the considered ferromagnet (here medium 1 is the 

ferromagnet, medium 2 is the external medium, n means normal and τ – tangential to the boundary vector component, b


 is 

the magnetic induction vector of the wave). For the vectors h


, m


 we obtain h1n-h2n=4πmn, h1τ=h2τ (as the outside 
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environment is non-magnetic). For the magnetic potential, these conditions together with the condition of the potential 

continuity on the ferromagnet boundary can be written in the following form: 
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Note that the conditions (2) contains not only the magnetic potential, but also a normal component of the magnetization of 

the wave, so for the complete solution of the problem, generally speaking, the above-mentioned magnetization should be 

found. For the investigated nanosystem, however, the ground state magnetization is directed radially. As the spin wave 

magnetization 
0m


 is normal to this direction, the component m0n on the nanoshell boundary vanishes: m0n=0. Therefore, the 

last condition in (2) can be rewritten as follows: 
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In other nanosystem configuratons such simplification can be made, for instance, by the means of imposing fixed boundary 

conditions for the magnetization.  

The system (2) together with the boundary conditions (2), (3) will be used as starting relations during the investigation of the 

above-described spin excitations. 

III. SPECTRAL CHARACTERISTICS OF THE SPIN ESCITATIONS 

An approximate solution of the equation for the magnetic potential (1) can be written in the form 

         ,,, 210 lmll YkrnAkrjAr  , here l and m are integers (–l≤m≤l), numbers of the angular excitation mode, jl 

and nl are the spherical Bessel and Neumann functions of the order l, correspondingly, Ylm are the spherical polynomials, k is 

the radial wavenumber and A1, A2 are constants. This form of solution can be used when the expression l(l+1)/r
2
 can be 

considered approximately constant inside the shell or small compared to k
2
. The first condition is satisfied, in particular, 

when the shell is thin, so the relation (b
2
–a

2
)/a

2
<<1 fulfills. The second condition is satisfied, in particular, in the case of 

short waves (ka>>l) and in the case of purely radial spin excitations (l=0), see [8]. In the case of thin nanoshell (b
2
–a

2
)/a

2
<<1 

after substituting the given above solution into the equation (4) the following approximate dispersion relation can be 

obtained:  
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0 abr   (see [8]). For a spin wave that can practically be excited, the 

dissipation parameter αG should be less or of an order of 0.1 so that 12 G  and, therefore, everywhere in (4) the 

replacement 11 2  G  can be made. After that, the dispersion relation (4) can be rewritten as follows: 
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It was mentioned in the Introduction that in order to complete the presented theoretical analysis, the spectrum of values of the 

radial wavenumber also needs to be found. In the previous paper of the author [8], the above-mentioned spectrum has been 

obtained only for a very specific particular case (the material outside the nanoshell has been assumed to be a high-

conductivity metal) thus essentially limiting the area of application of the entire obtained result. On the other hand, using 
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consideration described in the Section 2 of the current paper allows obtaining the specified spectrum in a very general case. 

The area of application of the result will be limited only by the nanoshell model described in the Section 2. 

The absence of the radial excitations (k=0) for the investigated nanoshell corresponds to the spatially uniform spin 

oscillations (ferromagnetic resonance). In particular, this takes place when the shell thickness is less than the exchange length 

so radial modes of excitations are not possible. When the radial excitations are present (k≠0), the magnetic potential outside 

the nanoshell can be sought in the form       ,,,0 lm

ee YrFr  , where the function F
e
 satisfies the following equation:  
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Solution of this equation that satisfies the continuity condition on the nanoshell boundary and is limited when r→∞ as well 

as in the point r=0 can be written in the following form: 
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here B1, B2, C1, C2, are constants. The corresponding magnetic potential satisfies the Laplace equation and both the first and 

the second conditions in (2). Finaly, from the condition (3) the sought expression for the wavenumber can be found. This 

expression is implicit and can be written as follows: 
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Let us take advantage of the fact that the investigated nanoshell is thin: (b–a)/a<<1 and, therefore, ka>>1, kb>>1 for typical 

nanoshells. This allows simplifying the obtained spectrum by means of applying the asymptotics of the spherical Bessel and 

Neumann functions. For cos(ka)≠0, cos(kb)≠0 (8) can be rewritten as follows: 
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If the additional condition k
2
ab>>l(l+1) fulfills, the right hand side in the last relation can be neglected (    0tg  abk ) and, 

therefore, the spectrum for the radial wavenumber has an explicit – quasi-one-dimensional – form:  

ab
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where n is an integer, the number of the radial excitations mode. A spectrum of such form can be expected for effectively 

one-dimensional nanosystem, e.g., a flat ferromagnetic film. Therefore, in the particular case when k
2
ab>>l(l+1) (so the 

angular excitations are neglected), the frequencies’ spectrum of the considered spin excitations can be written as follows: 
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In a general case – when the condition k
2
ab>>l(l+1) is not satisfied – this spectrum is defined by the equation (5) with the 

values of k that satisfy the relation (9). Note that the condition k
2
ab>>l(l+1) for a set values of a, b corresponds to either large 

value of k or small value of l, depending on which of these values is set.  

Analogous considerations can be used for the case of short waves (ka>>l) and in the case of purely radial spin excitations 

(l=0). Dispersion relation for such cases can be written in the following form: 
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For such cases, the relation k
2
ab>>l(l+1) always fulfill and, therefore, a quasi-one-dimensional spectrum (10) for the radial 

wavenumber can be used. After replacing 11 2  G  we obtain the values’ spectrum of the frequencies as follows: 
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Let us analyze the obtained relations. 

IV. DISCUSSION 

First, let us point out that for the investigated nanoshell the spin excitations’ frequencies spectrum becomes essentially 

discrete (unlike the nanosystems that are nanosized only in two dimensions – nanotubes, nanowires and so on). This fact 

implies from the obtained relations (5), (9), (10). 

Then, let us make numerical estimations of the spin excitations’ frequency in the considered nanoshell. Note that the 

wavenumber k is restricted, on the one hand, by the nanoshell thickness b-a (unities to tens of nanometers for typical 

nanoshells), and, on the other hand, by the interatomic distance d0 (several angstroms for typical materials). Therefore, the 

wavenumber lies in the interval 10
3
-10

5
 m

-1
 and the sought frequency for typical ferromagnet parameters (β~1, α~10

-12
 cm

-2
, 

γ=10
7
 Hz/Gs, M0=10

3
 Gs) lies in the interval 10

10
-10

12
 Hz. That, really, corresponds to the typical spin waves’ frequencies. 

The above-mentioned considerations also limit the numbers of angular and radial modes: the number of possible radial 

modes for typical nanoshells is nmax~(b–a)/d0~10100, and the number of possible angular modes is lmax~2πr0/d0~50500. 

 
FIGURE 2. The dependence of the radial wavenumber on the angular mode number l for the first two radial 

modes (n=1, n=2). Round dots (lower set) represents the dependence for n=1, square (upper set) – for n=2. 

Finally, let us analyze the obtained expression for the wavenumbers’ spectrum in the case when it is not quasi-one-

dimensional – the condition k
2
ab>>l(l+1) does not fulfill, so the relation (9) must be used. Numerical analysis shows that for 

a given l, there exists a number of solutions of (9) that correspond to different radial modes. Let us choose typical values 

a=50 nm, b=60 nm. Then, the condition k
2
ab>>l(l+1) does not fulfill starting from l~10 and possible values of k start from 

kmin~π/(b–a)~3·10
8
 m

-1
. Numerical analysis shows that for a given n, the wavenumber dependence on l is weak, increasing 

and close to linear (see Fig. 2) until the next branch of k values becomes possible for the given a, b. (The last mentioned 

effect in most cases can be practically neglected – for instance, for the above-mentioned nanoshell sizes such passage takes 

place when l~300). On the other hand, the dependence of the wavenumber on the radial mode number is essential. It can be 

seen from the graph for n=1 and n=2, and from numerical analysts for higher values of n. For instance, for n=3 in the same 

range of l the wavenumber ranges from approximately 9.8·10
8
 m

-1
 to approximately 10.2·10

8
 m

-1
. 
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V. CONCLUSION 

Thus, dipole-exchange spin excitations in a spherical ferromagnetic nanoshell have been investigated in the paper. The 

magnetic dipole-dipole interaction, the exchange interaction, the anisotropy effects and the damping effects have been 

considered. The dispersion law for the above-mentioned excitations – obtained in the previous paper of the author – has been 

complemented with the spectra of wavenumber values and the frequencies’ values. The above-mentioned spectra have been 

obtained using general boundary conditions for the magnetic field. In the previous paper of the author [8], the above-

mentioned spectra have been obtained only for a very specific particular case (the material outside the nanoshell has been 

assumed to be a high-conductivity metal) thus essentially limiting the area of application of the entire obtained result. On the 

other hand, the method proposed in the current paper does not require any additional assumptions. Therefore, the obtained 

results can be used for any spherical ferromagnetic nanoshell of the studied configuration as long as the general nanoshell 

model used in the paper (thin nanoshell, linear excitations, constant absolute value of the magnetization vector etc.) can be 

applied – and the mentioned model is applicable for typical spherical ferromagnetic nanoshells synthesized nowadays. 

A graphical representation of the obtained spectrum has been given and the numerical analysis of the obtained results has 

been performed. The analysis has shown that the dependence of the wavenumber on the angular mode number is weak and 

close to linear, while the dependence of the wavenumber on the radial mode number is essential. It has also been shown that 

if the condition of large wavenumber or the condition of small number of an angular mode is satisfied, the obtained spectrum 

transforms to a quasi-one-dimensional form (analogous to one observed in a flat film). 

The method proposed in the paper can be applied to nanoshells of more complex configurations – for instance, a nanorice 

nanoshell – as well as for more complex configurations of shell-type nanosystems in general. However, one have to bear in 

mind that for configurations of ground state magnetization different from the one used in the paper, additional conditions (for 

instance, fixed boundary conditions for the magnetization) should be applied. 
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