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Abstract— Analytical solution performs a vital role in a wide variety of deep space exploration missions, especially the 

periodic solutions which were believed to be the unique avenue to solve three-body problem by Poincaré. As the absence of a 

general solution for the problem, an approximate analytical solution of the circular restricted three-body problem is 

addressed by employing multiple scales method in conjunction with some analytical techniques. It is worthwhile to note that 

the presented solution in three-dimensional space contains two time scales: t  and t  (   is a small, dimensionless 

parameter), which is significative to improve and perfect the known literature. 
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I. INTRODUCTION 

An existence of conditional periodic solutions of circular restricted three-body problem (CR3BP) was presented by Gao [1]. 

However, because of lacking exact analytical solutions for the problem, a considerable amount of researchers were attracted 

to develop the approximate analytical solutions of the problem. In 1973, Farquhar and Kamel [2] developed an 

approximation method for this type of orbit. Richardson [3, 4] presented a third-order analytical solution about the collinear 

libration points of the CR3BP based on the method of successive approximations and a technique similar to the Lindstedt-

Poincaré method. Lu and Zhao [5] put forward a kind of improved third-order approximate analytical solution in 2009, which 

is more accurate than the classical analytic solution of Richardson. In addition, Nayfeh [6, 7] studied two types of resonance 

near the planar triangular libration points under a case of small amplitude. The planar 3:1 resonance with time scales t  and 

2t  was discussed when the planar restricted three-body problem was expanded to second-order terms in . Moreover, 

approximate analytical solutions of the planar 2:1 resonance with time scales t  and t  was also investigated when the 

problem was expanded to third-order terms in  . These creative results provide us with new motivation in studying the 

solutions of the three-body problem. 

In this paper, multiple scales method (see Nayfeh [8]) will be employed to construct a three-dimensional (3D) approximate 

analytical solution of a spatial CR3BP. The addressed 3D solution will be written in the following form 

2

1 2( , ) ( , ),t t t t    u u u                                                                        (1) 

where ( , , )x y zu , ( , , ), 1,2i i i ix y z i u , and   is a small, dimensionless parameter. 

It is worthwhile to note that when the problem is expanded to third-order, the above presented solution in 3D space contains 

two time scales, which is significative to improve and perfect the known literature, in which the constructed solutions mainly 

possess three cases: a) The three-body problem discussed is a planar case, so the proposed approximate solution is a two-

dimensional curve. b) The 3D approximate solution contains only one time scale when the spatial CR3BP was expanded to 

the third-order. c) The 3D approximate solution contains two time scales when the spatial CR3BP was expanded to the 

second-order. 

II. CONSTRUCTION OF THE 3D APPROXIMATE ANALYTICAL SOLUTION 

Note that the third-order approximate system with small amplitude of the CR3BP in rotating frame can be described as 

follows (the general third-order approximate system can be found at Koon et al. [9]) 
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3
1 ,L n   1n  is the angular velocity of relative movement between two primaries. 

The solution of equations (2a) ~ (2c) are assumed to possess the following form 

2

1 0 1 2 0 1( , ) ( , ),x x T T x T T                                                                      (3a) 

2

1 0 1 2 0 1( , ) ( , ),y y T T y T T                                                                     (3b) 

2

1 0 1 2 0 1( , ) ( , ),z z T T z T T                                                                       (3c) 

where 0 1,T t T t  . 

Then, time derivatives become 0 1

d
D D

dt
   , 
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. 

Substituting equations (3) into equations (2a) ~ (2c) and equating the coefficients of
2,  , and 

3  to zero, leads to 

2

0 1 0 1 2 12 (1 2 ) 0,D x D y c x                                                                                       (4a) 

2

0 1 0 1 2 12 ( 1) 0,D y D x c y                                                                                          (4b) 

2

0 1 2 1 0.D z c z                                                                                                                   (4c) 

2

0 2 0 1 1 0 2 1 1 2 22 2 2 (1 2 ) 0,D x D D x D y D y c x                                                     (5a) 

2

0 2 0 1 1 0 2 1 1 2 22 2 2 ( 1) 0,D y D D y D x D x c y                                                       (5b) 

2

0 2 0 1 1 2 22 0.D z D D z c z                                                                                              (5c) 

 2 2 2

0 1 2 1 2 3 1 1 1

3
2 2 2 ,

2
D D x D y c x y z                                                                      (6a) 
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0 1 2 1 2 3 1 12 2 3 ,D D y D x c x y                                                                                          (6b) 

0 1 2 3 1 12 3 .D D z c x z                                                                                                          (6c) 

Let secular terms be equal to zero, the general solution of equations (4a) ~ (4c) and (5a) ~ (5c) read 

1 1 cos( ),x t                                                                                                (7a) 

1 1 sin( ),y t                                                                                            (7b) 

1 2 cos( ).z t                                                                                               (7c) 

2 1 1 1 1( )cos( ( )),x T t T                                                                           (8a) 

2 1 1 1 1( )sin( ( )),y T t T                                                                       (8b) 

2 2 1 2 1( )cos( ( )),z T t T                                                                         (8c) 

where 1 , 2  and   are constants,   is the mould of the pure imaginary roots of equations (4), i and i  ( 1, 2i  ) 

satisfy 

    2 2 2 2 2 2
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 
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                                                                             (9a) 
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
 


                                                                           (9b) 

 2 0 2 2 2 0 2 3 1 2 0

3
2 sin( ) cos( ) [cos(2 ) 1].

2
T T c T                                                       (9c) 

Therefore, a third-order approximate analytical solution with two time scales to equations (2a) ~ (2c) can be represented as 

2

1 1 1cos( ) ( )cos( ( )),x t t t t                                                                (10a) 

2

1 1 1sin( ) ( )sin( ( )),y t t t t                                                           (10b) 

2

2 2 2cos( ) ( )cos( ( )),z t t t t                                                               (10c) 

where 1  and 1  satisfy equations (9a) and (9b), 2  and 2  satisfy equation (9c).  
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III. CONCLUSION 

Since the governing equations of the third body is time-dependent in inertial frame, which appear as a high-dimensional 

nonlinear autonomous system. According to the abundant known literature, this system seems unlikely to be solved via 

analytical approaches. For example, if we employ multiple scales method, then it is difficult solving the solutions to the 

equations derived from equating coefficients of 
2  to zero, not to mention the non-autonomous obtained from third-order 

terms in  . However, these will be possible in rotating frame, where the equations are characterized by nonlinear 

autonomous system. In this frame, the method of multiple scales in conjunction with some analytical techniques is adopted to 

construct a 3D approximate analytical periodic solution for CR3BP. The solution was demonstrated with two different time 

scales t  and t when the system was expanded to 
3 -order. This result improves and perfects the known literature. 
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