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Abstract— A theoretical investigation is carried out for understanding the properties of electron acoustic solitary waves and 

double layers in an unmagnetized plasma whose constituents are cold electron fluid, hot electrons obeying Tsallis 

distribution and stationary ions. The Sagdeev potential approach is employed to carry out the analysis. The amplitude and 

nature of electron-acoustic solitary waves (EASWs) and electron-acoustic double layers (EADLs) are found to be extremely 

sensitive to the degree of nonextensivity. It is found that the present plasma model supports only rarefactive solitons and 

double layers depending on the q nonextensive parameter. The investigation shows that solitary structure ceases to exist 

when the parameter q crosses a certain limit.  
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I. INTRODUCTION 

The electron acoustic (EA) wave is a high frequency wave that occurs in plasma with two distinct populations of electrons, 

referred as “cool” and “hot” [1]. Electron acoustic wave may also exist in electron-ion plasmas with ions hotter than electrons 

[2]. It is basically an electrostatic wave in which the inertia is provided by the cool electrons and the restoring force comes 

from the hot electrons. The ions play the role of a neutralizing background, i.e., the ion dynamics does not influence the EA 

waves because the EA wave frequency is much higher than the ion plasma frequency.  The EA wave phase speed must be 

intermediate between the cold and hot electron thermal speeds such that the wave avoids damping by both the cold and the 

hot electron species. Electron acoustic waves often occur in laboratory plasmas [3-5] and space plasmas, e.g., in the Earth’s 

bow shock [6-8], in the auroral magnetosphere [9,10] and in geomagnetic tail [11]. In the case of Earth’s bow shock, 

heliospheric termination shock and planetary and neutron star magnetospheres, in addition to two electron populations, the 

presence of magnetic field-aligned electron beam is considered to be the  main energy source for the excitation of this mode. 

The electron and ion distributions play crucial role in characterizing the physics of nonlinear wave structures by increasing 

richness and variety of the wave motion in plasma. Also, they significantly influence the conditions required for the 

formation of solitons and double layers. Moreover, it is also known that electrons and ion distribution can be significantly 

modified in the presence of large amplitude waves. Over past few years, new statistical approach nonextensive statistics or 

Tsallis statistics has attracted much attention [12]. A suitable nonextensive generalization of the Boltzmann-Gibbs-Shannon 

(BGS) entropy for statistical equilibrium was first recognized by Renyi [13] and subsequently proposed by Tsallis [12] 

suitably extending the standard additivity of the entropies to the nonlinear, nonextensive case where one particular parameter, 

the entropic index q, characterizes the degree of nonextensivity of the considered system. The Maxwellian distribution in 

Boltzmann-Gibbs (BG) statistics is believed valid universally for the macroscopic ergodic equilibrium systems. But this 

concept fails to explain some phenomena which have complex behaviours such as long range interactions such as plasma and 

gravitational systems. Spacecraft measurements of plasma velocity distributions, both in the solar wind and in planetary 

magnetospheres and magnetosheaths, have revealed that non-Maxwellian distributions are quite common. Tsallis distribution 

is thought to be useful generalization of BG statistics and to be appropriate for the statistical description of the long-range 

interaction systems, characterizing the non-equilibrium stationary state [14-16]. In Tsallis distribution, q is the nonextensive 

parameter and for q ≠ 1, it gives power law distribution functions. For q < 1, high energy states are more probable than in the 

extensive case. The distribution corresponds to power law behaviour for large energy. On the other hand, for q > 1 high 

energy states are less probable than in the extensive case, there is a cutoff beyond which no states exist. Boltzmann-Gibbs 

entropy is obtained from Tsallis entropy Sq if the parameter q →1 [12]. 

Malfliet and Wieers [17] reviewed the studies of solitary waves in plasma and found that Reductive Perturbation Technique 

(RPT) is based on the assumption of smallness of amplitude and so this technique can explain only small amplitude solitary 

waves. But there are situations where the excitation mechanism gives rise to large amplitude waves; to study such situation 

one should employ a non perturbative technique. Sagdeev potential method [18] is one such method to obtain solitary wave 

solutions. In this paper, the dynamics of solitons and double layers is studied in plasma system constituting of two 



International Journal of Engineering Research & Science (IJOER)                      ISSN: [2395-6992]                    [Vol-2, Issue-4, April 2016] 

Page | 2  

  

temperature electrons with hot electrons obeying nonextensive distribution. Regarding the organization of the paper, basic 

equations of theoretical model and derivation of Sagdeev potential associated to solitons and double layers is presented in 

section II and section III is devoted to discussion of numerical results. The summary of conclusions drawn from work is 

given in section IV. 

II. BASIC EQUATIONS 

In the present model, unmagnetized plasma consisting of cold electron fluid, hot electrons obeying a nonextensive 

distribution and stationary ions are considered. The set of normalized fluid equations governing the dynamics of electron 

acoustic waves in such plasma are [19]: 
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Where 𝑛ℎ =  1 +  𝑞 − 1 𝜙 𝑞+1 2(𝑞−1) , here q stands for strength of nonextensivity.  

Here (1)-(4) are equations of continuity, motion, pressure and Poisson’s equation respectively. In the above equations, 𝜎 =
𝑇𝑐

𝑇ℎ
 

and 𝛽 =
𝑛ℎ0

𝑛𝑐0
. 𝑝𝑐 , 𝑛𝑐  and 𝑛ℎ  are the normalized pressure of cold electrons and the normalized number densities of cold and 

hot electrons, respectively. 𝜙 is the normalized electrostatic potential, 𝑢𝑐  is normalized velocity of cold electrons.  The 

densities of cold and hot electrons are normalized by 𝑛𝑐0 and 𝑛ℎ0, respectively. The space coordinate x, time t, velocity, 

pressure and electrostatic potential 𝜙 are normalized by the hot electron Debye length 𝜆𝐷ℎ =  
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respectively. 

To obtain a travelling wave solution, all the dependent variables depend on single independent variable 𝜉 = 𝑥 − 𝑀𝑡, where 

M is the Mach number, i.e., the velocity of the solitary wave. Further solving and substituting expressions into the Poisson’s 

equation and assuming appropriate boundary conditions for the localized disturbance along with the conditions that 

potential 𝜙, and 
𝑑𝜙

𝑑𝜉
= 0 at 𝜉 → ±∞. This leads to the following energy integral 
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where 𝑉 𝜙  is Sagdeev potential [18] and reads as  
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Equation (5) yields solitary wave solutions when the Sagdeev potential 𝑉 𝜙  satisfies the following conditions: 

i. 𝑉 𝜙 = 0 and  
𝑑𝑉(𝜙)

𝑑𝜙
= 0 at 𝜙 = 0. 

ii.  
𝑑2𝑉(𝜙)

𝑑𝜙2  < 0 at 𝜙 = 0. 

iii.  𝑉 𝜙𝑚  = 0 at 𝜙 = 𝜙𝑚  

iv. 𝑉 𝜙 < 0 when 0 < 𝜙 < 𝜙𝑚  for positive solitary waves or 𝜙𝑚 < 𝜙 < 0 for negative solitary waves, where 𝜙𝑚  is the 

maximum potential. 
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Equation (6) satisfies condition (i) as 𝑉 𝜙  and its first derivative with respect to 𝜙 vanish at 𝜙 = 0. The condition (ii) is 

satisfied provided 𝑀 > 𝑀𝑚𝑖𝑛 , where 𝑀𝑚𝑖𝑛  is the lower limit of the Mach number, above which the solitary waves may be 

excited and is given by 

                                                             𝑀𝑚𝑖𝑛 =  3𝜎 +
2

𝛽(𝑞+1)
                             (7) 

III. RESULTS AND DISCUSSION 

Sagdeev potential V (ϕ) given by equation (6) as a function of ϕ is numerically analyzed under various situations. For large 

amplitude solitary waves, Sagdeev potential V(ϕ) is plotted against electrostatic potential ϕ for different values of parameters. 

In present model, effect nonextensive parameter q on solitons and double layers is analyzed for three different ranges (-1 < q 

< 0, 0 < q < 1 and 1 < q < 2).  

3.1 ELECTRON ACOUSTIC SOLITONS 

The electrostatic potential exhibits spatially localized structures as is evident from well structure of Sagdeev potential. The 

electron acoustic solitary waves (EASWs) are obtained for all ranges of nonextensive parameter q and for all ranges of q only 

rarefactive solitary waves exist. In Fig. 1, Sagdeev potential V (ϕ) is plotted against the electrostatic potential ϕ for different 

values of q for the range -1 < q < 0. It is clear that as q increases (q → 0), the potential pulse amplitude increases while width 

decreases: an increase in q makes the rarefactive solitary structure more spiky. There exists a critical value of q i.e. qc below 

which solitons do not exist and qc = - 0.8 for chosen set of parameters. Fig. 2 shows the variation of Sagdeev potential V (ϕ) 

with ϕ for different values of Mach number M. It can be seen that with increase in Mach number, the faster moving pulses 

will be taller and narrower which is opposite for the case of slower ones which is in agreement with soliton phenomenology 

[20]. This trend of variation is same for other ranges of q (0 < q < 1 and 1 < q < 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 shows the existence of rarefactive solitons for different values of q in range 0 < q < 1. With increase of the 

nonextensive parameter q (q → 1), the potential pulse amplitude increases while its width narrows. One can conclude that the 

electron acoustic solitons may become less smooth as electrons evolve toward their Maxwell-Boltzmann thermodynamic 

equilibrium (q → 1). 

Fig. 4 shows the Sagdeev potential for different values of q in range 1 < q < 2. For different values of q, similar behaviour is 

observed as that for range -1 < q < 1, i.e., the existence of rarefactive solitons. Electron acoustic solitons exist for all values 

of q in range 1 < q < 2. 

 

 

FIGURE 1. VARIATION OF SAGDEEV POTENTIAL 

V (ϕ) with ϕ for range -1 < q < 0 wth β = 1, σ = 0.1 

and M = 4. 

 

 

FIGURE 2. SAGDEEV POTENTIAL V(ϕ) vs ϕ FOR 

DIFFERENT VALUES OF M = 3, 4 and 5. THE OTHER 

PARAMETERS ARE q = - 0.5, β = 1, σ = 0.1. 
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3.2 ELECTRON ACOUSTIC DOUBLE LAYERS 

In the small amplitude limit 𝜙 ≪ 1, equation (6) can be written as 

𝑉 𝜙 = 𝐴1𝜙
2 + 𝐴2𝜙

3 + 𝐴3𝜙
4 + 0(𝜙5)                                                        (8) 
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Again for double layer solutions the following conditions must be satisfied: 

v.  𝑉 𝜙 = 0 = 0 and 𝑉 𝜙 = 𝜙𝑚  = 0. 

vi.  𝑉′ 𝜙 = 0 = 0 and 𝑉′ 𝜙 = 𝜙𝑚 = 0. 

vii.  𝑉 ′′  𝜙 = 0 < 0 and 𝑉 ′′  𝜙 = 𝜙𝑚  < 0. 

Conditions (v) and (vi) gives 2𝜙𝑚 = −𝐴2/𝐴3, and Sagdeev potential 𝑉 𝜙  is 

 𝑉 𝜙 = 𝐴3𝜙
2 𝜙𝑚 − 𝜙 2                                                                               (9) 

The double layer solution can be obtained as  

𝜙 =
𝜙𝑚

2
 1 − 𝑡𝑎𝑛ℎ  

2𝜉

Δ
                                                                                   (10) 

where Δ =  −8/𝐴3/ 𝜙𝑚   represents width of double layer provided 𝐴3 < 0. 

i.e., 𝐴3 = −
𝛽 𝑞−3  𝑞+1 (3𝑞−5)
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It is to be noted from (9) that nature of the double layer depends on the sign of A2 i.e., for 𝐴2 > 0 a compressive electron 

acoustic double layer exists (EADLs), whereas for 𝐴2 < 0 we would have rarefactive electron acoustic double layer. By 

virtue of 𝐴2 > 0, the compressive electron acoustic double layer requires that q > 3. For three ranges of q, only rarefactive 

electron acoustic double layers (EADLs) are found to exist.  

 

 

FIGURE 3. VARIATION OF SAGDEEV 

POTENTIAL V (ϕ) with ϕ for range 0 < q < 1 with 

β = 1, σ = 0.01 and M = 2. 

 

 

FIGURE 4. VARIATION OF SAGDEEV POTENTIAL V 

(ϕ) with ϕ for range 1 < q < 2 with β = 1, σ = 0.1 and M 

= 1.17. 
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Fig. 5 (a) and Fig. 5(b) show the effect of nonextensive parameter q on double layer structures. It can be seen that double 

layer excitations are amplified as q increases. Increase in q makes the Sagdeev potential well deeper. Increase in Sagdeev 

potential well depth means that the amplitude increases, width decreases and vice versa. In figure 5 (b), increase in q 

increases the width of rarefactive electron acoustic double layer. It may be mentioned here that for the range 0<q<1,  

Again negative double layers are reported and the results observed are similar to those observed for the range – 1 < q < 0. 

The range q > 1 provides qualitatively the same result as before as the electrons evolve far away from their thermodynamic 

equilibrium (q > 1), potential pulse becomes spikier and the rarefactive electron acoustic double layer width increases. 

IV. CONCLUSION 

In this paper, electron acoustic solitary waves and double layers have been studied in an unmagnetized plasma consisting of 

cold electrons, nonextensive hot electrons and stationary ions. The Sagdeev potential method is used to investigate large 

amplitude localized solitons and double layers. Exact Sagdeev potential is derived in presence of nonextensive hot electrons 

and studied numerically to see the effect of nonextensive parameter q on existence of solitons and double layers. The present 

plasma model supports only rarefactive EASWs and EADLs. When q reaches certain limit, solitons and double layers cease 

to exist. Numerical results reveal that the width and amplitude of electron acoustic solitons and double layers are affected 

significantly because of the nonextensive nature of hot electrons. The results are in agreement with Danehkar [19], Sahu [21] 

and Pakzad [22]. Danehkar [19] and Sahu [21] considered the superthermal distribution of hot electrons and Pakzad [22] 

carried out the analysis with the Reductive Perturbation Technique (RPT). 
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