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Abstract— In this paper, an adaptive backstepping control design with tuning functions and K-filters for robot manipulators
is developed. A stronger stability and convergence performance of the designed control in comparison with backstepping
observer is achieved despite the presence of disturbances, parameter uncertainties, system nonlinearities for a real-time
system of a single-link flexible-joint manipulator.
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I. INTRODUCTION

The adaptive backstepping solution to the problem of nonlinear stabilization and tracking in the presence of unknown
parameters is a starting point for more elaborate adaptive control designs for feedback systems including robot manipulators
[2-4]. One of the improvements to be achieved with the tuning functions design [1] is to reduce the dynamic order of the
adaptive controller to its minimum (the number of parameter estimates is equal to the number of unknown parameters). This
minimum-order design is advantageous not only for implementation, but also because it guarantees the strongest achievable
stability and convergence properties.

In the tuning functions procedure the parameter update law is designed recursively. At each consecutive step we design a
tuning function as a potential update law. In contrast to adaptive backstepping in [2], these intermediate update laws are not
implemented. Instead, the controller uses them to compensate for the effect of parameter estimation transients. Only the final
tuning function is used as the parameter update law.

In this paper we presented an adaptive backstepping tuning functions control design for systems in the output feedback form.
In the design, different filter structures (K-filter) and identifiers are applied.

The rest of the paper is structured as follows. A design with tuning functions for a single-link flexible-joint robot manipulator
is presented in section II. Experiment design and the performance of the designed real-time control for the flexible-joint robot
arm are presented in section III.  We conclude in section IV.

II. TUNING FUNCTIONS FOR A SINGLE-LINK FLEXIBLE-JOINT ROBOT MANIPULATOR

2.1 System Modeling

We consider a single-link flexible-joint robot manipulator actuated by a DC motor as shown in Fig. 1 (This is depicted in [2]
but repeated here for convenience).

The dynamic equations of the system are as follows:
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FIG. 1. A SINGLE-LINK FLEXIBLE ROBOT MANIPULATOR

Where q1, q2 are the angular positions of the link and the motor shaft, i is the armature current, and u is the armature voltage.
The inertials J1, J2, the viscous friction constants F1, F2, the spring constant K, the torque constant K, the torque constant Kt,
the back-emf constant Kb, the armature resistance R and inductance L, the link mass M, the position of link’s centre of gravity
d, the gear ratio N and the acceleration of gravity g can all be unknown.

We assume that only the link position q1 is measured. The choice of state variables:

51 1 2 1 3 2 4 2, , , ,q q q q i         

The dynamic equations of the system become:
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Clearly, (2) is not in the output-feedback. Differentiating y twice, we obtain 2 Dy  ( dD dt is the differentiation

operator) and
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Differentiating and substituting 3 4,  , we obtain
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Finally, differentiating and substituting 5 4,  we arrive at the input-output description
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It is tedious but straightforward using (3) to find a choice of state variables.
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Where the unknown parameters 1 2 3 8, , ,.....a a a a are defined as:
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Hence, the design procedure of theorem is applicable to (4), and an adaptive controller that achieves bounded asymptotic
position tracking from all initial conditions and for all position values of the constant J1, J2, F1, F2 K, Kt Kb, R, L.

We consider systems in the output-feedback form:
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Where xϵR is the state, uϵR is the input, yϵR is the output, φ, σ are smooth nonlinear functions, and
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Filters and observer
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If  were known, we would design an observer 0ˆ ˆ ( , )Tx A x ky F y u    (13)
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The nonminimal observer (14), (15) is still nonimplementable because it depends on  . However, it has a key property not

present in (13): the state x satisfies a static relationship with  , that is

Tx     

This is easily verified by substituting (14) into (16).

Remark 1. The certainty equivalence counterpart of the estimate (14) is

ˆTx    (17)

it can alternatively be generated via 0
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This observer is not a certainty equivalence version of (13) because of the term
ˆT  .

To reduce the dynamic order of the filter (15), we exploit the structure of F(y,u). Denote the first m+1 columns of ΩT by υ0
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The implemented filters are summarized in Table 1. The total dynamic order of the K-filters is nx(q+2). As explained in [1],
a further reduction is possible by using the reduced-order observer technique, so that the total filter dynamic order becomes
(n-1)(q+2).

To prepare for the backstepping procedure in the next subsection, we consider the equation for the output rewritten from (6)
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2.2 Adaptive controller design with tuning functions

The tuning functions design with K-filters has many similarities with the state-feedback design presented in section 4.2 in
[1]. It also uses the same technique for dealing with unknown high frequency gain bm as in section 4.5 in [1].

The first obstacle for applying backstepping with output feedback is that the state x2 is not measured. For this reason, (27) is
written in a form which suggests that the filter signal be used for backstepping. Indeed, by comparing (6) with
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we see that both x2 and ,2m are separated from the control u by 4 integrators. Therefore, the system to which we apply
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Our analysis will show that once we stabilize the system (30), all the close-loop signals remain bounded. In the backstepping
procedure while multiplying by nonlinear terms, we will include nonlinear damping terms in our stabilizing functions.

Next we need to choose the stabilizing functions and the tuning functions to achieve a design skew-symmetric form.

For system (30) we change coordinates
1

( 1)
0, 1ˆ 2,...4

r

i
i i r i

z y y

z y i  


 

   
(31)

where ̂ is an estimate of 01/ b 

The complete tuning function design with K-filters is summarized in Table 2, where the filters given in Table 1 are
employed.
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Adaptive control law:  (5)
4 0,5

1

( ) ru y
y

  

  

(35)
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III. EXPERIMENT DESIGN

3.1 Experiment and simulation setup

A 2-DOF flexible-joint robot arm control is implemented based on algorithms shown in section II. The control algorithms are
modelled in Simulink, run in real-time under Real Time Window Target utility of Real Time Workshop, and interface
through a PCI1711 card from Advantech with the real world robot arm (see Fig. 2).

The model (constructed the same as in [2] and we repeat here for convenience) consisted of MATLAB/Simulink algorithm,
PCI1711 card, DC motor with PWM driver and IMU. Torque transmission between the actuator (DC motor) and the plant
(industrial robot arm) is of spring drive as a flexible-joint.
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FIG. 2. MODEL OF CONTROL ALGORITHMS

3.2 Simulation Environment and Experiment Results

The proposed algorithms are simulated in MATLAB/Simulink, implemented in a real-time hardware using Real-time
Workshop with DAQ cards. Model parameters can be viewed, modified in run-time allowing to find an optimal control
parameter set, and controller types as well.

FIG. 3. EXPERIMENT RESULT

The experiment result for control algorithms is shown in Fig. 3, where the setpoint (for robot arm angle) changes from -100 to
+100, lines 1 and 2 show changes of the robot arm angle output signals for backstepping tuning functions with K-filters and
backstepping observer controllers respectively. The tuning functions controller has shorter response time and better control
performance in terms of stability and convergence.

IV. CONCLUSION

In this paper, an adaptive backstepping control with tuning functions and K-filters for robot manipulators is developed and
implemented. Applying tuning functions with K – filters, the strongest stability and convergence properties can be achieved.
The result is shown for a real-time system of a single-link flexible-joint manipulator, but the proposed algorithms can be
extended and applied to more complex industrial robot manipulators.
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