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Abstract— Clustering techniques perform the task of discovering underlying patterns and structures in data. They play a 

crucial role in fields such as big data analytics, recommendation systems, and medical diagnostics, driving intelligent decision-

making and efficient data processing. Deep clustering, with its strong ability to extract features, effectively overcomes the 

shortcomings of traditional clustering techniques, making it a prominent area of current research. Among these methods, the 

loss function, as the core component of deep clustering, guides the model in optimizing data representation, ensuring the 

effectiveness and stability of feature extraction from high-dimensional and complex data. However, existing studies primarily 

focus on the deep learning architecture, with few offering a systematic analysis from the perspective of loss functions. This 

paper reviews the current state of deep clustering research from the loss function viewpoint and categorizes relevant algorithms 

based on the characteristics of their loss functions. By analyzing the strengths and weaknesses of various loss functions, four 

essential elements for an effective loss function are proposed: information preservation, balance, robustness, and scalability. 

Future research directions are explored with respect to these four aspects. 
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I. INTRODUCTION 

Clustering is an unsupervised learning method aimed at partitioning a dataset into several groups or clusters such that 

samples within the same group exhibit high similarity, while samples from different groups show low similarity, following 

the principle of "birds of a feather flock together." Clustering algorithms do not rely on pre-labeled training data; instead, 

they uncover the intrinsic similarities within data by analyzing its structure.  

As a significant area in machine learning, clustering plays an indispensable role in real-world applications. When the data labels 

are unknown or difficult to obtain, clustering helps in understanding the inherent structure of the data and uncovering patterns and 

trends within. It can also be applied in anomaly detection to identify outliers that deviate significantly from the rest of the samples. 

In image segmentation and object recognition, clustering techniques can group similar regions or objects in images, improving 

the accuracy of image analysis. Clustering is a versatile tool that simplifies complexity, reveals underlying relationships, and 

provides powerful support for decision-making and problem-solving. With continuous technological advancements, the 

application potential of clustering analysis in various fields will continue to be explored and expanded.  

Traditional clustering refers to relatively simple and computationally efficient methods. These methods typically focus on surface-

level features of the data rather than deeper, more complex patterns or structures. Major types of traditional clustering include: 1) 

centroid-based clustering, 2) connectivity-based clustering, 3) density-based clustering, 4) model-based clustering, and 5) grid-

based clustering [1]. However, traditional clustering methods fail to effectively handle increasingly high-dimensional and 

unstructured data. Later, some researchers employed dimensionality reduction and sampling techniques to extract features from 

data before performing clustering [2][3], but these methods still struggle to capture deeper nonlinear relationships within the data 

and cannot effectively handle unstructured data such as text and images. 

To address these challenges, deep clustering, which combines deep learning with traditional clustering methods, has emerged as 

a research hotspot. Deep clustering leverages the powerful feature extraction capabilities of deep neural networks (DNNs) [4] to 

obtain high-level representations of the data and perform clustering on these representations. By establishing mutual feedback 

between feature learning and clustering, deep clustering can better handle complex, nonlinear, high-dimensional data. Moreover, 
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through joint optimization of feature representations and clustering processes, deep clustering adapts to various data distributions 

and structures, yielding more precise clustering results and stronger generalization capabilities. 

In deep clustering, the design of the loss function is crucial. A well-designed loss function guides the deep neural network to learn 

distinctive and clustering features representations, thereby improving the clustering performance, accuracy, and stability. It also 

enhances the stability of the training process and the model's generalization ability. The loss function must effectively integrate 

feature representation learning and clustering processes to ensure mutual reinforcement between the two. 

Although there is a growing body of literature on deep clustering, few reviews specifically focus on the loss functions used in 

deep clustering. This paper categorizes deep clustering loss functions based on their design goals and their role in enhancing 

the effectiveness of clustering models. These categories include reconstruction loss, generative adversarial loss, clustering loss, 

contrastive loss, and graph-based loss. 

FIGURE 1. Traditional Clustering Process. The general process of traditional clustering. Data undergoes 

feature extraction, followed by loss calculation within the clustering model. The loss is then optimized to 

obtain the final clustering results 

First, we briefly introduce traditional clustering methods and their associated loss functions. Next, we summarize the different 

forms of loss functions in deep clustering and discuss deep clustering algorithms from the perspective of lossfunctions. 

Additionally, some deep learning network models will be introduced to deepen the understanding of deep clustering algorithms. 

Finally, we conclude with an analysis of commonly used clustering metrics, datasets, and applications of deep clustering, 

highlighting four key elements that an ideal deep clustering loss function should possess. 

II. LOSS FUNCTIONS IN TRADITIONAL CLUSTERING 

 In deep clustering methods, the design of loss functions often draws inspiration from the objectives of traditional clustering, 

integrating data representation learning with clustering structures. This integration ensures that deep feature learning and clustering 

performance reinforce each other. Understanding the loss functions in traditional clustering helps in grasping the design principles 

of deep clustering loss functions. 

Traditional clustering algorithms are classical methods for handling data features. We will now introduce some common 

traditional clustering algorithms and their optimization objectives. The optimization goal of these algorithms is typically to 

minimize the loss of the clustering model, thereby achieving the best clustering performance. To control model complexity, 

prevent overfitting, and improve the model's generalization ability, the optimization objective often includes a regularization loss 

[5][6], as shown in Formula 1: 

𝑚𝑖𝑛 𝐿 = 𝐿𝑚𝑜𝑑𝑒𝑙 + 𝜆𝐿𝑟𝑒𝑔 , 𝜆 ≥ 0          (1) 

The model's optimization goal is to minimize the loss 𝐿, where 𝐿𝑚𝑜𝑑𝑒𝑙  represents the clustering model's loss, 𝐿𝑟𝑒𝑔 is the 

regularization term, where𝜆 is the regularization coefficient. 

2.1 K-Means: 

K-means is a widely used unsupervised clustering algorithm designed to partition a dataset into K clusters. The algorithm 

iteratively assigns data points to the nearest centroids and updates the centroid positions until convergence. With N data samples 

x and K initial cluster centroids μ, K-means aims to minimize the within-cluster variance, thereby ensuring an optimal division 

of the dataset into distinct clusters [7]. The optimization objective is as follows: 
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𝑚𝑖𝑛 𝐿𝑚𝑜𝑑𝑒𝑙 = ∑ ∑ 𝐼𝑖,𝑘
𝐾
𝑘=1

𝑁
𝑖=1 ‖𝑥𝑖 − 𝜇𝑘‖2

2         (2) 

𝐼𝑖,𝑘 indicates whether sample 𝑥𝑖 belongs to cluster 𝑘. If 𝑥𝑖 belongs to 𝑘, then 𝐼𝑖,𝑘 = 1; otherwise, 𝐼𝑖,𝑘 = 0. The within-cluster 

mean squared error in the optimization objective of K-Means can also be replaced with other metrics that measure data 

similarity or dissimilarity, such as the Pearson correlation coefficient, Mahalanobis distance, and so on. Table 1 presents some 

common similarity measures and their evaluations. 

TABLE 1 

METRICS USED FOR K-MEANS 

Evaluation 

Metrics 
Formula Evaluation 

Euclidean distance 𝑑(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)2
𝑁

𝑖=1
 

The most commonly used metric, easy to compute 

and understand. However, it is unsuitable for features 

with varying variances or non-spherical data. 

 

Mahalanobis 

distance 

 
𝑑(𝑥, 𝑦) = √(𝑥 − 𝑦)𝑇𝛴−1(𝑥 − 𝑦) 

Suitable for features with different variances or 

correlations, but has higher computational 

complexity. 

Manhattan 

Distance 
𝑑(𝑥, 𝑦) = 𝑚𝑎𝑥𝑖=1

𝑁 |𝑥𝑖 − 𝑦𝑖| 
Focuses on the largest deviation and is highly 

sensitive to outliers, but may overlook smaller 

deviations in other dimensions. 

Absolute value 𝑑(𝑥, 𝑦) = ∑ |𝑥𝑖 − 𝑦𝑖|
𝑁

𝑖=1
 Suitable for one-dimensional data. 

Pearson 

Correlation 

Coefficient 

𝑟(𝑥, 𝑦) =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑁

𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑁
𝑖=1 √∑ (𝑦𝑖 − 𝑦̅)2𝑁

𝑖=1

 
Computationally complex and measures only data 

correlation; not commonly used. 

 

2.2 Density-Based Spatial Clustering of Applications with Noise: 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a density-based clustering algorithm that is 

particularly suited for discovering clusters of arbitrary shapes and handling datasets with noise. It defines clusters based on the 

concept of density and does not require the pre-specification of the number of clusters. DBSCAN only requires two parameters: 

the radius r and the minimum number of points ε within the radius to form a cluster [8]. 

The algorithm randomly selects an unvisited point. If the point is a core point (i.e., it has at least ε points within its radius r), 

the algorithm expands the cluster by including all points within the radius r and continues to grow the cluster. All core points 

within the radius, along with their neighboring points, are added to the cluster. This process is repeated until the cluster can no 

longer expand. The algorithm then proceeds to the next unvisited point, repeating the process until all points have been visited. 

Finally, points that do not belong to any cluster are labeled as noise. Figure 2 shows Process of DBSCAN Clustering. 

 

FIGURE 2: Magnetization as a function of applied field. Note that “Fig.” is abbreviated. There is a period 

after the figure number, followed by two spaces. It is good practice to explain the significance of the figure 

in the caption 
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2.3 Spectral Clustering: 

Spectral clustering is a graph-based clustering method that transforms the clustering problem into a graph partitioning problem. 

In spectral clustering, data points are treated as nodes in a graph, with the similarity between nodes represented as the weight of 

the edges. The fundamental idea is to use the eigenvectors of the graph’s Laplacian matrix to find a low-dimensional representation 

of the data, and then perform traditional clustering in this low-dimensional space [9]. 

The similarity matrix 𝐴 is constructed based on the distances between the samples, and the optimization goal of spectral clustering 

is to minimize the model’s loss while solving for the spectral embedding features 𝑍, as shown in Formula 3: 

min 𝐿𝑚𝑜𝑑𝑒𝑙(𝑍) = 𝑇𝑟(𝑍𝑇𝐿𝑍) = ∑ 𝐴𝑖,𝑗‖𝑧𝑖 − 𝑧𝑗‖
2

𝑖,𝑗         (3) 

𝑠. 𝑡. 𝑍𝑇𝑍 = 𝐼 

Where 𝑧𝑖 represents the 𝑖 row of 𝑍, corresponding to the spectral embedding features of the 𝑖 sample 𝑥𝑖. 

2.4 Subspace Clustering: 

Subspace clustering [10] is a clustering method designed for high-dimensional data. It assumes that data from the same class are 

distributed in the same subspace, while data from different classes reside in different subspaces. Subspace clustering algorithms 

assume that each sample can be represented as a linear combination of other samples from the same class, a concept known as 

data self-expression. The optimization objective for subspace clustering is given by the following formula: 

min 𝐿𝑚𝑜𝑑𝑒𝑙(𝐶) = ‖𝐶‖𝑝           (4) 

𝑠. 𝑡. 𝑋 = 𝐶𝑋, 𝑑𝑖𝑎𝑔(𝐶) = 0 

Where 𝑋 is the data matrix, where each row represents a sample, and 𝐶 is the coefficient matrix that represents the combination 

of samples for self-expression. 

2.5 Kullback-Leibler divergence: 

KL divergence can be used to measure the difference between the distribution of data points within a cluster and the distribution 

of the cluster's center, or to assess the distributional differences between different clusters. KL divergence-based clustering utilizes 

KL divergence as a metric to evaluate the discrepancy between different probability distributions and groups data points into 

multiple clusters [11]. 

The probability that sample 𝑥𝑖 belongs to the 𝑗 class is computed using a Student's t-distribution, denoted as 𝑄. The target 

distribution 𝑃 is then defined based on 𝑄. 

𝑞𝑖,𝑗 =
(1−‖𝑧𝑖−𝜇𝑗‖

2
)

−1

∑ (1−‖𝑧𝑖−𝜇𝑗‖
2

)
−1

𝑗

           (5) 

𝑃𝑖,𝑗 =
𝑞𝑖,𝑗

2 ∑ 𝑞𝑖,𝑗𝑖⁄

∑ (𝑞𝑖,𝑗
2 ∑ 𝑞𝑖,𝑗𝑖⁄ )𝑗

 

The optimization objective for KL divergence is given by the following formula: 

𝒎𝒊𝒏 𝑳𝒎𝒐𝒅𝒆𝒍 = 𝑲𝑳(𝑷‖𝑸) 

= ∑ ∑ 𝑷𝒊,𝒋𝒍𝒏
𝑷𝒊,𝒋

𝒒𝒊,𝒋
 𝒋𝒊            (6) 

2.6 Gaussian Mixture Model Clustering: 

Gaussian Mixture Model (GMM) clustering is a density-based clustering method that assumes the data is generated from a mixture 

of several Gaussian distributions. Each Gaussian distribution represents a class in the data, and the entire dataset is a weighted 

sum of these Gaussian distributions. GMM clustering discovers the latent structure of the data by maximizing the likelihood 

function to estimate the parameters of the Gaussian distributions [12], as shown in Formula 7: 

max  𝐿𝑚𝑜𝑑𝑒𝑙(𝜋, 𝜇, 𝛴) = − ∑ 𝑙𝑛{∑ 𝜋𝑘𝑁(𝑧𝑖|𝜇𝑘, 𝛴𝑘)𝐾
𝑘=1 }𝑁

𝑖=1        (7) 
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Where 𝜋𝑘 represents the probability that a sample belongs to class 𝐾, while 𝜇𝑘 and 𝛴𝑘 are the mean and covariance matrix of the 

kkk-th class, respectively. 

2.7 Mutual Information Clustering: 

Mutual Information (MI) is a method for measuring the amount of shared information between two random variables. If the two 

variables are independent, their mutual information is zero. Mutual Information Clustering is an information-theoretic clustering 

approach that uses the concept of mutual information to assess the interdependence between different data points or features, and 

performs clustering based on this measure [13]. 

The goal of the mutual information clustering algorithm is to optimize a conditional model 𝑝(𝑦|𝑥; 𝑤), parameterized by 𝑤, that 

predicts the label distribution 𝑦𝑖 as a sample 𝑥𝑖. The objective is achieved by maximizing the mutual information between the 

input variable 𝑋 and the output variable 𝑌. The mutual information between 𝑋 and 𝑌 is given by the following formula: 

max  𝐿𝑚𝑜𝑑𝑒𝑙(𝜋, 𝜇, 𝛴) = − ∑ 𝑙𝑛{∑ 𝜋𝑘𝑁(𝑧𝑖|𝜇𝑘, 𝛴𝑘)𝐾
𝑘=1 }𝑁

𝑖=1         (8) 

After introducing the conditional model 𝑝̂(𝑦, 𝑤) =
1

𝑁
∑ 𝑝(𝑦|𝑥𝑖 ; 𝑤)𝑁

𝑖=1 , the objective function for mutual information clustering is 

given by: 

𝐼𝑤(𝑋, 𝑌) = 𝐸𝑝(𝑦,𝑤)(− log 𝑝̂(𝑦, 𝑤)) 

−
1

𝑁
∑ 𝐸𝑝(𝑦|𝑥𝑖,𝑤)(− log(𝑦|𝑥𝑖 , 𝑤))𝑁

𝑖=1           (9) 

Finally, the optimization objective for maximizing mutual information in clustering is given by the following formula: 

min 𝐿𝑚𝑜𝑑𝑒𝑙 = − 𝐼𝑤(𝑋, 𝑌) +  𝜆𝐿𝑟𝑒𝑔          (10) 

𝐻 represents the entropy function, and 𝐼(𝑋, 𝑌) denotes the mutual information between 𝑋 and 𝑌. 

III. DEEP NEURAL NETWORKS IN DEEP CLUSTERING 

Deep clustering involves learning the latent representations of data through neural networks, followed by clustering in the 

representation space. After defining the optimization objectives, it is crucial to select the appropriate neural network 

architecture to implement deep clustering [14][16]. In deep clustering tasks, neural networks are commonly used for feature 

extraction and data representation learning, allowing the loss function to more effectively reflect the relationships between 

samples. By optimizing the loss function, deep neural networks can efficiently assign samples to the correct clusters, thereby 

improving clustering performance. This section introduces different types of deep neural networks to provide readers with a 

comprehensive understanding of the deep clustering loss functions discussed later. 

FIGURE 3. Deep Clustering Process. Unlike Figure 1, deep clustering extracts features through deep neural 

networks. In this process, the network loss and clustering model loss are fed back into the deep neural 

network to obtain improved data representations, thereby enhancing the clustering performance 

3.1 Autoencoder: 

An autoencoder typically consists of an encoder and a decoder. The encoder maps the input data to a lower-dimensional latent 

representation, while the decoder reconstructs the data from this latent representation, mapping it back to the original data space. 
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As shown in Figure 4, 𝑍 represents the embedding space. In deep clustering algorithms based on autoencoders, clustering is often 

performed in the embedding space, and hence 𝑍 is also referred to as the clustering layer.  

 

FIGURE 4: Autoencoder Structure 

In 1986, Rumelhart et al. [17] proposed a structure similar to that of an autoencoder for unsupervised learning and feature 

extraction. While the model was not yet formally called an autoencoder, it laid the conceptual foundation for the later development 

of autoencoders. Subsequently, Hinton et al. [18] systematically introduced the concept of the autoencoder, which became a 

fundamental building block in deep learning and unsupervised learning. In 1986, Rumelhart et al. [17] proposed a structure similar 

to that of an autoencoder for unsupervised learning and feature extraction. While the model was not yet formally called an 

autoencoder, it laid the conceptual foundation for the later development of autoencoders. Subsequently, Hinton et al. [18] 

systematically introduced the concept of the autoencoder, which became a fundamental building block in deep learning and 

unsupervised learning. 

3.2 Variational Autoencoder: 

The Variational Autoencoder (VAE), shown in Figure 5, was proposed by Kingma [19] as an extension of the traditional 

autoencoder by integrating probabilistic models. In VAE, the latent representation is regarded as a probability distribution, 

enabling variational inference to learn the underlying data distribution, thereby enabling both data generation and reconstruction. 

Compared to traditional autoencoders, VAE excels in generative capabilities and can effectively capture implicit features of the 

data through its latent representation learning. Figure 5 depicts the structure of the variational autoencoder, where the data is 

mapped to the parameters of the latent space distribution, namely the mean μ and standard deviation σ. 

 

FIGURE 5: Variational Autoencoder 

3.3 Generative Adversarial Networks: 

Generative Adversarial Networks (GANs), introduced by Goodfellow et al. [20], consist of two components: a generator and a 

discriminator. The generator imitates real data by producing synthetic data, while the discriminator's task is to distinguish between 

real samples and the fake samples generated by the generator. It classifies the input data as either "real" or "generated," outputting 

a probability value of 0 or 1. Through this adversarial process, the generator and discriminator iteratively improve their respective 

capabilities, with the generator striving to create data that the discriminator can no longer effectively differentiate. This process 

continues until the generator produces data that the discriminator cannot distinguish, and the performance of the GAN is validated 

when the generated data becomes indistinguishable by the discriminator [39]. 
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Figure 6 illustrates the structure of a GAN, where the generator G introduces noise and attempts to generate data that closely 

resembles the real data, while the discriminator D works to distinguish between the real and generated data. 

 

FIGURE 6: Generative Adversarial Network 

3.4 Graph Neural Networks: 

Graph Neural Networks (GNNs), first introduced by Scarselli et al. [21], as shown in Figure 7, are deep learning models designed 

to handle graph-structured data. In many practical scenarios, data is often represented in the form of a graph, such as in social 

networks, molecular structures, and transportation networks. GNNs are capable of processing these complex, non-Euclidean 

structures, enabling them to capture the relationships between nodes and their neighbors. 

Figure 7 shows a Graph Neural Network (GNN), where the input consists of graph data, typically represented by a node feature 

matrix and an adjacency matrix that captures the relationships between nodes. The GNN aggregates neighborhood information 

through graph convolutions, learning representations for each node. Finally, the output is selected based on the task, such as node 

clustering or graph clustering. 

 

FIGURE 7. Graph Neural Network 

3.5 Contrastive Learning Neural Networks: 

Contrastive Learning Neural Networks, first introduced by Hadsell et al. [22], are a self-supervised learning method designed to 

learn data representations by comparing the similarities and differences between samples. In contrastive learning, the model does 

not rely on manually labeled data but instead trains the network by constructing positive and negative sample pairs, thereby 

learning discriminative and informative features. 

 

FIGURE 8. Contrastive Learning Neural Networks 
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3.6 Convolutional Neural Networks: 

Convolutional Neural Networks (CNN), proposed by LeCun et al. [23], systematically demonstrate how convolutional layers 

effectively extract local features from images. A CNN typically consists of an input layer, convolutional layers, pooling layers, 

fully connected layers, and an output layer. The input layer accepts a 3D tensor (H, W, C), where H is the height of the image, 

W is the width, and C represents the number of channels. The convolutional layers use filters that slide across the data to extract 

features, while the pooling layers perform down sampling on the feature maps to reduce computational complexity and the 

number of parameters, while preserving important feature information. After passing through convolutional and pooling layers, 

the network uses fully connected layers, similar to traditional neural networks, to output the data’s features or class labels, with 

the output layer generating the final prediction. 

In Figure 9, the CNN receives image data, where the convolutional layers extract local image features, the pooling layers reduce 

the dimensionality of the feature maps, and the fully connected layers integrate the features and map them to the output space. 

FIGURE 9: Convolutional Neural Network 

The convolutional layer of CNN effectively extracts information from images, reducing computational complexity and the number 

of parameters, significantly improving the performance of computer vision tasks. It has also been successfully extended to various 

domains such as video analysis and natural language processing, driving the advancement of deep learning. When combined with 

other neural networks, such as autoencoders, CNN can effectively apply the strengths of different networks to image data 

clustering [44]. 

IV. LOSS FUNCTIONS 

In deep clustering algorithms, the loss function is a core factor that determines model performance. It guides the model to learn 

high-quality feature representations by measuring the similarity and dissimilarity between samples in the embedding space. An 

effective loss function encourages the model to simultaneously minimize intra-cluster distances and maximize inter-cluster 

distances, resulting in clear clustering boundaries. Designing an appropriate loss function is crucial for improving the accuracy 

and stability of deep clustering. From the perspective of loss functions, deep clustering involves three components: network loss, 

clustering model loss, and regularization loss, as shown in Equation 11: 

min 𝐿 =  𝛼𝐿𝑛𝑒𝑡 + 𝛽𝐿𝑚𝑜𝑑𝑒𝑙 + 𝜆𝐿𝑟𝑒𝑔 , 

𝛼 > 0, 𝛽, 𝜆 ≥ 0            (11) 

Deep clustering algorithms can be classified into five categories based on the optimization objectives of their loss functions: 

(1) Reconstruction Loss focuses on reconstructing the data through autoencoders, ensuring that the embedding retains the 

original information. (2) Clustering Loss directly optimizes the clustering objective, ensuring that samples are grouped together 

in the embedding space. (3) Contrastive Loss strengthens the self-supervised representation by maximizing the similarity of 

similar samples. (4) Generative Adversarial Loss utilizes generative adversarial networks (GANs) to optimize the data 

distribution and enhance the clustering structure (5) Graph Structure Loss imposes graph Laplacian constraints on node 

relationships, ensuring that the embedding representation reflects the data's topological structure. 

4.1 Reconstruction Loss: 

Reconstruction Loss is primarily used in deep clustering algorithms based on autoencoders. It seeks to learn a compact, low-

dimensional representation of the data, while simultaneously ensuring that the reconstructed output closely approximates the 

original input. This loss plays a crucial role in deep clustering algorithms, serving as one of the core components for optimizing 

data representations and clustering performance. It is typically combined with traditional clustering loss functions as introduced 

in Chapter 1. The expression for reconstruction loss is given by Equation 12: 
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𝐿 =  
1

𝑁
∑ ‖𝑥𝑖 − 𝑥𝑖̂‖

2𝑁
𝑖=1            (12) 

Xie et al. [24] introduced Deep Embedded Clustering (DEC), which was the first to combine reconstruction loss with clustering 

loss, pioneering a deep learning-based embedded clustering framework. They employed an autoencoder to learn a low-

dimensional representation of the data, while ensuring that the reconstruction preserved key features of the original input. In the 

embedding space, DEC progressively optimized the clustering loss, bringing the cluster centers closer to the data distribution. This 

approach laid the groundwork for subsequent research in deep clustering; however, it focused solely on global embedding learning, 

overlooking the retention of local similarities. 

To address this limitation, Guo et al. [25] proposed Improved Deep Embedded Clustering with Local Structure Preservation 

(IDEC). Building upon DEC, IDEC incorporated a local structure-preserving mechanism by adding distance constraints between 

samples in the input space to the loss function. This modification ensured that neighboring samples remained similar in the low-

dimensional representation, enabling the algorithm to capture both global features and better preserve the local structure of the 

data. 

Further, Chen et al. [33] designed a deep clustering algorithm that incorporates manifold structure-preserving loss. Building upon 

reconstruction and clustering losses, they introduced manifold constraints that capture the complex, nonlinear structure of data, 

enabling the clustering process to better accommodate multi-manifold distributions. This method proves particularly effective in 

handling the manifold characteristics of high-dimensional data. 

At the same time, Zhang et al. [34] proposed the Neural Collaborative Subspace Clustering (NCSC), an innovative approach that 

combines neural networks with subspace clustering. NCSC utilizes self-expression loss and reconstruction loss to ensure that the 

low-dimensional representations can be self-expressed through linear combinations of other samples, thus uncovering the 

underlying subspace structure. Additionally, the algorithm applies sparse regularization to mitigate noise interference and 

introduces a collaborative mechanism that enhances clustering robustness. In contrast, Zhou et al. [35] focused on preserving more 

of the original data information in the latent space. They proposed a latent distribution-preserving algorithm that strengthens the 

robustness of the latent representations, further improving clustering performance. 

The application of reconstruction loss is not limited to spatial embedding and subspace learning. Fard et al. [36] combined 

reconstruction loss with K-means clustering loss to simultaneously optimize data representations and clustering results in a low-

dimensional space. This approach overcomes the limitations of traditional K-means in the feature space, enabling better adaptation 

to complex datasets. Ren et al. [37] integrated autoencoders with density estimation, creating a new deep clustering model. By 

jointly optimizing reconstruction loss, density estimation loss, and clustering loss, they significantly enhanced clustering quality, 

particularly for datasets with high-density sample distributions. 

Moreover, the clustering of multi-view data has also garnered attention. Yin et al. [38] proposed a novel multi-view clustering 

method that designs a mechanism for sharing generative latent representations. By minimizing the distance between 

representations from different views, this approach effectively integrates multi-view information. It demonstrates particularly 

strong performance in handling complex multimodal data. 

4.2 Clustering Loss: 

Deep clustering algorithms typically integrate the clustering objective directly into the loss function, constraining the embedding 

learning process of deep neural networks through specific clustering losses. These clustering losses include traditional K-means 

loss, KL divergence loss, and others, and are widely applied in deep clustering tasks. 

The Variational Deep Embedding (VaDE) proposed by Jiang et al. [42] combines variational inference with deep learning, offering 

an innovative solution for deep clustering. VaDE not only optimizes the representation of the latent space using reconstruction 

loss but also ensures that the latent distribution of the data is close to a Gaussian distribution by optimizing the KL divergence 

loss. Subsequently, a Gaussian Mixture Model (GMM) is introduced in the latent space to achieve clustering, significantly 

enhancing the model’s adaptability to complex data. 

Yang et al. [26] designed a deep clustering algorithm that generates representations suitable for K-means clustering. In addition 

to combining reconstruction loss and K-means clustering loss, this algorithm introduces a K-means clustering-friendly loss that 

aims to minimize the intra-class distances while maximizing the distances between different class centers, thus significantly 

improving the performance of K-means clustering. 

Similarly, Yang et al. [15] proposed a method that improves K-means clustering by leveraging similarity loss. By reducing the 

distance between similar samples in the embedding space, they effectively capture the data structure while optimizing clustering 

performance. 
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Chang et al. [27] proposed a deep clustering method called Deep Adaptive Image Clustering (DAC) specifically for image data. 

Unlike traditional methods based on cluster centers, DAC uses convolutional neural networks to extract image features and 

generates pseudo-labels by calculating the cosine similarity between sample pairs. Then, DAC performs clustering using the binary 

cross-entropy loss of the pseudo-labels. Additionally, its adaptive mechanism provides new directions and insights for deep 

clustering algorithms. 

4.3 Clustering Loss: 

Contrastive loss is extensively utilized in deep clustering algorithms based on contrastive learning, where the objective is to 

maximize the similarity between samples of the same class while minimizing the similarity between samples of different classes. 

Typically, this loss function is integrated with self-supervised learning to enhance the discriminative capacity of the embedding 

space, as outlined in Equation 13. The fundamental principle of contrastive loss is to optimize the relative distances between 

samples, thereby fostering the aggregation of similar samples and increasing the separation between samples of distinct classes, 

ultimately improving clustering performance. 

𝐿 =  
1

2𝑁
∑ (𝑦𝑖 ∙ 𝑑𝑖

2 +𝑁
𝑖=1 (1 − 𝑦𝑖) ∙ max (0, 𝑚 − 𝑑𝑖)

2)        (13) 

In this context, 𝑦𝑖  represents the label of the 𝑖 sample pair, 𝑑𝑖 denotes the Euclidean distance between the sample pair in the 

embedding space, and 𝑚 is the threshold set to determine when samples are considered dissimilar. 

For instance, Li et al. [28] proposed a method combining contrastive learning and traditional clustering objectives, aiming to 

enhance clustering quality by maximizing the similarity within the same class and the dissimilarity between different classes. 

Their algorithm simultaneously optimizes both contrastive loss and clustering loss, achieving more accurate clustering results. 

Similarly, Zhang et al. [47] introduced reconstruction loss and clustering loss to learn the data distribution in the latent space while 

incorporating contrastive loss and subspace constraint loss, further strengthening the model’s capability in extracting local 

features, thereby improving clustering performance. 

Zhao et al. [48] proposed an image clustering algorithm by introducing category style loss to optimize the style similarity between 

samples. When combined with contrastive loss, this approach ensures that samples from the same class are more compact in the 

latent space. Unlike traditional methods, this method not only optimizes the distances between samples but also addresses the style 

differences between classes, significantly improving the image clustering performance. 

Additionally, Li et al. [50] introduced a contrastive clustering method that enhances the discriminative power between samples 

using contrastive loss and combines it with clustering loss to achieve final clustering. This method is simple in structure, easy to 

extend, and applicable to a wide range of datasets. Yan et al. [51] proposed an image clustering method by combining autoencoders 

with probabilistic triplet loss. In addition to learning the low-dimensional representations of data through reconstruction loss, this 

approach incorporates probabilistic loss to optimize the latent space distance relationships between samples, further enhancing 

clustering accuracy. 

Through these innovations, deep clustering algorithms based on contrastive loss not only improve clustering accuracy but also 

provide greater adaptability and extensibility for handling a wide variety of data types. 

4.4 Generative Adversarial Loss: 

Generative Adversarial loss (GAN loss) is widely used in deep clustering algorithms based on Generative Adversarial Networks 

(GANs). It consists of two components: the generator loss and the discriminator loss. The generator's objective is to generate 

samples, while the discriminator’s task is to distinguish whether the samples are real or generated. By combining generative 

adversarial loss with clustering loss and reconstruction loss, GANs play a crucial role in optimizing the generative and clustering 

structures within the embedding space. The specific formulation is presented in Equation (14). 

min
𝐺

max
𝐷

𝐿(𝐷, 𝐺)  =  𝐸𝑋~𝑃𝑋
[log 𝐷(𝑋)] + 𝐸𝑋̂~𝑃𝑋̂

[log(1 − 𝐷(𝐺(𝑋̂)))]      (14) 

In this context, 𝐷(𝑥) represents the discriminator, 𝐺(𝑋̂) the generator, 𝑃𝑋 the true data distribution, and 𝑃𝑋̂ the distribution in the 

latent space. 

For instance, Dumoulin et al. [29] proposed an unsupervised learning approach that leverages the adversarial interaction between 

the generator and an inference model to learn the joint distribution of data and latent variables, thus inferring the latent 

representations of the data. While this method is not directly applied to clustering tasks, it offers a robust framework for latent 

space learning that benefits subsequent clustering applications. 
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Mukherjee et al. [30] introduced an innovative approach to enhance the performance of GANs in deep clustering by incorporating 

a clustering mechanism. This method combines adversarial loss, generator reconstruction loss, and latent space clustering loss. 

Through adversarial training, it enhances the diversity and representational capacity of the clustering structure, resulting in 

significant improvements in clustering quality. 

Ghasedi et al. [40] proposed a novel deep clustering algorithm by combining self-paced learning with GANs. In this approach, in 

addition to the adversarial and clustering losses, a self-paced loss is introduced that dynamically adjusts the loss weights, allowing 

the model to better handle complex samples and improve clustering performance. 

In multi-view clustering, Xu et al. [41] developed a GAN-based method that accounts for data incompleteness. Building upon 

traditional adversarial loss, reconstruction loss, and clustering loss, they introduced a view incompleteness loss, ensuring that even 

with missing data in some views, the algorithm can still perform clustering effectively, thereby enhancing the robustness of the 

model. 

These innovations highlight that generative adversarial loss not only contributes to generating high-quality latent representations 

but, when integrated with clustering mechanisms, can significantly optimize clustering structures, thereby improving both the 

effectiveness and adaptability of deep clustering algorithms. 

4.5 Graph Structure Loss: 

Graph structure loss plays a crucial role in deep clustering algorithms such as Graph Convolutional Networks (GCNs) and Graph 

Autoencoders. By constructing the adjacency matrix or Laplacian matrix of a graph, graph structure loss ensures that nodes with 

similar structures are positioned closer together in the embedding space, thereby facilitating the successful completion of clustering 

tasks. 

𝐿 =  
1

2
∑ 𝐴𝑖𝑗‖ℎ𝑖 − ℎ𝑗‖

2
𝑖,𝑗            (15) 

Formula (15) represents Laplacian regularization, which constrains the embedding features of adjacent nodes to be as similar as 

possible through the Laplacian matrix. In this formula, 𝐴𝑖𝑗 is the edge weight between nodes 𝑖 and 𝑗 in the adjacency matrix 𝐴, 

while ℎ𝑖 and ℎ𝑗 are the embeddings of nodes 𝑖 and 𝑗 in the latent space. 

The pioneering work of Kipf and Welling [32], namely Graph Convolutional Networks (GCNs), introduced a novel approach to 

feature learning on graph-structured data. While GCNs themselves were not directly applied to clustering tasks, they laid the 

groundwork for the widespread use of graph neural networks in deep clustering, profoundly influencing subsequent research 

directions. 

Building on this foundation, Bo et al. [31] proposed the Structural Deep Clustering Network (SDCN), which cleverly integrates 

graph structure information with deep embedding techniques to enhance clustering performance. SDCN incorporates 

reconstruction loss from autoencoders, K-means clustering loss in low-dimensional space, and graph embedding loss, combining 

the strengths of both graph neural networks and deep learning. This significantly improved clustering outcomes and demonstrated 

the potential of graph structures in deep clustering. 

Shaham et al. [45] took a different approach, combining spectral clustering with deep learning. They used isomorphic 

reconstruction loss and spectral loss to optimize the neural network and learn the spectral information of the data. The clustering 

loss further refined the clustering structure in the latent space. This method combines the theoretical strengths of spectral clustering 

with the powerful expressive capacity of deep learning, significantly improving clustering accuracy. 

In a different direction, Yang et al. [46] optimized the distribution of the latent space using a variational autoencoder to 

approximate a Gaussian distribution. They then incorporated graph structure loss to ensure that similar samples in the graph remain 

similar in the latent space. This not only strengthened the representation of the data’s underlying structure but also contributed to 

improved clustering results. 

Deng et al. [49] introduced a deep clustering method that combines dual autoencoders with spectral clustering. In this approach, 

one autoencoder is optimized through reconstruction loss, while the other uses spectral loss to enhance clustering performance. 

This strategy effectively strengthened the similarity between samples and improved clustering accuracy. 

Lastly, Huang et al. [52] proposed a multi-view deep clustering method that integrates the strengths of deep learning and spectral 

clustering. They introduced reconstruction loss and KL divergence loss to ensure that the data distribution in the latent space 

approximates a Gaussian distribution. Additionally, the method incorporates multi-view loss and inter-class loss to ensure 

consistency across different views and maintain sufficient separation between different classes, further improving clustering 

performance. 
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V. DATASETS AND EVALUATION METRICS 

Evaluation metrics provide quantitative feedback for the loss functions in deep clustering algorithms, helping assess their actual 

contribution to clustering quality. By analyzing the results of evaluation metrics, the loss function design can be optimized to 

better align with task requirements and data distribution characteristics. Selecting appropriate metrics fosters Objective 

comparisons and improvements across algorithms, offering guidance for designing more efficient loss functions. 

5.1 Graph Structure Loss: 

Evaluation metrics are standards used to measure and assess model performance. In the field of deep clustering, various metrics 

are available to evaluate the effectiveness of deep clustering algorithms. This section categorizes these metrics based on their 

characteristics, providing a more comprehensive understanding of their use. 

5.2 Accuracy: 

Accuracy (ACC) is a commonly used metric in deep clustering algorithms. Unlike the traditional accuracy that simply matches 

the predicted labels with the true labels, deep clustering accuracy finds the optimal label mapping that maximizes the number of 

data points whose cluster labels align with the true labels. The expression for accuracy is shown in Formula (16): 

𝐴𝐶𝐶 = 𝑚𝑎𝑥𝜋
1

𝑁
∑ 1{𝑙𝑖 =  𝜋(𝑦𝑖)},𝑛

𝑖=1          (16) 

where 𝑙𝑖 and 𝑦𝑖 denote the true label and the clustering label of data point 𝑖, respectively, 𝜋 is the function that maps the clustering 

labels to the true labels, and 1{∙} is the indicator function, which takes the value of 1 when the condition inside the parentheses is 

true, and 0 otherwise." 

5.3 Normalized Mutual Information: 

The Normalized Mutual Information (NMI) metric evaluates the quality of clustering results by measuring the amount of mutual 

information between the clustering results and the true labels, and normalizing it. The range of NMI is between 0 and 1, where a 

higher value indicates better clustering performance. The expression for NMI is shown in Equation (17): 

𝑁𝑀𝐼(𝑦, 𝑙) =
2∙𝐼(𝑦,𝑙)

𝐻(𝑦)+𝐻(𝑙)
           (17) 

Where 𝑦 and 𝑙 represent the clustering labels and true labels of the data. 

5.4 Silhouette Coefficient: 

The Silhouette Coefficient measures clustering quality by comparing the distance between a data point and other points within the 

same cluster, as well as the distance to the nearest point in a different cluster. The range of the Silhouette Coefficient is from -1 to 

1, where higher values indicate better clustering performance. The expression for the Silhouette Coefficient is given by Formula 

(18): 

𝑆𝑆(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

max{𝑎(𝑖),𝑏(𝑖)}
           (18) 

where 𝑎(𝑖) is the average distance between sample 𝑖 and other samples within the same cluster, and 𝑏(𝑖) is the average distance 

between sample 𝑖 and the nearest sample from a different cluster. 

5.5 Root Mean Square Error: 

Root Mean Square Error (RMSE) measures the clustering performance by calculating the root mean square of the Euclidean 

distances from data points to the centroids of their assigned clusters. A smaller value indicates better clustering performance. The 

expression for RMSE is given by Formula (19): 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑑(𝑥𝑖 , 𝑐𝑖))2𝑛

𝑖=1           (19) 

Where 𝑑(𝑥𝑖 , 𝑐𝑖) denotes the Euclidean distance between data point 𝑥𝑖 and the centroid 𝑐𝑖 of the cluster to which 𝑥𝑖 belongs. 

5.6 Neighbor Consistency: 

Neighbor Consistency (NC) is used to measure the degree of discrepancy between different domains or subgroups in clustering 

results. A lower value indicates that the clustering results are more consistent across different domains. The expression for 

Neighbor Consistency is shown in Formula (20): 
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𝑁𝐶 =
1

𝑁
∑

|{𝑗⌈𝑗∈𝑁𝑘(𝑖) 𝑎𝑛𝑑 𝑙𝑗=𝑙𝑖}|

|𝑁𝑘(𝑖) |

𝑛
𝑖=1           (20) 

where 𝑁𝑘(𝑖) represents the 𝑘-nearest neighbors of sample 𝑖, and 𝑙𝑖 is the true label of sample 𝑖. 

5.7 Significance: 

Significance (SIG) measures clustering quality by calculating the ratio of the minimum inter-cluster distance to the maximum 

intra-cluster radius. A larger ratio indicates that the samples within the same cluster are compactly grouped, while different clusters 

are well-separated. The expression for significance is shown in Formula (21): 

𝑆𝐼𝐺 =
min(𝑅𝑗)

max(𝑟𝑖)
 

𝑗 = 1,2, … ,
𝑘(𝑘−1)

2
            (21) 

Where 𝑅𝑗 is the inter-cluster distance, and 𝑟𝑖 is the intra-cluster distance. 

The aforementioned common evaluation metrics for deep clustering algorithms are effective in assessing the performance of 

deep clustering models. It is important to note that when selecting evaluation metrics, the choice should be based on factors 

such as whether the data has labels, the specific use case, and other context-specific considerations, in order to objectively 

evaluate the algorithm’s performance. Additionally, it may be beneficial to use multiple metrics to assess the deep clustering 

algorithm from different perspectives, enabling a more comprehensive evaluation. Table 2 presents some deep clustering 

evaluation metrics, their applicable scenarios, as well as their advantages and disadvantages. 

TABLE 2 

 EVALUATION METRICS FOR DEEP CLUSTERING ALGORITHMS 
Evaluation 

Indicators 

Data 

Labels 

Supervised 

Learning 

Unsupervised 

Learning 
Advantages Disadvantages 

ACC √ √ √ 

ACC is easy to understand 

and calculate, and can 

directly reflect the accuracy 

of clustering. 

ACC requires true labels for 

data and is sensitive to the 

number and distribution of 

categories. 

NMI √ √ √ 

NMI can compare the 

clustering results of different 

data sets and is insensitive to 

the number of categories. 

NMI requires true labels 

and is sensitive to noise and 

outliers 

ARI √ √ √ 

ARI is not sensitive to 

changes in the number of 

categories 

ARI requires data labels and 

is sensitive to noise 

NC √ √ √ 

NC measures the consistency 

between samples and 

neighborhood samples and is 

used to evaluate local 

structure. 

NC requires true labels and 

is sensitive to noise 

SS - - √ 
NC requires true labels and 

is sensitive to noise 

SS has high computational 

complexity and is 

insensitive to clusters of 

different shapes 

RMSE - - √ 

RMSE reflects the accuracy 

of the cluster center and is 

easy to understand and 

calculate. 

RMSE is computationally 

expensive 

SIG - - √ 

SIG is easy to understand 

and calculate, and intuitively 

reflects the clustering effect 

of the algorithm. 

SIG only considers extreme 

cases and cannot reflect the 

general effect of clustering. 

“√” indicates that the evaluation metric requires the use of data labels or is suitable for the specific context, while “-” 

indicates that the evaluation metric does not require data labels or is not suitable for the context. 
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VI. DATASETS 

The characteristics of the dataset directly influence the design of the loss function. For example, the distribution of the data, the 

number of categories, and the similarity between samples determine the patterns that the loss function needs to capture. Different 

datasets may require specific loss functions to adapt to their characteristics, ensuring high clustering performance. By studying 

the structure and attributes of the dataset, more generalizable and targeted loss functions can be designed to improve the 

effectiveness of deep clustering algorithms. 

The datasets commonly used in deep clustering algorithms generally fall into the following eight categories: Image Datasets, Text 

Datasets, Time Series Datasets, Gene Expression Datasets, Social Network Datasets, Audio Datasets, Structured Datasets, Graph 

Datasets. 

6.1 Image Datasets: 

• Modified National Institute of Standards and Technology database (MNIST): The MNIST dataset consists of 

60,000 training images and 10,000 testing images of handwritten digits, covering the range of digits from 0 to 9, with a 

total of 10 categories. 

• CIFAR-10: The CIFAR-10 dataset [57] contains 60,000 32×32 color images, categorized into 10 classes: airplane, 

automobile, bird, cat, deer, dog, frog, horse, ship, and truck. Each class has 6,000 images. 

• CIFAR-100: The CIFAR-100 dataset [58] is an extension of CIFAR-10, containing 100 categories, with 600 images per 

category, totaling 60,000 32×32 color images. 

• Fashion-MNIST: The Fashion-MNIST dataset [59] is a replacement for the MNIST dataset, with the same size, format, 

and training/testing split as MNIST. It contains 10 categories of fashion items, including t-shirts, pants, and jackets, 

presented in front-view images. 

6.2  Text Datasets: 

• 20 Newsgroups: The 20 Newsgroups dataset [60] contains approximately 20,000 news group documents, which are 

divided into 20 categories representing different topics such as sports, music, and politics. 

• Reuters-21578: The Reuters-21578 dataset [61] includes 21,578 news articles categorized into different topics, widely 

used for text classification and clustering tasks. 

6.3 Time Series Datasets 

• UCR Time Series Classification Archive: The UCR Time Series Classification Archive dataset [62] provides 128 time 

series datasets, each with sample data and labels. Covering various fields, it is an important open-source resource in time 

series mining. 

• ECG Data: The ECG Data dataset [63] contains electrocardiogram (ECG) data, with labeled samples, used for clustering 

tasks related to heart activity in time series data. 

6.4 Gene Expression Datasets 

• Single-cell RNA Sequencing (scRNA-seq): The Single-cell RNA sequencing (scRNA-seq) dataset is an unlabeled 

dataset used for analyzing single-cell RNA sequencing data to identify different cell types. 

• Cancer Gene Expression Profiles: The Cancer Gene Expression Profiles dataset [64] contains gene expression data 

from different types of cancer, used for clustering tasks in cancer research. 

6.5 Social Network Datasets 

• Facebook: The Facebook dataset is an unlabeled social network dataset that contains user relationship information, used 

for community detection and user grouping clustering tasks. 
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• Enron Email Dataset: The Enron Email Dataset [65] is an unlabeled network dataset that contains email communication 

data between employees of the Enron corporation. 

6.6 Audio Datasets 

• Speech Commands Dataset: The Speech Commands Dataset [66] is a labeled dataset that contains audio data for several 

different voice commands, used for speech recognition and clustering tasks. 

• TIMIT: The TIMIT dataset [67] is a standard dataset in the field of speech recognition, containing audio recordings and 

corresponding textual labels. 

6.7 Structured Datasets 

• Iris Dataset: The Iris dataset [68] contains 150 samples, each with 4 features, categorized into 3 different classes. 

• Wine Dataset: The Wine dataset [69] includes data on 3 different varieties of wine, with 13 chemical characteristics for 

each sample, totaling 178 samples. 

6.8 Graph Datasets 

• CORA: The CORA dataset is a labeled dataset that contains citation network data of scientific papers, suitable for 

classification and clustering tasks in graph data. 

• PubMed: The PubMed dataset [70] is a labeled, large-scale biomedical literature database containing citation 

relationships between papers, used for graph clustering and community detection. 

The selection of these datasets typically depends on the specific application scenarios and the requirements of the clustering 

tasks. Deep clustering algorithms often incorporate loss functions with specific functionalities to extract meaningful features 

from complex data, thereby achieving more accurate clustering results. 

VII. SUMMARY AND ANALYSIS 

Based on the characteristics of the loss functions used in most existing deep clustering algorithms, this paper categorizes deep 

clustering loss functions into five general types: reconstruction loss, clustering loss, contrastive loss, adversarial loss, and graph 

structure loss. 

Among these, reconstruction loss is a commonly used loss function in deep clustering and plays an important role: 1) By 

reconstructing the input data back into its original form, the model can learn the latent structure of the data. 2) During the 

reconstruction process, all input features are considered, and reconstruction loss effectively handles high-dimensional data. 3) The 

reconstruction process helps smooth the data distribution, improving the model’s robustness. 

However, reconstruction loss often requires complex neural network architectures, and deep clustering algorithms using this loss 

function demand longer training times and higher computational costs. Additionally, it is prone to overfitting. Although 

reconstruction loss can restrict the latent representation within a certain range, this representation often lacks practical meaning. 

Moreover, after training, the algorithm still needs to reconstruct the data, leading to wasted computational resources. 

Clustering loss typically refers to a loss function that directly incorporates the clustering objective in deep clustering algorithms. 

During the deep embedding learning process, the clustering loss constrains the deep neural network. The advantages of clustering 

loss are as follows: 1) It focuses more on improving clustering performance compared to other losses. 2) It reduces the decoupling 

between feature learning and clustering, leading to a latent space that is more aligned with clustering requirements. 3) The model 

design is simple and efficient, reducing training time and saving computational resources. 

However, clustering loss also has some drawbacks: 1) The focus on clustering may lead the model to neglect learning meaningful 

data features. 2) For more complex data structures, simple clustering loss may fail to capture data features effectively, resulting in 

poor clustering performance. 3) In unsupervised learning, directly optimizing the clustering objective can sometimes lead to 

unstable convergence behavior. 

Contrastive loss is simple to implement and, by pulling similar samples together and pushing dissimilar samples apart, can 

effectively learn useful feature representations, enhancing the model’s understanding of the relationships between samples. One 

of the main advantages of contrastive loss is its strong generalization ability. Through optimization of similarity and dissimilarity, 

it generalizes well to new data. However, there are some issues in training the model: 1) The need to compute the similarity 
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between every pair of samples leads to high computational costs. 2) Contrastive loss relies on the selection of negative samples, 

and if the negative samples are not representative, it results in poor model performance. 3) Focusing on local relationships between 

samples might cause the model to fail to capture global features effectively. These are key areas of focus when using contrastive 

loss. 

Adversarial loss is becoming increasingly widespread in deep clustering algorithms. By continuously training with adversarial 

generation, it can enhance feature learning and effectively learn the true distribution of the data. Additionally, adversarial models 

have strong flexibility and can be combined with convolutional neural networks, recurrent neural networks, and other architectures 

to adapt to different data types. However, adversarial loss comes with some disadvantages: 1) Training instability, 2) Difficulty in 

tuning hyperparameters (such as learning rate, batch size, etc.), 3) High computational costs, 4) Lack of clear evaluation criteria, 

which require careful handling in practical applications. Properly designing the training process and optimization strategies can 

improve the performance and stability of adversarial networks. 

Graph structure loss is primarily used in graph neural networks and other graph-related tasks, emphasizing the relationships and 

structural information between nodes. Graph structure loss effectively utilizes graph topological information, aiding in the 

understanding of node relationships. It can be applied to both directed and undirected graphs and is highly flexible and adaptable. 

Through graph structure loss, the model can better aggregate information between nodes, improving clustering quality. For sparse 

data scenarios such as user behavior data and social networks, graph structure loss can help the model extract useful features. 

However, graph structure loss also has notable drawbacks: 1) High computational complexity due to the need to consider 

numerous edges and nodes, 2) Unstable model performance. 

Since graph neural networks rely on local neighbor information during training, the model may fall into local optima, resulting in 

suboptimal performance. Currently, more and more deep clustering algorithms take these issues into account, designing different 

loss functions in deep clustering to improve model performance. For example, reconstruction loss can be combined with K-means-

friendly clustering loss, encouraging autoencoders to learn latent spaces that are more compatible with K-means clustering. 

Alternatively, multiple loss functions can be combined based on the specific requirements of the clustering task to enhance 

clustering performance. 

VIII. KEY ELEMENTS OF AN EXCELLENT LOSS FUNCTION AND FUTURE DIRECTIONS 

In this paper, we analyze and summarize existing deep clustering algorithms from the perspective of loss functions. We propose 

that a good deep clustering model should have a loss function that possesses four essential elements: information retention, 

balance, robustness, and scalability. Furthermore, we also identify two future research directions for deep clustering algorithms: 

deep clustering assumptions and deep representations based on KAN. 

8.1 A. Key Elements of an Excellent Loss Function: 

8.1.1 Information Retention: 

In deep clustering, the loss function should have strong information retention capabilities to ensure that the model can effectively 

capture and express the key information in the data. This means that the loss function should not only quantify the discrepancy 

between the predicted and true labels but also retain as much of the input data's features and structure as possible. In high-

dimensional spaces, the ability to retain information directly affects the accuracy of clustering results and the model's 

generalization ability. By optimizing the loss function to maximize information retention during training, the model can better 

adapt to complex data, thereby improving clustering performance and effectiveness. 

8.1.2  Balance: 

To enhance clustering performance, deep clustering algorithms often include multiple components in their loss functions, 

especially reconstruction loss and clustering loss. An excellent loss function needs to achieve a reasonable balance between these 

components, ensuring that the embedding space retains the original data's information while also improving clustering 

performance. How to balance the various parts of the loss function will be an ongoing research topic for deep clustering algorithms. 

8.1.3 Robustness: 

Data often contains outliers and noise. An excellent deep clustering loss function should exhibit a certain level of robustness, 

ensuring that clustering is not unduly affected by these factors. Information-theoretic loss functions, such as maximum mutual 

information methods, can reduce the impact of noise by increasing intra-cluster compactness and inter-cluster separation. 



International Journal of Engineering Research & Science (IJOER)                         ISSN:[2395-6992]                      [Vol-11, Issue-4, April- 2025] 

Page | 17  

8.1.4 Scalability: 

Some loss functions, such as contrastive loss, can be trained in batches and optimized on small batches of data to enable the 

algorithm’s application to large-scale datasets. As the dataset size increases, the loss function should be capable of efficiently 

handling large-scale data without leading to excessive computational costs. An excellent loss function should have this ability as 

well. 

8.2 Future Directions: 

8.2.1 Deep Clustering Assumptions: 

Currently, many deep clustering algorithms rely on traditional clustering assumptions in the embedding space, such as subspace 

clustering assumptions, clustering density assumptions, and information entropy-based assumptions. These deep clustering 

algorithms often inherit the limitations of these assumptions. For example, the clustering center-based assumption may lead to 

problems such as local optima. Therefore, deep clustering assumptions based on the perspective of deep learning will play a 

significant role in the future development of deep clustering techniques. New assumptions that better align with the capabilities 

of deep learning models can potentially improve the robustness and accuracy of clustering results. 

8.2.2 Deep Representations Based on KAN: 

Unlike others neural networks based on approximate expression theorems, Liu et al. [54] (2024) proposed neural networks based 

on the Kolmogorov-Arnold representation theorem (KAN). Liu claims that KAN has advantages over current neural networks, 

such as higher data transmission rates, stronger cross-modal integration capabilities, enhanced robustness, and improved model 

interpretability. While existing deep clustering algorithms typically use neural networks to learn representations, the introduction 

of KAN enriches the choices for deep clustering representations. Combining KAN with deep clustering may lead to the extraction 

of superior latent representations, thereby improving clustering performance. 
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