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Abstract— A strong edge coloring of a graph G  is an edge coloring such that every two adjacent edges or two edges 

adjacent to a same edge receive two distinct colors; in other words, every path of length three has three distinct colors in G. 

The strong chromatic index of G, denoted by 
 S G

, is the smallest integer k such that G admits a strong edge coloring with 

k  colors. This survey is an brief introduction to some good results regarding the strong chromatic index of planar graphs, 

bipartite graphs and so on.  
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I. INTRODUCTION 

Strong edge colorability was introduced by Fouquet and Jolivet [21,22]and used to solve the frequency assignment 

problem in some radio networks. A strong k -edge-coloring of a graph G  is a mapping from ( )E G  to  1,2, , k  such 

that every two adjacent edges or two edges adjacent to a same edge receive two distinct colors. In other words, the graph 

induced by each color class is an induced matching. This can also be seen as a vertex 2 -distance coloring of the line graph 

of G . The strong chromatic index of G , denoted by  S G , is the smallest integer k  such that G  admits a strong k -

edge-coloring. 

There is a classical conjecture with respect to  S G , which is posed by Erdős and Nešetřil: 

Conjecture 1.1 (Erdős [18] , Erdős [19] , Faudree et al. [20] ) If G  is a graph with maximum degree   then 
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The best known upper bound was given by Molloy and Reed in 1997:  

Theorem 1.1 (Molloy and Reed [33] )  For   large enough, every graph with maximum degree   has 

  21.998s G   .  

In 2015, Bruhn and Joos [10] give a stronger bound for the strong chromatic index, for   large enough, every graph with 

maximum degree   has   21.93s G   . For small maximum degrees, 3,4   were studied:  

Theorem 1.2 (Andersen [2]  Horák et al. [27] )  Every graph with maximum degree 3   admits a strong 10 -edge-

coloring. 

Theorem 1.3 (Cranston [13] )  Every graph with maximum degree 4   admits a strong 22-edge-coloring.  

According to conjecture 1.1, the conjectured bound is 20. For graphs with 4  , there is a new conclusion [40] .  

An upper bound for the strong chromatic index of subcubic graphs in terms of the maximum average degree 

2 ( )
( ) max{ , }

( )

E H
mad G H G

V H
  , was given in [26] . More details will be given in the next theorems.  
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Theorem 1.4 (Wang and Zhao [40] )  If G  is a graph with girth at least 2  and 
1

( ) 2
3 2

mad G  


, where 

4  , then ( ) 2 1S G    .  

 In 1990, Faudree et al. [20]  proposed various conjectures on subcubic graphs (graphs with maximum degree at most three). 

Conjecture 1.2  Let G  be a subcubic graph. 

1. The strong chromatic index is at most 10. 

2. If G is bipartite, then ( ) 9S G  . 

3. If G  is planar, then ( ) 9S G  . 

4. If G  is bipartite and the degree sum of every edge is at most 5, then ( ) 6S G  . 

5. If G  is bipartite with girth at least 6, then ( ) 7S G  . 

       6. If G  is bipartite and its girth is large, then ( ) 5S G  .  

 Then in 2015, P. DeOrsey et al. improve a more general bound of ( )S G  in [15] . P. DeOrsey et al. give some definitions, 

3S  be a triangle with pendant edges at each vertex, 
4S  be a 4-cycle with pendant edges at two adjacent vertices, and for 

5k  , let 
kS  be a k -cycle with pendant edges at each vertex.  

Theorem 1.5 (P. DeOrsey et al. [15])  Let G  be a subcubic graph. 

  1. If G  does not contain 
3S , 

4S  or 
7S , and 

1
( ) 2

7
mad G   , then ( ) 5S G   

 2. If G  is planar and has girth at least 30, then ( ) 5S G  .  

When ( ) 4G  , the conclusion of Theorem 1.4 may be improved.  

Theorem 1.6 (P. DeOrsey et al. [15])  Let G  be a subcubic graph. 

1. If G  has girth at least 7 and 
2

( ) 2
13

mad G   , then ( ) 7S G  . 

       2. If G  is planar and has girth at least 28, then ( ) 7S G  .  

Regarding subcubic graphs with restriction on girth, there is a conclusion.  

Theorem 1.7 (Wang and Zhao [40] )  If G  is a subcubic graph with girth at least 9 and 
48

( )
23

mad G  , then 

( ) 5S G  .  

Theorem 1.8 (Hocquard and Valicov [26] )  Let G  be a subcubic graph (a graph with Δ≤3). 

1. If 
15

( )
7

mad G  , then ( ) 6S G  . 

2. If 
27

( )
11

mad G  , then ( ) 7S G  . 

3. If 
13

( )
5

mad G  , then ( ) 8S G  . 

4. If 
36

( )
13

mad G  , then ( ) 9S G  . 

Then in 2013, Hocquard et al. gave a stronger result of Theorem 1.8.  

Theorem 1.9 (Hocquard et al. [25])  Let G  be a subcubic graph, 
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1. If 
7

( )
3

mad G  , then ( ) 6S G  . 

2. If 
5

( )
2

mad G  , then ( ) 7S G  . 

3. If 
8

( )
3

mad G  , then ( ) 8S G  . 

4. If 
20

( )
7

mad G  , then ( ) 9S G  . 

II. MAIN RESULTS WITH RESPECT TO PLANAR GRAPHS  

In 1977, K. Appel and W. Haken proved every planar map is four colorable. In 1990, Faudree et al. gave an another 

conclusion for planar graphs.  

Theorem 2.1 (Faudree et al. [20] )  If G  is a planar graph, then ( ) 4 4S G    . Moreover for every integer 2  

there exists a planar graph G with ( )G    and ( ) 4 4S G    .  

 The above conclusion is on general planar graphs, and regarding cubic planar graphs, there is another conjecture mentioned 

in  20, 29 .  

Conjecture 2.1 (Faudree et al. 
[20]

 Jensen et al. 
[29]

)  If G  is subcubic planar graph, then 
( ) 9S G 

.  

Respecting planar subcubic graphs with restriction of girth, Hocquard and Valicov gave some good results in 2011.  

Theorem 2.2 (Hocquard and Valicov 
[26]

)  Let G  be a planar subcubic graph with girth 
g

, 

1. If 
30g 

, then 
( ) 6S G 

. 

2. If 
11g 

, then 
( ) 7S G 

. 

3. If 
9g 

, then 
( ) 8S G 

. 

4. If 
8g 

, then 
( ) 9S G 

. 

Then in 2015, Philip DeOrsey et al. 
[15]

 make some improvements based on the above theorem, if G  is a subcubic planar 

graph and 
( ) 30girth G 

, then 
( ) 5S G 

, in which the upper bound of 
( )S G

 is reduced from 6 to 5. 

 The strong chromatic index was also studied for graphs with large girth.  

Theorem 2.3 (Hudák et al. 
[28]

)  Let G  be a planar graph with girth at least 6 and maximum degree 4  . Then, 

( ) 3 5S G   
.  

Very recently, Bensmail et al. gave a better bound of Theorem 2.3 in 
[4]

, if G  is a planar graph with with girth 
6g 

 

then 
( ) 3 1S G   

, which made some improvements for the upper bound of 
( )S G

. 

Then Bensmail et al. gave us some conclusions, considering the upper bound of 
( )S G

 in some general conditions. 

Theorem 2.4 (Bensmail et al. 
[4]

). Let G  be a planar graph with maximum degree   and girth 
g

. If G  satisfies one of 

the following conditions below, then
( ) 4S G  

 

    
7,  
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5, 4,and g   

 

    
5.g 

 

If G  is planar with large girth and large maximum degree  , then we have 
( ) 3S G  

. In 2013, Hocquard et al. 
[25]

 

gave an conclusion for planar graphs, if G is a planar graph with 3   containing neither induced 4-cycles, nor induced 5-

cycles, then 
( ) 9S G 

. 

Theorem 2.5 (Hudák et al. 
[28]

). Let G  be a subcubic planar graph with girth at least 6, then 

( ) 9S G 
. 

If the girth is large enough, then the upper bound can be strengthened to 2 1  . Borodin and Ivanova 
[8]

has proved: every 

planar graph with maximum degree  is strong 
(2 1)

-colorable if its girth is at least 

40 1
2

 
 

  . 

Theorem 2.6 (Chang et al. 
[11]

). Let 
F  be the family of planar graphs with maximum degree at most . Every graph in 

F with girth at least 10 46  admits a strong
(2 1)

 -edge-coloring when 4  . 

Guo et al. 
[24]

 improve the girth to 10 46 . Very recently, Wang and Zhao make some improvements based on this 

conclusion in 
[40]

, reducing the girth to 10 4 , and every graph in 
F  still admits a strong 

(2 1)
-edge-coloring. 

III. STRONG CHROMATIC INDEX OF HALIN GRAPHS  

Definition 3.1  Let T  be a tree without vertices of degree two. Consider a plane embedding of T , and connect the leaves of 

T  by a cycle that crosses no edges of T . A graph that is constructed in this way is called a Halin graph.  

Suppose G  is a Halin graph of order 2 2h with a caterpillar T as its characteristic tree, 1h  . We name the vertices 

along the spine 
hP  by 1,2, ,h . The vertices adjacent with 1 are named by 0  and 1 . The vertices adjacent with h  are 

named by 1h  and h . Other leaf adjacent with i  is named by i , 2 1i h   . Note that 0,1, , , 1h h    are vertices 

lying on the adjoint cycle 
2hC 

. We shall use this vertex labeling through this paper. Let 
hG  be the set of all cubic Halin 

graphs whose characteristic trees are caterpillars of order 2 2h . 

In 2006, Shiu et al. proved the following theorem, and came up with the conjecture 3.1.  

Theorem 3.1 (Shiu et al. [36] )  For 4h   and hG G , we have 6 ( ) 8s G  .  

There is a general bounds for the strong chromatic index of cubic Halin graphs. Shiu et al. in [36]mentioned that any cubic 

Halin graphs G  contains at least two triangles. It is easy to see that hG G  for some 2h   if and only if G  contains 

only two triangles. In 2006, Shiu et al. [36]  proved that if G  is a cubic Halin graph, then 6 ( ) 9s G   and the bounds 

are sharp. 

A complete cubic Halin graph is a cubic Halin graph whose characteristic tree is a complete cubic tree, in which all leaves 

are at the same distance from the root vertex. Next, we introduce some conclusion respecting the strong chromatic index of 

the complete cubic Halin graph. A cubic tree is a tree in which all interior vertices are of degree 3 . For 0n  , a complete 

cubic tree 
nT  is a cubic tree of height 1n  with a root vertex 

0v  such that all its leaves are at the same distance 1n  from 

0v . The level of a vertex is defined to be the distance from the root vertex to that vertex. For any edge e uv  of 
nT , 

assume v  is a child of u . The level of e  is defined to be the level of v . Therefore, 
nT  has 1n  levels. 
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A complete cubic Halin graph 
nH  is a cubic Halin graph whose characteristic tree is 

nT . Clearly, 0 4H K . Also when 

1n  , 
nH  is not a necklace, since 

nH  is a 
4C -free graph (a 

4C -free is a graph that does not contain a 4 -cycle). In [37]  

Shiu and Tam gave the results for complete cubic Halin graph, 1( ) 7s H  , ( ) 6s nH   for 0n   or 2n  . 

For 1h  , a cubic Halin graph 
heN , called a necklace. Its characteristic tree 

hT  consists of the path 0 1 1, , , hv v v  , and 

leaves 1 2, , , hv v v    such that the unique neighbor of 
iv  in 

hT  is 
iv   for 1 i h  and vertices 0 1 1, , , ,h hv v v v 

   are in 

order to form the adjoint cycle 
2hC 

. Following is a conjecture based on the above conclusions.  

Conjecture 3.1 (Shiu et al. [37])  If G  is a cubic Halin graph that is different from any necklace, then ( ) 7s G  .  Lih 

et al. gave the theorem respecting cubic Halin graph:  

Theorem 3.2 (Lih et al. [31])  If a cubic Halin graph G T C  is different from
2eN and 

4eN , then ( ) 7s G  . 

Theorem 3.3 (Lai et al. [30] )  If a Halin graph G T C  is different from 
2eN  and any wheel 

nW ,  0n   (mod 4 ) , 

then ( ) ( ) 3s sG T    .  

In fact, Theorem 7.1 gives a strong edge-coloring of necklace. Shiu et al. provided another conclusion for necklace and 

determine the strong chromatic index of it. 

Theorem 3.4 (Shiu et al. [36] )  Suppose 1h  , 

 

6, ,

7, 6 ,

8, 4,

9, 2.

hs e

if h is odd

if h and is even
N

if h

if h







  


 

 

IV. STRONG CHROMATIC INDEX OF DEGENERATE GRAPHS  

Definition 4.1  If every subgraph H  of G  has a vertex v , such that the degree of v  is at most k , then G  is a k -

degenerate graph.  

With respect to ( )S G  of k -degenerate graph, Dębski et al. [14]  gave an upper bound (4 1) ( ) (2 1)k G k k     in 

2013. And then, Yu [42]  obtained an improved upper bound 
2(4 2) ( ) 2 1k G k k     . In 2014, Wang give a better 

result for the upper bound, which is the best result now. 

Theorem 4.1 (Wang [39] )  If G  is a k -degenerate graph with maximum degree  , and k   , then 

2( ) (4 2) ( ) 2 1S G k G k      .  

Conjecture 4.1 (Chang and Narayanan [12])  There exists an absolute constant c  such that for any k -degenerate graphs 

G  with maximum degree  , 
2( )S G ck   . Furthermore, the 

2k  may be replaced by k .  

Wang also investigates a class of graphs whose all 3
+

-vertices induce a forest, and gave the theorem as follows. 

Theorem 4.2 (Wang [39] )  If G  is a graph such that all its 3
+

-vertices induce a forest, then ( ) 4 ( ) 3S G G    .  

A graph is 2-degenerate if every subgraph has minimum degree at most two. Outplanar graphs, non-regular subcubic graphs, 

and planar graphs with girth at least six are all 2-degenerate graphs. Chang and Narayanan (2013, [12]) proved that a 2-

degenerate graph with maximum degree   has strong chromatic index at most 10 ( ) 10G  . They actually proved a 

stronger statement.  
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Theorem 4.3 (Chang and Narayanan [12])  Let G  be a 2-degenerate graph with maximum degree  , let 

{1,2, ,5 5}B    and {1,2 , ,(5 5) }B     . Then G  has a strong edge coloring with the colors from B B  

such that 

(a) Every pendant edge (if any) is colored with a color in B . 

(b) If a pendant edge is colored with a color c B , then no edge within distance 1 to the edge is colored with c .  

Luo and Yu [32]  improved the upper bound to 8 4 , and they gave a stronger statementas follows.  

Theorem 4.4 (Luo and Yu  [32] )  Let G  be a 2-degenerate graph with maximum degree  , let {1,2, ,4 2}B    

and {1,2 , ,(4 2) }B     . Then G  has a strong edge coloring with the colors from B B  such that 

(a) Every pendant edge (if any) is colored with a color in B . 

(b) If a pendant edge is colored with a color c B , then no edge within distance 1 to the edge is colored with c . 

(c) No pair of colors { , }c c  appears at the same vertex.  

Then in 2014, Wang gave a result which is stronger than the above results. The result may be raised from 8 4  to 

6 7 .  

V. STRONG CHROMATIC INDEX OF CHORDLESS GRAPHS 

Definition 5.1  A graph is said to be chordless if there is no cycle in the graph that has a chord. Let G  be any graph such 

that all its cycle lengths are multiples of some fixed integer 3t  . Then it can be easily seen that the graph G  has to be 

chordless.  

In 1990, Faudree et al. [20]  considered a particular subclass of chordless graphs, namely the class of graphs in which all the 

cycle lengths are multiples of four, and asked whether the strong chromatic index of these graphs can be bounded by a linear 

function of the maximum degree. While Basavaraju and Francis give a better bound of ( )S G , and the result is as follows.  

Theorem 5.1 (Basavaraju et al. [3] )  If G  is a chordless graph with maximum degree  , then ( ) 3S G   . 

In [12], Chang et al. also studied the strong chromatic index of a chordless graph.  

Theorem 5.2 (Chang et al. [12])  If G  is a chordless graph with maximum degree  , then ( ) 8 8S G    . 

The proof is very similar to the one for 2-degenerate graphs, they also proved if chordless G  has maximum degree  , then 

( ) 6 2S G    . While, Dębski et al. gave a better result for strong chromatic index of chordless graphs in [14] , every 

chordless graph G  of maximum degree   satisfies ( ) 4 3S G    . 

VI. STRONG CHROMATIC INDEX OF BIPARTITE GRAPHS 

In this section, we focus on strong edge-coloring of bipartite graphs, which are graphs whose vertex set admits a bipartition 

into two independent sets. In 1990, Faudree, Gyárfás, Schelp and Tuza presented a conjecture:  

Conjecture 6.1 (Faudree et al. [20] )  For every bipartite graph G , we have 
2( )S G   .      

The ( )S G  of above conjecture is bounded by 
2 , in which   is the maximum degree of bipartite graph G . In 1993, 

Brualdi and Quinn Massey proposed a conjecture , which made a progress of Conjecture 6.1.  

Conjecture 6.2 (Brualdi and Quinn Massey [9])  For every bipartite graph G  with bipartition A  and B , we have 

( ) ( ) ( )S G A B    .  
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 We can know that if G  is a bipartite cubic graph without cycle of length 4, then ( ) 7S G  . Compared with Conjecture 

6.1, the upper bound of chromatic index decrease from 9 to 7. If G  is a bipartite cubic graph with sufficiently large girth, 

then ( ) 5S G  , that is to say, compared with Conjecture 6.1, the upper bound of chromatic index decrease from 9 to 5. 

In the spirit of Conjecture 6.2, we define a ( , )A Bd d -bipartite graph to be a bipartite graph with parts A  and B , such that 

( ) AA d   and ( ) BB d  . Conjecture 6.2 is still widely open, it is first known to hold whenever G  is subcubic bipartite 

 38 : for every (3,3) -bipartite graph G , we have ( ) 9S G  . In 1993, Brualdi et al. give a stronger bound of 

Conjecture 6.2 on the condition of without cycle of length 4, and the content of this conclusion is as follows. 

Theorem 6.1 (Brualdi et al. [9])  Let G  be a bipartite graph with bipartition X Y  and without any cycle of length four. 

If the maximum degree of a vertex of X  is 2 and the maximum degree of a vertex of Y  is  , then ( ) 2S G   .  

What we want is that there is no other restrictions about Theorem 6.1, and in 2008, Nakprasit [34]  solved the case where 

one part of the bipartition is of small maximum degree namely at most 2, without the restriction of 
4C -free, ( ) 2S G    

for every (2, ) -bipartite graph. 

Let 
DF  denote the graph obtained from a 5-cycle by adding 2D   new vertices and joining them to a pair of nonadjacent 

vertices of the 5-cycle. In 2014 Nakprasit [35]  proved that if a loopless muitgraph G  has ( ) ( ) 2d x d y D    with 

min{ ( ), ( )} 2d x d y   for ang edge xy of G , and G  is not 
DF , then ( ) 2S G D  . 

Theorem 6.2 (Bensmail et al. [5] )  For every (3, ) -bipartite graph G , we have ( ) 4S G   .  

The above theorem is a new result based on Conjecture 6.2, in which the conclusion may not be the best, and in the 

conjecture the upper bound of ( )S G  is 3  for (3, ) -bipartite graph, while the above result is 4 .  
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