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Abstract— In this paper, we consider methods and methods for studying rods from high-temperature alloys, in particular, 

the study of the dependence of the coefficient of thermal expansion on temperature. According to the tasks of the paper, 

methods are developed for taking into account the presence of local surface heat exchanges, temperatures, and internal point 

heat sources in the study of rods made of high-temperature alloys. The scientific significance of the project is due to the fact 

that the results of the development can be used for in-depth study of the nonlinear thermal and physical state of the structural 

rod elements that work in the presence of heterogeneous types of heat sources. Such designs include gas-generating, nuclear, 

thermal and hydrogen power plants, as well as jet engines and internal combustion engines. In order to ensure continuous 

reliable operation of these facilities, the authors developed fundamental methods that allow to adequately simulate non-

linear thermophysical processes in the rod bearing elements of installations taking into account simultaneous presence of 

local thermal insulation, heat exchange, temperatures, and internal point heat sources. The laws of the distribution of 

temperature, elastic, temperature and thermoelastic components of strains and stresses, as well as displacement, are 

obtained. This became the basis for the creation in the future of a program in the programming language PYTHON, with the 

help of which it is possible to construct the corresponding fields of temperature distribution, all the components of 

deformation, stress and displacement in the form of graphs. 

Keywords— Coefficient of thermal expansion, High-temperature alloy, steady-state thermophysical process, Thermal 

conductivity. 

I. INTRODUCTION 

1.1 State of the problem 

Bearing elements of many designs of power objects, such as nuclear, thermal and gas-generating power plants, as well as 

modern metallurgical plants, mainly work under the influence of complex heterogeneous heat sources. Some load-bearing 

elements of jet and hydrogen engines, as well as internal combustion engines, work similarly under the influence of local 

temperatures. 

In most cases, the supporting elements have a structural form of a rod of limited length, and are made of heat-resistant 

materials. This is due to the fact that the strength characteristics of heat-resistant materials are usually higher than those of 

conventional materials. Simultaneous long-term exposure to rod-bearing elements of dissimilar heat sources leads to the 

emergence of a stable complex thermophysical state in the system. For example, in the case where the rod-bearing structural 

member of the structure is clamped at one end and the other end is free, it is prolonged due to the long-term action of 

dissimilar heat sources. In this case, the amount of elongation depends on the types and quantities of the operating heat 

sources, the presence of local thermal insulation and heat exchange, as well as the heat transfer coefficient, ambient 

temperature, rod length, thermal conductivity and thermal expansion of the heat-resistant alloy.  

In the case when the rod is pinched at both ends, a steady state will occur only after the temperature distribution, a steady-

state displacement distribution field and a compressive force arise, and a steady-state distribution field of the thermoelastic 

and temperature components of the stress and deformation appears. 

To ensure reliable operation of power plants in the above situations, it is necessary to ensure the thermal strength of their 

load-bearing elements made of heat-resistant materials working for a long time under the influence of dissimilar kinds of heat 

sources. In this regard, the development of effective methods of accounting for the presence of local surface heat exchanges,  

temperatures, thermal insulation and internal point heat sources that arise in the structural support element in the case of 

manifestation of non-linear thermophysical phenomena is an actual problem. Relevance is also due to the fact that in order to 

obtain results of high accuracy, the process of developing methods must be based on the application of fundamental energy 

conservation laws for the problems under consideration.  
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The solution of the above-mentioned topical problems will subsequently put forward new tasks related to the development of 

an application package in one of the modern programming languages where, the software products and computational 

algorithms of which should facilitate a series of in-depth studies.  

A review of the results of previous studies by various authors showed that the disclosure of questions in the formulation 

discussed in this paper is insufficient. 

For example, one of the studies presents the theory of finite elements for the analysis of the thermoelastic plastic reaction of 

solids, including the conditions for their contact [1]. In this paper, the constraint function method is used to superimpose the 

contact condition at the Gauss points of the contact surface. Other procedures widely used in the finite element analysis 

presented in this paper can be considered as special cases of the constraint function method. The solution technique presented 

here is promising and requires further research on the accuracy of mathematical modeling.  

1.2 Literature review 

In the author's paper [2], the main equations of thermoelasticity are given, including the laws of conservation of mass, 

momentum, and energy. In the results, the kinematic equations are presented, as well as the corresponding relations that close 

the system of equations. The numerical solution of one of the nonlinear problems of thermophysics is presented in [3]. Here 

we give a proof of the existence and uniqueness of the solution of the problem under consideration, the corresponding 

iterative scheme is applied, which makes it possible to apply the results obtained in practice. 

Examples of solving the problems associated with the thermal regime of air cooling of stator windings in large 

turbogenerators, taking into account the possible deterioration and failure of insulation in the hole of both conventional and 

global YPI stators, which arise in connection with the vibration of the coil are reflected in the studies [4].  

Some researchers have carried out theoretical studies on the thermoelasticity of rod elements [5]-[10].  

Methods and software systems for simulating stationary thermal stress of load-bearing structural elements working under 

simultaneous influence of local temperatures, heat fluxes, heat transfer and thermal insulation have been developed [11]. In 

this work, the total dependence of the coefficient of thermal expansion on temperature is taken into account.  

In some results of scientists, a functional formula is used for discretization, which indicates its total thermal energy [12], 

[13].  

On the basis of the research, a computational algorithm and a technique for solving the problem of a given temperature field, 

deformations and stresses of components along the entire length of the rod were proposed [14], [15]. The work also takes 

into account the physical and mechanical properties of the test rod. And thermodynamic relationships, nucleation, growth and 

stress influence are considered and applied to thermoelasticity, pseudoelasticity and memory effects associated with 

martensitic transformations are presented in [16], [17].  

1.3 Problem statement and its solution 

Analysis of the state of previously conducted studies and the results obtained in them state the need for further improvement 

of methods and methods for constructing the dependence of the coefficient of thermal expansion on temperature in high-

temperature alloys. Namely, the possibility of calculating the magnitude of the thermal elongation of the rod and the axial 

force arising in connection with this is not taken into account. Besides, from the results obtained by other methods one can 

not make an unambiguous conclusion that they really satisfy the fundamental laws of conservation of energy. To date, there 

has not yet been developed a fundamental mathematical model of steady nonlinear thermophysical processes in a limited 

length of rods made of heat-resistant alloys under simultaneous influence of local heat exchanges, temperatures, thermal 

insulation and internal point heat sources. In this regard, there are no corresponding computational algorithms, methods and 

PYTHON programs that allow simulating the established complex nonlinear processes in rods of limited length made of 

heat-resistant alloys under simultaneous action of dissimilar kinds of heat sources taking into account the presence of local 

thermal insulation. As a result, in order to solve this scientific problem, we set the following research tasks: 

1) Development of methods for accounting for the presence of local surface heat exchanges in rods of a heat-resistant 

alloy. Development of PYTHON programs, that allows to study complex thermophysical phenomena in the core; 

2) Development of a method for accounting for internal heat sources in rods of a heat-resistant alloy of limited length. 

Development of appropriate PYTHON programs, that allows to study the steady nonlinear thermophysical state of the 

investigated rod; 
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3) Development of methods for the formation of composite functions characterizing the laws of conservation of energy for 

a limited length of a rod of a heat-resistant alloy those are under simultaneous action of local temperatures, heat 

exchange, thermal insulation, and internal point heat sources. Development of a software product in the programming 

language PYTHON, which allows investigating the arising steady nonlinear thermophysical process in the investigated 

rod. 

4) Construction of a physico-mathematical model of the thermophysical state of a limited length of a rod made of a heat-

resistant alloy, which is under simultaneous action of local temperatures and thermal insulation. Development of 

appropriate PYTHON programs, that allows to determine the temperature field arising in the rod, thermoelastic, 

temperature and elastic components of deformation and stress, and also displacement. Using the software package 

developed on this basis, determine the value of the thermal elongation of the rod and the compressive axial force. 

The above objectives of the research cover the entire research work carried out by us. The coverage of the task in full in this 

article was necessary to understand the issue. However, in view of the limited size of the paper, in this paper we present only 

the results of solving only the first problem posed. The results of solving the remaining problems will be covered in other 

publications of the authors.   

This article presents some research results carried out by the authors within the framework of the state budget theme of the 

research project of the Ministry of Education and Science of the Republic of Kazakhstan, state registration number 

0115RK00547, and cipher of International rubric of scientific and technical information 38.65.17.  

II. DEVELOPMENT OF THE METHODOLOGY OF SOLVING THE PROBLEM AND ITS DISCUSSION 

2.1 Method for constructing the dependence of the coefficient of thermal expansion on temperature in high-

temperature alloys  

The actual experiments carried out to determine the dependence of the thermal expansion coefficient on the temperature for 

the sets of high-temperature alloys show that an increase in temperature leads to an increase in the coefficient of thermal 

expansion (see Fig. 1).  

From this it can be seen that the dependence 𝛼 = 𝛼 𝑇 𝑥   takes place in the rods of high-temperature alloys (see Fig. 1). 

 

FIGURE 1: DEPENDENCE 𝜶 Т  FOR A HIGH-TEMPERATURE ALLOY 

For example, consider one discrete element from a heat-resistant rod. The length element l [cm] is <<1 . The cross-sectional 

area of this element will be denoted by S [cm
2
]. In this case, it is constant along the length of the element. Through the area 

of the lateral surface of this element, heat exchange takes place with its surrounding medium. Heat transfer coefficient is 

denoted by h [W/cm
2
˚С]. Ambient temperature is Tamb [˚C]. The physico-mechanical property of the core material from the 

heat-resistant alloy is characterized by the dependence of the coefficient of thermal expansion α on the temperature 

distribution field, 𝑇 𝑥  i.e. 𝛼 = 𝛼 𝑇 𝑥  . Hence, the coefficient of thermal expansion of material α will also depend on the 

coordinate x.  

In addition, the physical and mechanical properties of the rod material are characterized by the coefficient of thermal 

conductivity of the material of the rod 𝑘𝑥  
𝑊

𝑐𝑚 2 ˚С
   and the elastic modulus 𝐸  

𝑘𝑔

𝑐𝑚 2 . Taking into account that the length of the 

considered discrete element is much smaller (0.1 - 1) mm, then the field of temperature distribution and coefficient of 
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thermal expansion along the length of this element is approximated by a complete second-order polynomial. The calculation 

scheme of the problem under study is shown in Fig. 2. 

We introduce the following notation:  

𝑇 𝑥 = 0 = 𝑇𝑖 ;    𝑇  𝑥 =
𝑙

2
 = 𝑇𝑗 ;    𝑇 𝑥 = 𝑙 = 𝑇𝑘  

 

  
(A) CHANGE IN TEMPERATURE ALONG THE 

LENGTH OF THE ROD 

(B) CHANGE OF THE GENERAL FUNCTION FOR 

NODAL ELEMENTS 

FIGURE 2: CALCULATION SCHEME OF THE DISCRETE ELEMENT UNDER CONSIDERATION 
 

The temperature field distribution along the length of one discrete element is approximated by a complete polynomial of the 

second order: 

                              𝑇 𝑥 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, 0 ≤ 𝑥 ≤ 𝑙;    𝑎, 𝑏, 𝑐 = 𝑐𝑜𝑛𝑠𝑡                                         (1) 

Here, the values of the constants a, b and c are unknown yet. Such an approximation of the temperature field is based on the 

fact that the process under consideration is a steady-state thermal conductivity. In this connection, in a small section  0 ≤

х ≤ l <<< L  of the rod, the law of temperature distribution can be approximated by a curve of the second order. Then from 

(1) we obtain the following system of linear algebraic equations for determining the values of the constants a, b and c:    

                                   𝑇 𝑥 = 0 = 𝑎 ∙ 0 + 𝑏 ∙ 0 + 𝑐 = 𝑇𝑖  

                               𝑇  𝑥 =
𝑙

2
 = 𝑎 ∙  

𝑙

2
 

2

+ 𝑏 ∙
𝑙

2
+ 𝑐 = 𝑇𝑗                                                          (2) 

                               𝑇 𝑥 = 𝑙 = 𝑎 ∙ 𝑙2 + 𝑏 ∙ 𝑙 + 𝑐 = 𝑇𝑘  

Hence from the first equation we have that:  

                              𝑐 = 𝑇𝑖 .                                                                        (3) 

Further, from the last two equations we obtain:  

                              𝑎𝑙2 + 2𝑏𝑙 = 4𝑇𝑗 − 4𝑇𝑖   

                              𝑎𝑙2 + 𝑏𝑙 = 𝑇𝑘 − 𝑇𝑖                                                                                      (4) 

By subtracting the second equation from the first, we obtain:  

                              𝑏𝑙 = 4𝑇𝑗 − 4𝑇𝑖 − 𝑇𝑘 + 𝑇𝑖 = 4𝑇𝑗 − 3𝑇𝑖 − 𝑇𝑘   

                               𝑏 =
4𝑇𝑗−3𝑇𝑖−𝑇𝑘

𝑙
                                                        (5) 

Substituting (5) into the second equation of system (4), we get:  

                               𝑎𝑙2 +
4𝑇𝑗 −3𝑇𝑖−𝑇𝑘

𝑙
𝑙 = 𝑇𝑘 − 𝑇𝑖   
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                               𝑎𝑙2 = 𝑇𝑘 − 𝑇𝑖 − 4𝑇𝑗 + 3𝑇𝑖 + 𝑇𝑘 = 2𝑇𝑘 + 2𝑇𝑖 − 4𝑇𝑗   

                            𝑎 =
2𝑇𝑘 +2𝑇𝑖−4𝑇𝑗

𝑙2                                                          (6) 

Now, substituting the values of a, b and c in equation (1) we obtain: 

                                       𝑇 𝑥 =  
2𝑇𝑘+2𝑇𝑖−4𝑇𝑗

𝑙2  𝑥2 +
4𝑇𝑗 −3𝑇𝑖−𝑇𝑘

𝑙
𝑥 + 𝑇𝑖 , 0 ≤ 𝑥 ≤ 𝑙  

We rewrite the last expression in the following form: 

                                   𝑇 𝑥 =  …  𝑇𝑖 +  …  𝑇𝑗 +  …  𝑇𝑘   

i.e.  

                                   𝑇 𝑥 =  
2𝑥2

𝑙2 −
3𝑥

𝑙
+ 1 𝑇𝑖 +  

4𝑥

𝑙
−

4𝑥2

𝑙2  𝑇𝑗 +  
2𝑥2

𝑙2 −
𝑥

𝑙
 𝑇𝑘   

or 

                                   𝑇 𝑥 =  
2𝑥2−3𝑙𝑥+𝑙2

𝑙2  𝑇𝑖 +  
4𝑙𝑥−4𝑥2

𝑙2  𝑇𝑗 +  
2𝑥2−𝑙𝑥

𝑙2  𝑇𝑘 ,          0 ≤ 𝑥 ≤ 𝑙                           (7) 

We introduce the following notation: 

                                       𝜑𝑖 𝑥 =
2𝑥2−3𝑙𝑥+𝑙2

𝑙2 ;  𝜑𝑗  𝑥 =
4𝑙𝑥−4𝑥2

𝑙2 ;  𝜑𝑘 𝑥 =
2𝑥2−𝑙𝑥

𝑙2 ,   0 ≤ 𝑥 ≤ 𝑙                           (8) 

These functions are called form functions for three nodes of a quadratic discrete element in the local coordinate 

system0 ≤ x ≤ l . These functions have the following properties: 

                                   𝜑𝑖 𝑥 =

 
 
 

 
  𝑤ℎ𝑒𝑛 𝑥 = 0,     𝜑𝑖 0 = 1;

𝑤ℎ𝑒𝑛 𝑥 =
𝑙

2
,     𝜑𝑖  

𝑙

2
 = 0;

𝑤ℎ𝑒𝑛 𝑥 = 𝑙,     𝜑𝑖 0 = 0;
 

   

      𝜑𝑗  𝑥 =

 
 
 

 
 

 𝑤ℎ𝑒𝑛 𝑥 = 0,     𝜑𝑗  0 = 0;

𝑤ℎ𝑒𝑛 𝑥 =
𝑙

2
,     𝜑𝑗  

𝑙

2
 = 1;

𝑤ℎ𝑒𝑛 𝑥 = 𝑙,     𝜑𝑗  0 = 0;
 

 ,                                                            (9) 

                                𝜑𝑘 𝑥 =

 
 
 

 
  𝑤ℎ𝑒𝑛 𝑥 = 0,     𝜑𝑘 0 = 0;

𝑤ℎ𝑒𝑛 𝑥 =
𝑙

2
,     𝜑𝑘  

𝑙

2
 = 0;

𝑤ℎ𝑒𝑛 𝑥 = 𝑙,     𝜑𝑘 0 = 1
 

   

Also these functions have the following properties: 

      𝜑𝑖 𝑥 + 𝜑𝑗  𝑥 + 𝜑𝑘 𝑥 =
2𝑥2−3𝑙𝑥+𝑙2+4𝑙𝑥−4𝑥2+2𝑥2−𝑙𝑥

𝑙2 = 1                           (10) 

These properties of the form function make it possible to provide continuity conditions for the desired function in the 

transition from one discrete element to another.  

From (7) it is also possible to determine the temperature gradient in the local coordinate system 

𝜕𝑇

𝜕𝑥
=

𝜕𝜑 𝑖

𝜕𝑥
𝑇𝑖 +

𝜕𝜑𝑗

𝜕𝑥
𝑇𝑗 +

𝜕𝜑𝑘

𝜕𝑥
𝑇𝑘 =  

4𝑥−3𝑙

𝑙2  𝑇𝑖 +  
4𝑙−8𝑥

𝑙2  𝑇𝑗 +  
2𝑥−𝑙

𝑙2  𝑇𝑘 , 0 ≤ 𝑥 ≤ 𝑙          (11) 

Similarly to (7) within the length of one discrete element, the distribution field of the thermal distribution coefficient is also 

approximated by a curve of the second order: 

𝛼 𝑇 𝑥  = 𝜑𝑖 𝑥 ∙ 𝛼𝑖 + 𝜑𝑗  𝑥 ∙ 𝛼𝑗 + 𝜑𝑘 𝑥 ∙ 𝛼𝑘  , 0 ≤ 𝑥 ≤ 𝑙                                         (12) 
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Here 𝛼𝑖 𝑇𝑖 ,  𝛼𝑗 𝑇𝑗   и 𝛼𝑘 𝑇𝑘 are determined from the directory. Dependence 𝛼 =  𝛼 𝑇  is determined for each heat resistant 

material separately. 

2.2 The method of accounting for the presence of local surface heat exchanges in rods of high-temperature alloys 

Consider one discrete element of the rod through the lateral surface of which there is a heat exchange with its surrounding 

medium (see Fig. 3). 

 

FIGURE 3: CALCULATION SCHEME FOR THE PROBLEM OF LOCAL SURFACE HEAT EXCHANGE 
 

Heat transfer coefficient ℎ [
𝑊

𝑐𝑚 2 ∙℃
], ambient temperature 𝑇𝑎𝑚𝑏   ℃ . For the problem under consideration, we write the 

expression for the functional that characterizes the law of conservation of energy: 

                               𝐽 =  
𝑘𝑥𝑥

2𝑉
(
𝜕𝑇

𝜕𝑥
)2𝑑𝑉 +  

ℎ

2
(𝑇 − 𝑇ос)2𝑑𝑆,            0 ≤ 𝑥 ≤ 𝑙                                        (13) 

Where V is the volume of the discrete element: 𝑆𝑙𝑠  – is the area of the lateral surface of the discrete element under 

consideration.  

The unit of measurement of the first member will be: 

                                   
𝑊

𝑐𝑚 ∙℃
∙

℃3

𝑐𝑚 2 ∙℃
∙ 𝑐𝑚3 = 𝑊 ∙ ℃ 

The unit of measurement of the second term will also be:  

                                     
𝑊

𝑐𝑚 2 ∙℃
∙ ℃2 ∙ 𝑐𝑚2 = 𝑊 ∙ ℃ 

We now integrate the first term in (13): 

                                 𝐽1 =  
𝑘𝑥𝑥

2𝑉
(
𝜕𝑇

𝜕𝑥
)2𝑑𝑉 = 𝐹  

𝑘𝑥𝑥

2
(
𝜕𝑇

𝜕𝑥
)2𝑑𝑉 =

𝐹∙𝑘𝑥

2

𝑙

0
 

𝑘𝑥𝑥

2
(
𝜕𝑇

𝜕𝑥
)2𝑑𝑉;

𝑙

0
  

Here, F [cm
2
] is the cross-sectional area of the rod. It is constant along the entire length of the rod. In addition, the cross-

section of the rod can be a circle, an ellipse, and any polygon. Further substituting the formula (1) in the last expression of 𝐽1, 

we obtain: 

𝐽1 =
𝐹𝑘𝑥

2
   

4𝑥−3𝑙

𝑙2  𝑇𝑖 +  
4𝑙−8𝑥

𝑙2  𝑇𝑗 +  
4𝑥−𝑙

𝑙2  𝑇𝑘 
2

𝑑𝑥
𝑙

0
= 

𝐹𝑘𝑥𝑥

2𝑙4  [ 16𝑥2 − 24𝑙𝑥 + 9𝑙2 𝑇𝑖
2 + 2 40𝑙𝑥 − 32𝑥2 − 12𝑙2 𝑇𝑖𝑇𝑗 +

𝑙

0
 

+2 16𝑥2 − 16𝑙𝑥 + 3𝑙2 𝑇𝑖𝑇𝑘 +  16𝑙2 − 64𝑙𝑥 + 64𝑥2 𝑇𝑗
2 + 2 24𝑙𝑥 − 4𝑙2 − 32𝑥2 𝑇𝑗 𝑇𝑘 +  16𝑥2 − 8𝑙𝑥 + 𝑙2 𝑇𝑘

2 ]𝑑𝑥 = 

=
𝐹𝑘𝑥𝑥

2𝑙4
   

16𝑥3

3
− 12𝑙𝑥2 + 9𝑙2𝑥 𝑇𝑖

2 + 2  40𝑙𝑥2 −
64𝑥3

3
− 24𝑙2𝑥 𝑇𝑖𝑇𝑗 + 

𝑙

0

 
32𝑥3

3
− 16𝑙𝑥2 + 6𝑙2𝑥 𝑇𝑖𝑇𝑘 + 

+  16𝑙2 − 32𝑙𝑥 +
64𝑥3

3
 𝑇𝑗

2 +  24𝑙𝑥2 − 81𝑙2𝑥 −
64𝑥3

3
 𝑇𝑗 𝑇𝑘 +  

16𝑥3

3
− 4𝑙𝑥2 + 𝑙2𝑥 𝑇𝑘

2]𝑑𝑥 =                                   

=
𝐹𝑘𝑥𝑥 𝑙3

2𝑙4  
7

3
𝑇𝑖

2 −
16

3
𝑇𝑖𝑇𝑗 +

2

3
𝑇𝑖𝑇𝑘 +

16

3
𝑇𝑗

2 −
16

3
𝑇𝑗 𝑇𝑘 +

7

3
𝑇𝑘

2 = 
𝐹𝑘𝑥𝑥

6𝑙
(7𝑇𝑖

2 − 16𝑇𝑖𝑇𝑗 + 2𝑇𝑖𝑇𝑘 + 16𝑇𝑗
2 − 16𝑇𝑖𝑇𝑘 + 7𝑇𝑘

2)    (14) 

Here it should be noted that the sum of the coefficients before the node temperatures will always be zero. For example, in our 

case (7-16 + 2 + 16-16 + 7) = 0. This is a sign of the fulfillment of the law of conservation of energy. 

We now integrate the second term in (13): 
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                               𝐽2 =  
ℎ

2
 𝑇 − 𝑇𝑎𝑚𝑏  2

𝑆𝑙𝑠
𝑑𝑠 = 𝑃  

ℎ

2

𝑙

0
 𝑇 − 𝑇𝑎𝑚𝑏  2𝑑𝑥.  

Here P is the perimeter of the cross-section of the rod. Substituting (7) in the expression  𝐽2, we obtain: 

𝐽2 =
𝑃ℎ

2
 [(

2𝑥2 − 3𝑙𝑥 + 𝑙2

𝑙2
)

𝑙

0

𝑇𝑖 +  
4𝑙𝑥 − 4𝑥2

𝑙2
 𝑇𝑗 +  

2𝑥2 − 𝑙𝑥

𝑙2
 𝑇𝑘 − 𝑇𝑎𝑚𝑏 ]2𝑑𝑥 = 

=
𝑃ℎ

2
 [

𝑙

0
 

4𝑥4−12𝑙𝑥3+13𝑙2𝑥2−6𝑙3+𝑙4

𝑙4  𝑇𝑖
2 + [ 

40𝑙𝑥3−16𝑥4−32𝑙2𝑥2−8𝑙3𝑥

𝑙4  𝑇𝑖𝑇𝑗 + +  
8𝑥4−40𝑙𝑥3+10𝑙2𝑥2−2𝑙3𝑥

𝑙4  𝑇𝑖𝑇𝑘 + 

+  
16𝑙2𝑥2−32𝑙𝑥3+16𝑥4

𝑙4  𝑇𝑗
2 +  

24𝑙𝑥3−8𝑙2𝑥2−16𝑥4

𝑙4  𝑇𝑖𝑇𝑘 +  
16𝑥4−32𝑙𝑥3+𝑙2𝑥2

𝑙4  𝑇𝑘
2 − 

−  
4𝑥2 − 6𝑙𝑥 + 2𝑙2

𝑙4
 𝑇𝑎𝑚𝑏 𝑇𝑖 −  

8𝑙𝑥 − 8𝑥2

𝑙4
 𝑇𝑎𝑚𝑏 𝑇𝑗 −  

4𝑥2 − 2𝑙𝑥

𝑙4
 𝑇𝑎𝑚𝑏 𝑇𝑘 + 𝑇𝑎𝑚𝑏

2 ]𝑑𝑥 = 

                    =
𝑃ℎ𝑙

30
(2𝑇𝑗

2 + 2𝑇𝑖𝑇𝑗 − 𝑇𝑖𝑇𝑘 + 8𝑇𝑗
2 + 2𝑇𝑘

2 + 2𝑇𝑗 𝑇𝑘 − 5𝑇𝑎𝑚𝑏 𝑇𝑖 − 20𝑇𝑎𝑚𝑏 𝑇𝑗 − 5𝑇𝑎𝑚𝑏 𝑇𝑘 + 15𝑇𝑎𝑚𝑏
2 )          (15) 

It is also seen here that the sum of the coefficients before the temperatures will be zero. In our case (2 + 2-1 + 8 + 2 + 2-5-20-

5 + 15) = 0. This is a sign of the fulfillment of the law of conservation of energy. Then substituting (14) and (15) into (13) we 

obtain an integrated form of the functions J - which characterizes the law of conservation of energy for the discrete element 

under investigation, through whose lateral surface heat exchange takes place with its surrounding medium: 

                               𝐽 = 𝐽1 + 𝐽2 =
𝐹𝑘𝑥𝑥

6𝑙
 7𝑇𝑖

2 − 16𝑇𝑖𝑇𝑗 + 2𝑇𝑖𝑇𝑘 + 16𝑇𝑗
2 − 16𝑇𝑖𝑇𝑘 + 7𝑇𝑘

2 + 
𝑃ℎ𝑙

30
(2𝑇𝑗

2 + 2𝑇𝑖𝑇𝑗 − 𝑇𝑖𝑇𝑘 + 

                              + 8𝑇𝑗
2 + 2𝑇𝑘

2 + 2𝑇𝑗 𝑇𝑘 − 5𝑇𝑎𝑚𝑏 𝑇𝑖 − 20𝑇𝑎𝑚𝑏 𝑇𝑗 − 5𝑇𝑎𝑚𝑏 𝑇𝑘 + 15𝑇𝑎𝑚𝑏
2 )                                    (16) 

Further minimizing J from the desired 𝑇𝑖 , 𝑇𝑗  and 𝑇𝑘  we obtain a resolving system of linear algebraic equations taking into 

account the presence of local lateral heat exchange: 

                               
𝜕𝐽

𝜕𝑇 𝑖
= 0; =>  

𝐹𝑘𝑥𝑥

6𝑙
 14𝑇𝑖 − 16𝑇𝑗 + 2𝑇𝑘 +

𝑃ℎ𝑙

30
 4𝑇𝑖 + 2𝑇𝑗 − 𝑇𝑘 − 5𝑇𝑎𝑚𝑏  = 0  

                               
𝜕𝐽

𝜕𝑇𝑗
= 0; =>  

𝐹𝑘𝑥𝑥

6𝑙
 −16𝑇𝑖 − 16𝑇𝑘 + 32𝑇𝑗  +

𝑃ℎ𝑙

30
 2𝑇𝑖 + 16𝑇𝑗 + 2𝑇𝑘 − 20𝑇𝑎𝑚𝑏  = 0  

                                
𝜕𝐽

𝜕𝑘
= 0; =>  

𝐹𝑘𝑥𝑥

6𝑙
 2𝑇𝑖 − 16𝑇𝑗 + 14𝑇𝑘 +

𝑃ℎ𝑙

30
 −𝑇𝑖 + 2𝑇𝑗 + 4𝑇𝑘 − 5𝑇𝑎𝑚𝑏  = 0   

Here it was meant that the cross-sectional areas of the two ends of the discrete element of the rod are thermally insulated. 

Solving the last system, we find the nodal temperatures: 

                                  𝑇𝑘 =
[2𝑏1 𝑎11𝑎22−𝑎12𝑎21 −𝑏1(3𝑎11−2𝑎21 )𝑎12 ]

2[ 𝑎11 +𝑎13  𝑎11𝑎22−𝑎12𝑎21 −𝑎12𝑎21 (𝑎11−𝑎13 )]
;  

                                  𝑇𝑗 =
 𝑎13𝑎21−𝑎11𝑎21  

 𝑎11𝑎22−𝑎12𝑎21  
𝑇𝑘 +

𝑏1 3𝑎11−2𝑎21 

2 𝑎11𝑎22−𝑎12𝑎21 
;                                         (17) 

                                     𝑇𝑖 = −4𝑇𝑗 + 15𝑇𝑘 − 400;  

                              𝑎11 =  7 +
4ℎ𝑙2

5𝑘𝑥
 ; 𝑎12 =  

2ℎ𝑙2

5𝑘𝑥
− 8 ; 𝑎13 =  1 −

ℎ𝑙2

5𝑘𝑥
 ; 𝑎11 =  7 +

4ℎ𝑙2

5𝑘𝑥
 ;    

                              𝑏1 =
ℎ𝑙2𝑇𝑜𝑐

𝑘𝑥
;  𝑎21 =  1 +

3ℎ𝑙2

20𝑘𝑥
 ; 𝑎22 =  2 +

6ℎ𝑙2

5𝑘𝑥
 ;  

                              𝑇 𝑥 = 𝜑𝑖 𝑥 𝑇𝑖 + 𝜑𝑗  𝑥 𝑇𝑗 + 𝜑𝑘 𝑥 𝑇𝑘 =
2𝑥2−3𝑙𝑥+𝑙2

𝑙2 𝑇𝑖 +
4𝑙𝑥−2𝑥2

𝑙2 𝑇𝑗 +
2𝑥2−𝑙𝑥

𝑙2 𝑇𝑘           (18) 

If we take  r = 1 cm for the initial data; 𝐹 = 𝜋𝑟2 = 𝜋 cm2; 𝑃 = 2𝜋𝑟 = 2𝜋 cm;  𝑘𝑥𝑥 = 100  
𝑊

𝑐𝑚℃
 ; 𝑙 = 10 cm; 

ℎ = 10  
𝑊

𝑐𝑚 2℃
 , it follows from (17) we find that: 

                                𝑇𝑖 = 𝑇𝑘 = 37,037℃; 𝑇𝑗 = 29.62963℃  
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Then the law of temperature distribution along the length of the investigated rod will be as follows: 

                                𝑇 𝑥 = 𝜑𝑖 𝑥 𝑇𝑖 + 𝜑𝑗  𝑥 𝑇𝑗 + 𝜑𝑘 𝑥 𝑇𝑘 =  

                               =
1

12
  2𝑥2 − 3𝑥𝑙 + 𝑙2 𝑇𝑖 +  4𝑥𝑙 − 4𝑥 𝑇𝑗 +  2𝑥2 − 𝑥𝑙 𝑇𝑘  =  

                               =
1

100
  2𝑥2 − 30𝑥 + 100 ∙ 37.037 +  40𝑥 − 4𝑥2 ∙ 29.62963 +  2𝑥2 − 10𝑥 ∙ 37.037 =  

                               =
1

100
  148.148 − 118.51852 𝑥2 +  1185.1852 − 1111.11 − 370.37 𝑥 + 3703.7 =  

                               =
1

100
 29.62948𝑥2 + 296.2948𝑥 + 3703.7 = 0.2962948𝑥2 − 2.962948𝑥 + 37.037;    0 ≤ 𝑥 ≤ 𝑙 

Here, because of the symmetry of the problem under study 𝑇𝑖 = 𝑇𝑘 . Further substituting (17) into (7) we find the law of 

temperature distribution. If the left end of the test element is rigid, that it lengthens. According to the fundamental laws of 

thermophysics, the magnitude of the elongation of the rod element is determined by the formula ∆𝑙𝑇 =  𝛼𝑇 𝑥 𝑑𝑥.
𝑙

0
 Here it 

must be taken into account that the values of the coefficient of warm expansion of the material of rod α for different heat-

resistant materials will be different. They are determined experimentally for different temperatures and materials. If we take 

α = const, then we get that: 

∆𝑙𝑇 = 𝛼   𝜑𝑖 𝑥 𝑇𝑖 + 𝜑𝑗  𝑥 𝑇𝑗 + 𝜑𝑘 𝑥 𝑇𝑘  𝑑𝑥 =
𝑙

0
 𝛼   

2𝑥2−3𝑙𝑥+𝑙2

𝑙2 𝑇𝑖 +
4𝑙𝑥−4𝑥2

𝑙2 𝑇𝑗 +
2𝑥2−𝑙𝑥

𝑙2 𝑇𝑗  𝑑𝑥 =
𝑙

0
  

=  𝛼

𝑙2
  

2𝑥3

3
−

3𝑙𝑥2

2
+ 𝑙2𝑥 𝑇𝑖 +  2𝑙2𝑥 −

4𝑥3

3
 𝑇𝑗 +  

2𝑥3

3
−

𝑙𝑥2

2
 𝑇𝑘  

0

𝑙

= 𝛼𝑙   
4 − 9 + 6

6
 𝑇𝑖 +  

6 − 4

3
 𝑇𝑗 +  

4 − 3

6
 𝑇𝑘 =  

= 𝛼𝑙  
1

6
𝑇𝑖 +

4

6
𝑇𝑗 +

1

6
𝑇𝑘 =

𝛼𝑙

6
 𝑇𝑖 + 4𝑇𝑗 + 𝑇𝑘                                                                                                            (19) 

If both ends of the rod are rigidly clamped, an axial compressive force occurs in the rod (see Fig. 4): 

 

FIGURE 4: EFFECT OF COMPRESSIVE FORCES 
 

The value of this force is determined from the compatibility condition of the deformation: 

𝑅𝑙

𝐸𝐹
+ ∆𝑙𝑇 = 0 => 𝑅 = −

∆𝑙𝑇𝐸𝐹

𝑙
= −

𝐸𝐹𝑙

6
                                                        (20) 

In this case, a thermoelastic stress component arises in the cross sections of the rod. It is determined in accordance with 

Hooke's law: 

                               𝜎 = 𝐸𝜀 =>  𝜀 =
𝜎

𝐸
= −

𝛼

6
 𝑇𝑖 + 4𝑗 + 𝑇𝑘 , 0 ≤ 𝑥 ≤ 𝑙                                                      (21) 

It should be noted that in the rods of heat-resistant materials, in the case of pinching the two ends and conventional heat 

transfer through the side surface, the temperature and elastic components of the strain and stress also appear. For example, 

the field of distribution of the temperature component of the deformation is determined in accordance with the fundamental 

laws of thermal physics: 

                                   𝐸𝑇 𝑥 = −𝛼𝑇 𝑥 = −
𝛼

𝑙2   2𝑥2 − 3𝑙𝑥 + 𝑙2 𝑇𝑖 +  4𝑙𝑥 − 4𝑥2 𝑇𝑗 +  2𝑥2 − 𝑙𝑥 𝑇𝑘  ,    0 ≤ 𝑥 ≤ 𝑙      (22) 

Then, in accordance with the generalized Hooke's law, the distribution of the temperature component voltage is determined 

by the formula: 

                                   𝜎𝑇 𝑥 = 𝐸𝜀𝑇 𝑥 = −
𝛼

𝑙2   2𝑥2 − 3𝑙𝑥 + 𝑙2 𝑇𝑖 +  4𝑙𝑥 − 4𝑥2 𝑇𝑗 +  2𝑥2 − 𝑙𝑥 𝑇𝑘  ,    0 ≤ 𝑥 ≤ 𝑙       (23) 

In addition to these components, the field of distribution of the elastic deformation component also takes place in the 

investigated rod. It is determined from the following relation: 
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                              𝜀 = 𝐸𝑥 𝑥 + 𝜀𝑇 𝑥 =>  𝜀𝑥 𝑥 = 𝜀 − 𝜀𝑇 𝑥 = −
𝛼

6
 𝑇𝑖 + 4𝑗 + 𝑇𝑘 + 

                              +
𝛼

𝑙2   2𝑥2 − 3𝑙𝑥 + 𝑙2 𝑇𝑖 +  4𝑙𝑥 − 4𝑥2 𝑇𝑗 +  2𝑥2 − 𝑙𝑥 𝑇𝑘  , 0 ≤ 𝑥 ≤ 𝑙                                     (24) 

The corresponding field of distribution of the elastic component of the voltage is determined in accordance with the 

generalized Hooke's law: 

                              𝜎𝑥 𝑥 = 𝜎 − 𝜎𝑇 𝑥 = 𝐸𝜀𝑥 𝑥 = −
𝛼𝐸

6
 𝑇𝑖 + 4𝑗 + 𝑇𝑘 + 

                              +
𝛼𝐸

𝑙2   2𝑥2 − 3𝑙𝑥 + 𝑙2 𝑇𝑖 +  4𝑙𝑥 − 4𝑥2 𝑇𝑗 +  2𝑥2 − 𝑙𝑥 𝑇𝑘  ,   0 ≤ 𝑥 ≤ 𝑙                                      (25) 

Finally, we can determine the law of distribution of displacement along the length of the rod. It is determined from the 

general Cauchy relations: 

                               𝜀𝑥 𝑥 =
𝜕𝑈

𝜕𝑥
; => 𝑈 𝑥 =  𝜀𝑥 𝑥 𝑑𝑥 = −

𝛼

6
 𝑇𝑖 + 4𝑗 + 𝑇𝑘 𝑥 +  

                              +
𝛼

𝑙2   
2𝑥3

3
−

3𝑙𝑥2

2
+ 𝑙2𝑥 𝑇𝑖 +  2𝑙𝑥2 −

4𝑥3

3
 𝑇𝑗 +  

2𝑥3

3
−

𝑙𝑥2

2
 𝑇𝑘 + 𝐶                                       (26)  

Here C is the integration constant. Its values are determined from the boundary condition at x = 0. Since this end of the 

investigated rod is rigidly constrained, then for x = 0, U (x = 0) = 0. From this physical condition we get that C = 0. Then the 

law of distribution of displacement along the length of the rod will have the following form: 

                                  𝑈 𝑥 = −
𝛼

6
 𝑇𝑖 + 4𝑗 + 𝑇𝑘 𝑥 +

𝛼

6𝑙2   6𝑙2𝑥 𝑇𝑖 +  12𝑙𝑥2 − 8𝑥3 𝑇𝑗 +  4𝑥3 − 3𝑙𝑥2 𝑇𝑘  , 0 ≤ 𝑥 ≤ 𝑙   (27) 

III. CONCLUSION 

The developed technique for taking into account the simultaneous presence in the rod of the heat-resistant alloy of local 

surface heat exchanges allowed: 

1) To obtain a resolving system of linear algebraic equations taking into account natural boundary conditions for a 

limited length of a rod made of a heat resistant alloy under the influence of local surface heat exchange; 

2) To obtain, within the framework of the task at hand, the laws for the distribution of temperature, elastic, temperature, 

and thermoelastic components of deformations and stresses, and also for displacement;  

3) Within the framework of the task set, to create a program in PYTHON programming language, with the help of which 

the corresponding fields of temperature distribution, all the components of deformation, stress and displacement in the 

form of graphs are constructed. 
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