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Abstract—A depth-averaged subcritical and/or supercritical, steady, free-surface flow numerical model is developed to 

calculate physical hydraulic flow parameters in open channels. The vertically averaged free-surface flow equations are 

numerically solved using an explicit finite-volume numerical scheme in integral form. The grid used may be irregular and 

conforms to the physical boundaries of any problem. A multi-grid algorithm has been developed and has subsequently been 

applied to accelerate the convergence solution. A grid clustering technique is also applied. The numerical approach is 

straight forward and the flow boundary conditions are easy enforced. The capabilities of the proposed method are 

demonstrated by analyzing subcritical flow in an abrupt converging-diverging open channel flume as well calculating 

supercritical flows in an expansion channel. The computed results are satisfactorily compared with available measurements 

as well as with other numerical technique results. Very coarse grid gives satisfactory comparison results. The explicit 

numerical code can be utilized, within the assumptions made about the nature of the flow, for various vertically averaged 

free-surface flow calculations. Scope is to simulate free-surface flows of practical interest in a straight forward way. It can 

be extended to channel designs. 

Keywords—Multi-grid, Finite-volume, Subcritical-supercritical free-surface flow. 

I. INTRODUCTION 

In recent years significant advances have been made in computational fluid dynamics applied to free-surface flow 

calculations. The flow pattern of the aforementioned open channels either natural or technical is highly complex. There exist 

classes of free-surface flow problems, which can adequately be described in the context of depth-averaged 2D mathematical 

models. These simplified representations of 3D flows are justified where turbulent mixing, due to bottom roughness, 

effectively generates a uniform velocity distribution over the depth of the flow field. For free-surface flows in complex 

geometry it is convenient to make predictions using non-orthogonal boundary fitted computational meshes.  

Numerous publications were reported for 2D free-surface flow simulation, among them Soulis J. [16] developed an explicit 

finite-volume numerical technique, with transformed grid, to simulate subcritical and supercritical depth-averaged free-

surface flows. Molls T. et al. [8] derived a depth-averaged open channel flow model while Molls T. et al [9] applied an 

alternative direction implicit scheme and the MacCormack explicit scheme, both second order accurate, to numerically 

simulate 2D flows near spur-dikes. Yulistiyanto Β. et al [19] solved the continuity and momentum equations for 2D 

horizontal flow by vertical depth-integration and the differential equations were also evaluated using the MacCormack 

scheme. Lien H. et al [6] presented a 2D depth-averaged model for simulating flow pattern in channel bends using an 

orthogonal curvilinear coordinate system to efficiently simulate the flow field with irregular boundaries. The two-step split-

operator approach consisting of the dispersion step and the propagation step with the staggered grid was used to numerically 

solve the flow governing equations. Molls Τ. et al [10] numerically simulated supercritical flow in a channel with a wavy 

sidewall by solving the 2D depth-averaged equations using two different second-order accurate finite-difference schemes, an 

implicit model that uses an alternating direction implicit technique to solve the governing equations and an explicit model 

employing the MacCormack two-step predictor-corrector scheme. Liu M. et al [7] presented an unsteady 2D depth-averaged 

flow model to simulate the bend-flow field by transforming the governing system of differential equations into an equivalent 

system applied over a square-grid network in order to overcome the difficulties and inaccuracies associated with the 

determination of characteristics near the flow boundaries. The MacCormack two-step explicit scheme with second-order 

accuracy was used for the solution of the transformed system of equations. Papanicolaou Α. et al [11] performed a sensitivity 

analysis to examine the predictive capability of a 2D hydrodynamic model, a finite-element surface water modeling system 

to adequately describe the flow characteristics around emergent bendway weir structures. Chen Υ. et al [1] presented the 

water stage prediction-correction method, based on the theory of characteristics to couple numerical models in the boundary-

connected way for shallow-water flows. An 1D–2D coupled numerical model was established, which incorporates the 

artificial porosity method capable of treating wetting and drying. Yu C. et al [17] proposed a surface flow routing algorithm 
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based on numerical solutions of shallow water equations and the kinematic wave approximation. The shallow water 

equations were discretized by the first-order Godunov-type finite-volume method. An implicit dual time-stepping method 

was applied by Yu H. et al [18] to a Godunov-type finite-volume model for 2D shallow-water flows on unstructured grids to 

improve run-time efficiency. In this model, an implicit nonlinear lower–upper symmetric Gauss–Seidel solution algorithm 

was used as an inner iteration solver for the implicit dual time-stepping method. Hu D. et al [4] developed a 2D finite-volume 

Eulerian-Lagrangian method on unstructured grid for solving the advection equation in free-surface scalar transport models. 

The current numerical model was developed by Farsirotou Δ. [2], at the Department of Civil Engineering in Aristotle 

University of Thessaloniki, Greece. A 2D, viscous flow, finite-volume computational algorithm has been developed. An 

efficient and reliable multiple-grid algorithm has been applied to accelerate the convergence solution. The corrections to the 

fine-grid points are transferred to a coarse grid to maintain the low truncation errors associated with fine level of 

discretizations. Dense grid is incorporated wherever high gradient regions are encountered. Viscous flow stresses are 

described using either fixed value eddy viscosity coefficient or values related to the flow properties. Purpose of this research 

was, a) to develop a simple and easy to program algorithm without grid transformation, b) to achieve fast convergence multi-

grid algorithm requiring minimal programming and c) to apply very coarse grid in achieving satisfactory comparisons with 

measurements. Scope is to simulate free-surface flows of practical interest in a straight forward way. 

II. NUMERICAL MODEL 

2.1 Theoretical assumptions 

The channel flow is assumed to be homogeneous, incompressible and 2D with wind and Coriolis forces neglected. 

Hydrostatic pressure distribution is assumed throughout the flow field. The unsteady, free-surface flow in channels with 

fixed bed is described by non-linear, partial differential equations,  
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x and y represent the Cartesian coordinate positions in the longitudinal and transverse directions respectively; t the time; u 

and v the average cross the depth velocity components in the x and y directions, respectively; h the water depth; g the gravity 

acceleration; S0x =
x

zb


  and S0y =
y

zb


  the channel slopes with zbthe bottom elevation above a datum and Sfx and Sfy 

the friction slopes defined, Kassem A. et al. [5], as,  
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(4) 

n is the Manning’s flow friction coefficient. It is assumed that all of the resistance is due to bottom friction, thus neglecting 

the boundary layers on the side-walls, Molls T. et al. [8]. 

2.2 Application areas 

Open channel flow problems, which can be adequately described in the context of depth-averaged, 2D mathematical models, 

where the flow properties can be assumed to be invariant along the vertical direction, are accurately simulated with the 

numerical model. The proposed program can be applied for free-surface determination in complex geometries with or 

without any obstructions into the flow region. Subcritical, supercritical or mixed subcritical-supercritical flows with 

automatic capturing of hydraulic jumps can also be simulated. In particular, the numerical code can be utilized for the 

calculation of:  

 uniform flow using various flow friction coefficients,  
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 gradually varied flow as transitions, non-prismatic channels, backwater effects of dams etc, 

 rapidly varied flow as parts of flow over spillways, hydraulic jumps in sloping channels, stilling basins, etc. 

The code can be extended to, unsteady flows, morphology problems and channel designs.  

III. NUMERICAL SIMULATION  

3.1 Flow discretization 

This program utilizes the finite-volume numerical method to solve the non-linear, parabolic, partial differential equations, 

Eqs. (1)-(3) in integral form, i.e. by applying the equations of continuity, x- and y-momentum to a series of finite-volumes 

with adjacent volumes sharing a common face, Farsirotou E. [2] and Soulis J. [16]. At the end of each time-step Γt the net 

flux into each elemental volume is zero, so that overall water mass flow is conserved, and the changes in momentum are 

equal to the forces imposed by the boundaries of the system. The 2D flow equations may be written down as conservation 

equations for a control volume ΓV of unit height and for a time step Γt as, 
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The physical domain i.e. flow region is divided into polygonal sub-areas with quadrilateral form. These sub-areas are called 

finite-volumes of unit depth. The governing flow equations are solved in a non-transformed grid (physical grid). The solution 

attributes values for water depth h, axial u and tangential v velocities at each grid node. Application results into a series of 

arithmetic equations with nodal values of water depth, axial and tangential velocities as equation unknowns. Figure 1 shows 

the notation used for mass-flux balancing across a flow finite-volume. Similar notation is adopted for the balancing of x- and 

y-momentum. For ease application, all Γys are perpendicular to the x-axis. Thus, for water mass flux, an XFLUX is defined, 
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The YFLUX is defined, 
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The second term comes from the mass fluxes balance into the ABE flow region, Fig.1.The ΓYB term is also defined in Fig. 

1. The terms Γ(hu) and Γ(hv) of Eq. (5) are defined: 
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Similar differences are applied to all Γ terms, of Eqs. (6), (7). Thus, the water depth difference Γh in each i,j node of the 

involved finite-volume is calculated as, 
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Similar calculations are performed for the x-and y-momentum flux balancing. Backward differencing is used for the 

x  

estimation, while forward differencing is used for the 
y



 estimation. The slopes Sox and Soy are pre-calculated and stored 
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at the beginning of each time step, while the friction slopes Sfx and Sfy are continuously updated. For all bed and friction 

slopes, averaged values of the appropriate physical quantities are used.  

3.2 Flow stabilization 

The changes Γh, Γ(hu) and Γ(hv) are distributed between the four corners A, B, C and D of the finite-volume of Fig.1. 

However, this distribution affects the stability and the accuracy of the method. In the current research work it was decided to 

send 40.0% information regarding Γh change to the upstream face of the finite-volume, while the remaining 60.0% is sent to 

the downstream face. The Γ(hu) and Γ(hv) changes are taken as the averaged values of i and i-1 nodes of the computational 

grid. Also, and this is crucial in achieving convergence, the water depth value h is calculated taking into account the currently 

involved finite-volume depth and the one located at immediate downstream. The decision was made after numerical 

experimentation. All changes Γh, Γ(hu) and Γ(hv) were not directly used to yield the h, hu and hv values. For all test runs a 

C1 factor is used for the h estimation and a C2 for the (hu) and (hv) calculations, 
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FIG. 1. NOTATION FOR THE MASS FLUX ACROSS A FINITE-VOLUME  
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n is the iteration number. Similar expression holds for (hv) calculation. The above empirical coefficients numerically derived 

with typical values C1=0.1 and C2=0.025 are needed to stabilize the solution particularly during at the first Γt time-steps. 

These empirical values have minimal influence on the solution convergence after the first time-steps. The numerical scheme 

was found to be stable over a wide range of C1 and C2 values.  

3.3 Multi-grid approach  

The multi-grid algorithm described here consists of a fine-grid solution procedure and a coarse-grid acceleration scheme, 

Soulis J. [14]. In the current approach, the solution is advanced simultaneously on coarse and on fine-grid. Figure 2 shows a 

2x2 multi-grid block. Thus, a coarse grid is formed grouping several finite-volumes into a block. The
 hu,h 

and

 hv
, changes, Eqs. (5)-(7), at the end of every time-step are known for each finite-volume of the fine-grid mesh. The 
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changes for the block can be found by summing the fluxes around its faces. Another way to find the changes for the block is 

to sum the already calculated changes for the finite-volume within the block. 
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4 3
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FIG. 2. A TYPICAL 2X2 MULTI-GRID  

For a typical 2x2 block size application these changes are determined as follows, 
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subscripts 1,2,3,4 denote the mesh control volumes, Fig. 2. Similarly, 
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Thereafter, the flow properties changes at fine-grid points are calculated, 
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I  is a linear interpolation operator. The calculations using Eqs. (18)-(20) are repeated for the remaining 2, 3 and 4 finite-

volumes of the under consideration block. With the multiple grid application, the use of the blocks minimizes the 

computational work needed to propagate the unsteady waves out of the computational domain so that a steady-state solution 

is rapidly reached. The convergence of the multi-grid method is typically 3 times faster than a single grid. Figure 3 shows the 

convergence histories for supercritical type of flow calculation using various multi-block schemes. The 2x2 multi-grid block 

give the fastest convergence for current method applications. 

3.4 Grid clustering 

Computational grid formation requires minimum data. Grid nodes need not to be uniform in any direction. Flow problems 

with large gradients of the physical quantities need dense computational grid formation for efficient flow depiction. Then, 

rather using a uniform grid distribution in the tangential direction grid points may be clustered in high flow gradients regions. 

This reduces the total amount of required grid points.For a physical domain enclosed by lower and upper solid surfaces 

(channel flow) clustering at both surfaces may be considered. The following algebraic equation may be employed for this 

purpose, Hoffman K. et al. [3], 
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FIG. 3. CONVERGENCE HISTORY FOR THE ROUSE H. ET AL. (1951) EXPANSION CHANNEL USING VARIOUS MULTI-GRIDS  
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IM is the maximum number of grid points in the transverse direction, b is a clustering parameter with values ranging from 

1.05 for dense grid to 1.20 for less dense, while the factor a defines where the clustering takes place. Using a=0.0 clustering 

takes place at the upper wall while for a=0.5 clustering takes place at lower and upper wall. 

3.5 Flow boundary conditions  

There are two types of boundary conditions; the open boundaries and the solid boundaries. For subcritical flow entrance, at 

the upstream boundary a fixed value of the flow rate Q and a relative flow direction are specified. At the downstream 

boundary, a uniform across the width, water depth h is specified. For supercritical flow entrance, at the upstream boundary, 

the transverse flow velocity v component and a uniform across the width water depth h are specified along with total 

available head. At the downstream boundary all flow physical quantities left free to change. Simply, the physical quantity 

values are extrapolated from the interior grid nodes.  

To close the problem, the condition of no water mass-flow across the solid boundaries needs to be applied (free-slip 

condition). This means that the velocity component normal to the solid face must be zero. This is easily achieved with the 

current grid formation and numerical discretization. 

3.6 Numerical procedure 

Firstly, geometrical and physical data describing the flow problem are read. Thereafter, the computational grid is formed. 

From the bed elevation the initial bottom slopes of the under examination channel are formed. A linear distribution of the 

gh
2
/2 quantity between inlet and outlet flow boundaries is assumed and the u, v velocity components, as well as the water 

depth h are calculated. The iterations start by solving the water mass-flux Eq. (5) to obtain h
n+1

, using old u
n
, v

n
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n
 and a 

corrected water depth is obtained. Then appropriate boundary flow conditions are applied at the inlet and outlet flow field. 
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Equations (6) and (7) are solved to obtain (hu)
n+1

 and (hv)
n+1

 and thereby new values for u
n+1

 and v
n+1

 are derived. Solid 

boundary conditions are applied requiring no water flow perpendicular to solid surface. Also, smoothing factors are applied 

to all changes of the flow field quantities. All changes are sent to the appropriate nodes of the finite-volume involved.  

The convergence criterion requires that the averaged over the flow field relative error based on the axial velocity drops below 

5x10
-6

. As with all time-marching methods the theoretical maximum stable time step Γt is specified according to the 

Courant-Friedrichs-Lewy (CFL) criterion, 
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Γx (=xi,j-xi,j-1) and Γy (=yi+1,j-yi,j) are the streamwise and transverse distances of a given finite-volume, respectively. The 

actually used values are calculated using the minimum of all Γxs and Γys of the grid. FT is a constant with less than unity 

value.  

The described method is an explicit numerical technique requiring substantial computational time to achieve solution at the 

requested time level. The incorporation of the multi-grid approach ensures substantially faster convergence. The explicit 

formation is in favor of an implicit technique as far as the programming complexity is concerned. Programming the free-

surface algorithm is straight forward process. The algorithm is written in a Fortran language. 

IV. APPLICATIONS 

4.1 2D subcritical flow in a converging-diverging channel 

The reliability of the current model in subcritical flows is confirmed by comparing numerical results with available 

measurements conducted by Soulis J. et al. [15]. Schematic plan view geometry of the tested laboratory flume (spur dike) is 

shown in Fig. 4. This flume was used to validate the numerical model simulation in subcritical free-surface flow. The 

channel length and width are 2.5 m and 0.25 m, respectively. At an axial, from inlet, distance 0.5 m the channel converges 

with a contraction angle of 10.88
o
. The convergence continues until the flume width reaches 0.125 m. The throat area extends 

0.30 m. Thereafter, the lower side wall diverges with an expansion angle of 21.037
o
 until the width takes the value of 0.25 m.  

For the numerical simulation a 48x11 (longitudinal x tangential) computational grid is used. The spatial step Γy is 0.025 m. 

However, the spatial step Γx for the converging part as well as for the throat region is 0.05 m while for the diverging part it is 

0.025 m.The applied inflow discharge Q is 0.02606 m
3
/s, while the downstream flow depth h is 0.284 m (subcritical flow 

conditions). The channel bottom slopes S0x and S0y are set zero. The Manning’s flow friction coefficient n is estimated 0.012. 

Computational results of flow depth h and axial velocity magnitude u are presented along 3 different “streamlines”. These are 

stream wise lines where measurements were taken at transverse distances of 0.05 m, 0.10 m and 0.20 m from the lower 

channel wall.  

Comparisons between computed results and measurements, Soulis J. et al. [15], for the 0.05 “streamline” are shown in Fig. 5 

for the water depth h and Fig. 6 for the u axial velocity magnitude. Axial velocities at the downstream end to the spur dike 

region were not available. Figures 7, 8, 9 and 10 show the water depth h and the axial velocity magnitude u for the 0.10 m 

and 0.20 m “streamlines’ locations, respectively.  

It is evident that the computed results agree rather well with the experimental measurements, particularly in the converging 

part of the channel. A discrepancy appears between measured and computed velocities in the diverging part of the channel, 

Fig. 10, where high viscous flow is developing. The tested spur dike obstacle constitutes a major difficulty from 

computational fluid dynamics point of view. Recirculating flow is present at the downstream spur dike end. However, the 

tested grid is sparse enough to adequately cover this highly turbulent region. The flow depths at the three “streamlines”, both 

upstream and downstream from the converging part of the channel are also in good agreement with measurements and show 

the validity and practical reliability of the numerical model. 



International Journal of Engineering Research & Science (IJOER)                     ISSN: [2395-6992]                [Vol-4, Issue-8, August- 2018] 

Page | 8 

  

 
FIG. 4. CONVERGING- DIVERGING FLUME GEOMETRY  

 
FIG. 5. WATER DEPTH COMPARISON BETWEEN CURRENT METHOD PREDICTIONS AND MEASUREMENTS ALONG A 

“STREAMLINE” LOCATED AT 0.05 M FROM LOWER WALL FOR THE CONVERGING-DIVERGING FLUME AT Q=0.02606 
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FIG. 6. AXIAL VELOCITY COMPARISON BETWEEN CURRENT METHOD PREDICTIONS AND MEASUREMENTS ALONG A 

“STREAMLINE” LOCATED AT 0.05 M FROM LOWER WALL FOR THE CONVERGING-DIVERGING FLUME AT Q=0.02606 M
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FIG.7. WATER DEPTH COMPARISON BETWEEN CURRENT METHOD PREDICTIONS AND MEASUREMENTS ALONG A 

“STREAMLINE” LOCATED AT 0.10 M FROM LOWER WALL FOR THE CONVERGING-DIVERGING FLUME AT Q=0.02606 
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FIG. 8. AXIAL VELOCITY COMPARISON BETWEEN CURRENT METHOD PREDICTIONS AND MEASUREMENTS ALONG A 

“STREAMLINE” LOCATED AT 0.10 M FROM LOWER WALL FOR THE CONVERGING-DIVERGING FLUME AT Q=0.02606 
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FIG. 9. WATER DEPTH COMPARISON BETWEEN CURRENT METHOD PREDICTIONS AND MEASUREMENTS ALONG A 

“STREAMLINE” LOCATED AT 0.20 M FROM LOWER WALL FOR THE CONVERGING-DIVERGING FLUME AT Q=0.02606 
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FIG. 10. AXIAL VELOCITY COMPARISON BETWEEN CURRENT METHOD PREDICTIONS AND MEASUREMENTS ALONG A 

“STREAMLINE” LOCATED AT 0.20 M FROM LOWER WALL FOR THE CONVERGING-DIVERGING FLUME AT Q=0.02606 
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4.2 2D supercritical flow in an expansion channel 

The channel expansion, shown in Fig. 11, is used to test the accuracy of the proposed numerical method at high entrance 

Froude number of Fr1=4.0. Rouse H. et al. [12] experimentally studied supercritical flow for the channel expansion. A 61x29 

grid node is used for numerical simulation. The actual expansion channel geometry is described as, 

2
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            (24) 

b1 is the half entrance width. At the upstream end, a constant value of water depth h1 of 1.0 m is specified. A fixed value of 

the total available head 9.0 m is also specified. The Manning’s roughness coefficient is 0.012. 

 
FIG. 11. EXPANSION CHANNEL GEOMETRY FOR FR1=4.0 AFTER ROUSE H. ET AL. (1951), CLUSTERED COMPUTATIONAL 
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The current method computational results are compared with measurements,Rouse H. et al. [12] as well as with 

computational results using an explicit MacCormack numerical scheme, Soulis J. et al. [13]. Figures 12, 13 and 14 show the 

comparison for thecurved side, mid-stream line (line between axis of symmetry and curved side) and axis of symmetry, 

respectively. Τhe current model comparison results with either measurements or with MacCormack
’
snumerical method is 

considered to be satisfactory.It must be noted that the predicted results are closer to each other. The overall performance 

demonstrates that the proposed model is accurate and efficient for simulating free-surface flow in practical applications. 

 
FIG. 12. WATER DEPTH COMPARISON BETWEEN CURRENT METHOD PREDICTIONS, MACCORMACK PREDICTIONS 

(SOULIS J. ET AL., 1989) AND MEASUREMENTS ALONG THE CURVED SIDEFOR THE ROUSE H. ET AL. (1951) CHANNEL 

AT FR1=4.0 

 
FIG. 13. WATER DEPTH COMPARISON BETWEEN CURRENT METHOD PREDICTIONS, MACCORMACK PREDICTIONS 

(SOULIS J. ET AL., 1989) AND MEASUREMENTS ALONG THE MID-STREAM LINE (LINE BETWEEN AXIS OF SYMMETRY 

AND CURVED SIDE) FOR THE ROUSE H. ET AL. (1951) CHANNEL AT FR1=4.0 
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FIG. 14. WATER DEPTH COMPARISON BETWEEN CURRENT METHOD PREDICTIONS, MACCORMACK PREDICTIONS 

(SOULIS J. ET AL., 1989) AND MEASUREMENTS ALONG THE FLUME AXIS OF SYMMETRY FOR THE ROUSE H. ET AL. 

(1951) CHANNEL AT FR1=4.0 

V. CONCLUSION 

A depth-averaged, multi-grid, finite-volume, explicit, numerical scheme has been developed and subsequently applied to 

free-surface flow calculations. Main advantage of the proposed computational model is the ability to calculate subcritical and 

supercritical free-surface flow and to conform to physical boundaries of any open channel flow problem. The numerical 

approach is straight forward and the flow boundary conditions are easy enforced. The applied multi-grid acceleration 

technique gives very fast convergence. Application to a variety of open channel flow configurations is given to validate the 

method’s potentialities. Applications regarding subcritical flow in a converging-diverging open channel and supercritical 

flow in a linearly expanding channel are reported. Comparisons with available measurements as well as with other numerical 

technique results show that the proposed method is a comparatively accurate and reliable technique. Very coarse grids give 

satisfactory comparison results. Free-surface flows simulation of practical interest in a straight forward way has been 

achieved. The method can be utilized for design computations. 
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