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Abstract— In the last several decades, many researchers have been focused on finding effective experimental methods to 

predict stocks with tendency of bankrupt. Recent financial crisis has caused extensive world-wide economic damages, 

predicting bankruptcy before it happens could help investors avoid large losses. In this article, by observing the market 

dynamics of its stock price and trading volume, we estimate the risk of bankruptcy of Aeropostale (ARO). GARCH and 

EGARCH series models with normal distribution and t-student distribution are used to estimate the volatilities and value-at-

risk (VaR) of ARO stock. By analyzing the VaR, we conclude that there is a high probability that the company will be facing 

bankruptcy in the near future. Moreover, our study shows that the asymmetric EGARCH model with t-student distribution 

eventually is a better choice to predict the behavior of this stock.  

Keywords— Asymmetric EGARCH model, GARCH model, normal distribution and t-student distribution, volatilities, 

Value-at-Risks. 

I. INTRODUCTION 

Bankruptcy forecasting has been an open challenging problem for financial analysts. The most recent financial crisis was 

caused by sub-prime mortgages written in 2006, which mainly contributed to Lehman Brother’s bankruptcy in September 

2008. The bankruptcies of many other corporations at that time also resulted in substantial losses to many investors and 

hedge funds. The general consensus is that if one could accurately predict bankruptcy, and identify a characteristic behavior 

exhibited by a stock before bankruptcy, it would help investors avoid certain large losses. Thus bankruptcy prediction is a 

topic of great interest, not only to investors and hedge funds, but also to researchers across a wide range of fields. In this 

paper, we investigate the risk of Aeropostale, Inc. (known as ARO), which is an American apparel retailer, principally 

targeting teenagers and young people. The company operates 773 Aeropostale stores in the U.S. and about 61 stores in 

Canada. The company’s chief competitors Forever 21 Inc. and American Eagle offer just as fashionable clothing at much 

cheaper prices. Plus, the overall teenage fashion styles have changed, while Aeropostale’s has not. The company continues to 

produce clothing that displays the brand’s name, which has long gone out of style. Aeropostale has served up 11 straight 

quarters of losses, shrinking cash at the end of the second quarter to stand at $86 million, down from $151 million at the start 

of 2015. ARO stock has lost more than 60% in the last 12 months.  

Many researchers and analysts have attempted to develop models for predicting corporate bankruptcy, but most of these 

models depend on the availability of detailed internal financial information or the financial statement about the corporation, 

such as Altman (1968) and Ohlson (1980). In general the financial statement has both balance sheet and income statement, 

which is often difficult to obtain for general investors, except possibly some large hedge funds. A commonly used financial 

tool is the Z-Score, which was developed in 1968 by Edward I. Altman, as a quantitative balance-sheet method of 

determining the financial health of a company. However as pointed by Altman (2002), the Z-Score was not intended to be 

used on non-manufacturing companies. Based on latest financial disclosure using the Z-Score calculation, Aeropostale Inc. 

only has probability of bankruptcy (Z-Score) of 34.58%. This is somewhat misleading for the investors. For more details, 

see, https://www.macroaxis.com/invest/ratio/ARO–Probability-Of-Bankruptcy.  

Since all investors have access to historical data of daily stock prices and trading volumes, it would be more beneficial if one 

could predict a corporation’s risk of bankruptcy by observing the market dynamics of its stock price. The goal of our study is 

to develop an early warning system to forecast the time of bankruptcy based on statistical analysis of the stock dynamics, 

rather than corporate internal financial information. Based on the daily closing share prices and trading volume of ARO, we 

use statistical properties to analyze ARO stocks to discover the tendency of stocks moving to bankruptcy.  

One commonly used measurement of the stock risk is the so-called Value-at-Risk, VaR for short. It was made popular by US 

investment bank J.P. Morgan, who incorporated it in their risk management model RiskMetricsTM. The Value-at-Risk of a 
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stock is mainly the maximum loss that may be suffered on that stock in a short period of time. More precisely, a VaR(a) is 

the a-th quantile of the distribution of the maximum loss, typically a is chosen in the range of 95% to 99.9%. Evidently, the 

higher the confidence level is, the larger the VaR. By varying the value of a, one should be able to explore a whole risk 

distribution of the maximum loss. Despite the extensive literature and empirical research of estimation of VaR in the 

financial markets, literature dealing with VaR calculation in bankrupt stocks is very scarce. In this paper, we estimate the 

VaR for the stock ARO. Throughout our detailed analysis, a holding period of one day will be used. The method we use is 

the so-called variance method, which related the VaR to the volatility of the underlying stock prices. Intuitively, the larger 

the volatility of the expected return, the more likely the occurrence of large swings in the stock price and the larger the 

Value-at-Risk.  

Thus to estimate the risk of the stock, we must accurately predict the volatility. For volatility forecasts there are two major 

sources, volatility models based on time series and the volatility implied from option prices. In this paper, we use the 

GRACH and EGARCH series models to estimate the volatilities. The Generalized Autoregressive Conditional 

Heteroscedastic (GARCH) model was introduced by Bollerslov (1986), which has been extensively used in financial time 

series. Since stocks with bankrupt tendency usually are penny stocks, thus bad news has a greater impact on volatility. To 

improve the estimation on volatilities, we also use the Exponential GARCH (EGARCH) model, proposed by Nelson (1991). 

In this paper, we analyze the relative return series from statistical point of view. By comparing the VaR together with the 

relative returns, we discover that the VaR are strongly correlated with the stock price. We also notice that the bankrupt 

tendency is characterized by the rapid decreasing trend of the VaR. The statistical approach used in this paper may eventually 

help investors forecast stock bankruptcies weeks or months in advance.  

This paper is organized as follows. In Section 2, we analyze fundamental statistical properties of the time series of the 

relative returns for ARO, including the normality and autocorrelations. The GARCH and EGARCH models are fitted and   

estimation of VaR is performed in Section 3.  

II. DATA AND DESCRIPTIVE STATISTICS 

2.1  Data Description  

We denote tP as the daily closing price of a stock, for integer t Z . The stochastic properties of the price time series{ }tP is 

characterized by the relative returns process, which are defined as:  

1100(log log )t t tR P P        (1) 

In this paper, we mainly concentrate on the daily ARO stock price time series over the thirteen-year period. There were 3,272 

daily data points from Oct. 29, 2002 to Oct. 27, 2015. We collect ARO daily closing price from Yahoo Finance. 

 

 

FIGURE 1: THE UPPER PLOT IS FOR ADJUSTED CLOSING PRICE, AND THE LOWER PLOT IS FOR DAILY RETURNS 
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FIGURE 2: DAILY SQUARED RETURNS FOR ARO 

Fig.2 exhibits the time series plot of daily squared returns about ARO stock. Note that there are growing signs that the 

process is more volatile than that demonstrated in Fig.1.  There are extensive literatures that have documented the evidence 

that high stock volume is closely related to volatile returns; see for example Gallant, Rossi, and Tauchen (1992), Harris 

(1987); Jain and Joh (1988); Jones, Kaul, and Lipson (1991); and the survey in Karpoff (1987). Numerous papers have noted 

that volume tends to be higher when stock prices are increasing than when prices are falling. However, our Fig.3 clearly 

contradicts to these results. For example, from 2010 to 2015, the stock price has a significant decreasing trend; however the 

trading volume tends to be higher and with more peaks in this period. Weak high relative volume is an indicator on 

underlying activities such as stock news, analyst downgrade, insider selling, or that hedge funds and stock traders are piling 

out of the stock ahead of a catalyst. 

 

FIGURE 3: DAILY VOLUME OF ARO 

To get a better description of the statistics of the relative returns, we have the following table on estimations of its mean and 

higher moments. The table shows a clear negative drift of the returns, which is indicates a strong sign of bankruptcy. 

TABLE 1 

SUMMARY STATISTICS OF THE RETURNS 

Mean Range Standard 

Deviation 

Skewness Kurtosis Observations 

-0.0528 (-39.6763,21.4255) 3.5328 -1.2271 16.5943 3272 

 

In order to accurately predict the VaR, we need to examine some statistical properties for the return series, including the test 

for normality as well as the autocorrelations. 
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2.2  Test for Normality  

We first use the Q-Q plot to test the fitting for normal distribution, as well as the student t-distribution 

 

FIGURE 4: QUANTILE-QUANTILE PLOT OF RETURNS AGAINST THE NORMAL DISTRIBUTION 

The Fig.4 is the Q-Q plot of the empirical distribution of the daily returns (y-axis) against the normal distribution (x-axis). It 

can be observed from plot, the empirical distribution of the daily returns exhibits heavier tails than the normal distribution, so 

the normal distribution is not an ideal fit for the return process.  To support our observation, Jarque-Bera test can be used as a 

goodness-of-fit test to examine if the sample data have kurtosis and skewness similar to a normal distribution. The test 

statistics is denoted as JB, which is defined by 

2 21
JB = ( ( 3) )

6 4

n
S K         (2) 

Where n is the sample size, S is the sample skewness and K is the sample kurtosis. If the sample data comes from a normal 

distribution, the statistic JB should follow asymptotically a chi-squared distribution with two degrees of freedom. The null 

hypothesis is that the sample data have a skewness of zero and an excess kurtosis of 3 which is what the normal distribution 

has. Our results show that the returns time series of ARO fails the null hypothesis with 95% confidence 

 
FIGURE 5: QUANTILE-QUANTILE PLOT OF RETURNS AGAINST THE T DISTRIBUTION 
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We also test the empirical distribution of the daily returns (y-axis) against the t distribution using Q-Q plot. From the Fig.5, 

one can see clearly that the t distribution is a much better fit and the empirical distribution of the daily returns has lighter tails 

than the t distribution.  

2.3  Tests for Autocovariance  

Analyzing the second-order structure of the processes is an important step to understand a classical time series. The 

Autocorrelation Coefficients (ACF) and Partial Autocorrelation Coefficients (PACF) are extremely useful as they help us 

identify the correct specification for an ARMA model that describes the stochastic process. In particular, if the process is 

white noise, all autocorrelation and partial autocorrelation coefficients equal zero. If the process is an AR(p), the PACF will 

equal zero for all lags k > p, while if the process is a MA(q) the ACF will equal zero for all lags k > q 

 

FIGURE 6: SAMPLE AUTOCORRELATION COEFFICIENTS UP TO 20 LAGS FOR RETURNS 

 

FIGURE 7: SAMPLE PARTIAL AUTOCORRELATION COEFFICIENTS UP TO 20 LAGS FOR RETURNS 

 

FIGURE 8: SAMPLE AUTOCORRELATION COEFFICIENTS UP TO 20 LAGS FOR SQUARED RETURNS 
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To confirm our observations, we apply two formal statistic tests, including the Ljung-Box test by Ljung and Box (1978) and 

Lagrange multiplier test (Engle, 1982), which test to check serial correlation of returns and squared returns. In both tests, the 

null and alternative hypothesis is defined respectively as:  

0 1H : (1) = (2) = = (m) = 0 vs H  : (i) for some i {1, 2, ,m}     
   

   

Where n is the sample size, ( )l


is the sample autocorrelation at lag l , and m is the number of lags being tested. The Ljung-

Box Q test statistic is 
2

1

( )
( ) ( 2)

m

l

l
Q m n n

n l





 





        (3) 

As Ljung & Box (1978) proposed, under the assumption that 1{ }n

t tR  is i.i.d, the distribution of ( )Q m can be approximated as 

chi-squared with m degrees of freedom. A too large value of Q would suggest that the sample autocorrelations are too high 

for the data to be observations from an iid sequence. 

Our test results are shown in the following table: where the p-value is the quantile that 0H fails. Thus the Ljung-Box-Q-test 

null hypothesis is rejected for lags 6, 8 and 10 at a 95% confidence level. 

TABLE 2 

LJUNG-BOX Q TEST 

 

The Lagrange multiplier test is used for the squared data series. We can see that the null hypothesis 0H is rejected for lags 6, 

8 and 10 at a 99%confidence level. 

TABLE 3 

LAGRANGE MULTIPLIER TEST  

 

III. MODEL FITTING AND ESTIMATION OF VAR 

3.1 Methodology  

Let F = (R , s t)t s  be the σ-algebra generated by all historical information (based on the time series) up to time t. 

Consequently, we obtain a filtration{F , }t t T generated by the random process{R }t . Wold’s decomposition theorem (c.f. 

Fuller (1996) pg. 96) states that any covariance stationary time series {R }t has a representation of the form:  

0

t k t k

k

R c 






        (4) 

 

χ-squared      m  p-value  

16.397 6 0.01177 

17.269 8 0.02743 

19.008 10 0.04016 

χ-squared      m  p-value  

35.897 6 2.886e-06 

38.154 8 7.051e-06 

39.276 10 2.271e-05 
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where ( )tE R  is the expected return; 
1( )t t t tR E R F   is an uncorrelated process with zero mean and adapted to the 

filtration{F }t
. The coefficients

kc called the moving average weights or impulse responses. Moreover
0 1c  and 

2

0

k

k

c




  .The covariance can be calculated as: 

1

( ) k k j

k

j c c






        (5) 

The usefulness of the Wold Theorem is that it allows the dynamic evolution of a variable
tR to be approximated by a linear 

model. If the innovations{ }t are independent, then the linear model is the only possible representation relating the observed 

value of
tr to its past evolution. We denote the conditional mean as: 

1( )t t tE R F         (6) 

And the conditional variance is denoted as: 

2 2 2

1 1 1 1( ) (( ( )) ) ( )t t t t t t t t tVar R F E R E R F F E F           (7) 

The random variable t is called the volatility of tR . Moreover, one can see that
2{ }t is a predictable process. By the 

Pythagoras Theorem,  

2 2 2 2

1

( ) ( )t k t k

k

E c E  






        (8) 

where
2 ( )tVar R  is the variance of the expected returns. 

The fact that large absolute returns tend to be followed by large absolute returns (whatever the sign of the price variations) is 

hardly compatible with the assumption of constant conditional variance. This phenomenon is called conditional 

heteroscedasticity, i.e.
2

t is not a constant. Note that
2

t is measurable with respect to 1Ft , so it can be represented as a 

function of{ , }sR s t , i.e. the conditional volatility should satisfy: 

  
2

0 1( , , , )t tg R R         (9) 

 

To account for the very specific nature of financial series (price variations or log-returns, interest rates, etc.), one usually 

denote 

                                   t t t          (10) 

where{ }t is a white noise process with zero mean, unit variance and they are uncorrelated. Different classes of models can 

be distinguished depending on the specification adopted for t , such as the Conditionally heteroscedastic (GARCH) 

processes and the Exponential GARCH model. 

In this paper, AR(1) model is used to simulate the conditional mean. More precisely, the AR(1) model is defined by 

                                  0 1 1t tr            (11) 

where 0 and 1 are two constants, here we use lower case r to refer to the realization data series for R.  To estimate the 

conditional variance, we use the GARCH model as well as the EGARCH model. More precisely, we assume 

                                t t tr     and t t t         (12) 

where t is estimated using the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model (Bollerslev, 

1986) as :  

                                
2 2 2

0

1 1

p q

t j t j i t i

j i

      

 

         (13) 
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where 0, 0p q  , and ,j i  are constants, for 1, ,i p   and 1, ,j q  . Here{ }t is the weak white noise, with zero mean, 

unit variance and they are uncorrelated.  

The GARCH model is the most commonly used model in financial time series analysis by far, but it requires the parameters 

to be nonnegative. The models assume that positive and negative shocks have the same impact on volatility. This model can 

account for persistence of financial time-series data, but it is well known that financial asset volatility has an asymmetric 

impact. Typically, the bad news has a greater impact on volatility. For example, declining stock prices are more likely to give 

rise to massive portfolio rebalancing (and thus volatility) than increasing stock prices. This asymmetry arises naturally from 

the existence of thresholds below which positions must be cut unconditionally for regulatory reasons.  

To be able to model this behavior and relax the limitation of parameters, Nelson (1991) proposed the Exponential GARCH 

(EGARCH) model. For , 0p q  , the EGARCH (p,q) model is given by 

              
2 2

0

1 1

log [ ( )] log
p q

t j t j j j t j i t i

j i

E          

 

         (14) 

Indeed studies have found that the predictive effect of higher order model is not necessarily better than the low order model, 

see Hansen and Hansen, P. R., Lunde, A.(2005) and Bollerslev, T., Chou, R.Y., Kroner, K.F (1992). Because of the 

computational complications, we use the GARCH(1,1) and the EGARCH(1,1) model in this paper. GARCH and EGARCH 

parameters are estimated by maximum likelihood, see Table 4. Although a Gaussian assumption is common, the distribution 

is often fat tailed, which has prompted the use of the Student-t distribution (Bollerslev 1987). We analyze the empirical 

distribution of the daily returns by taking
t to be the normal distribution and the t -distribution, respectively. Although our 

empirical results show that the t -distribution is a more ideal fit, interestingly the normal distribution also passed the Jarque-

Bera test with 95% confidence.  

TABLE 4 

ESTIMATED GARCH MODELS AND EGARCH MODEL FOR THE DAILY RETURNS OF ARO 

distribution of t  normal t normal T 

Model Garch Garch Egarch Egarch 

0  0.9596442 0.967713 0.996800 0.993598 

 1  0.1818314 0.080000 0.009424 0.013742 

0   0.0267214 0.025209 -0.041655 -0.026558 

1    0.0064066 0.041331 -0.033586 0.038978 

1  -0.0242822 -0.007945 -0.022967 -0.008206 

1    0.016691 0.075905 

 

3.2 Estimation of VaR  

Value at risk (VaR) has become very popular in risk management because it is an easily understood and obviously relevant 

concept. Despite its conceptual simplicity and popularity as an industrial standard, estimating the value of VaR of a stock is 

highly non-trivial. In statistical terms, the task is to provide a given quantile for the unknown distribution of the relative 

returns of the stock. Moreover no consensus has been reached as to the best method for estimating VaR.  

As introduced in Section 1, VaR(a) is the a-quantile of the distribution of the maximum loss, with a chosen as either 95% or 

99%. Consequently, the VaR(a) for the negative return is defined as  

                                 ( ( ))tR VaR a a          (15) 

i.e., VaR(a) is the a-th quantile of the distribution of the negative relative return tR . 

It follows from (15), we have  
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                                  t t

t

t

R 





         (16) 

Assume
t follows distribution  , and denote

au as the a-th quantile of
t , i.e. ( )t au a    , then the a-th quantile of -

tR   

can be calculated as  

                                ( ) t t aVaR a u          (17) 

 

FIGURE 9: THE SERIES PLOT OF DAILY RETURNS WITH VAR(95%) OF ARO IN RED AND VAR(95%) OF SPY 

IN GREEN FOR NORMAL DISTRIBUTION 

 

FIGURE 10: THE SERIES PLOT OF DAILY RETURNS WITH VAR(95%) OF ARO IN RED AND VAR(95%) OF SPY 

IN GREEN FOR T DISTRIBUTION 

Fig.9 demonstrates our simulation of VaR(95%) for stock ARO as well as that of SPY by assuming t following the standard 

normal distribution. Fig.10 is plotted similarly assuming t following the student t distribution.  
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TABLE 5 

ESTIMATION OF THE VAR FOR THREE-DAY-AHEAD PERIOD 

Model Garch-normal Garch-t Egarch-normal Egarch-t 

1T 
 7.363 7.525 7.26 7.795 

VaR(0.05)(T+1) -12.064 -15.11 -11.938 -15.654 

VaR(0.01)(T+1) -17.081 -25.267 -16.885 -26.176 

2T 
 7.325 7.504 7.249 7.746 

VaR(0.05)(T+2) -12.044 -15.116 -11.958 -15.57 

VaR(0.01)(T+2) -17.035 -25.244 -16.897 -26.026 

3T 
 7.287 7.483 7.237 7.698 

VaR(0.05)(T+3) -11.981 -15.072 -11.937 -15.473 

VaR(0.01)(T+3) -16.946 -25.172 -16.868 -25.864 

IV. CONCLUSION 

Our statistical studies discover that the ARO stock has a high probability of approaching bankruptcy. According to recent 

work by Li etc.(2011), one of the most significant features in the distribution of returns: pre-bankrupt stocks are more likely 

to have larger daily returns (both positive and negative) than stocks that do not become bankrupt. In other words, pre- 

bankrupt stocks have larger daily price fluctuations. According to the statistical quantities given in Table 1, we know that the 

difference is bigger for negative returns than positive returns, indicating the falling stock price preceding a bankruptcy. 

Indeed the closer the day of bankruptcy approaches, the greater the possibility for these dramatic price changes. 

A second major feature pointed out in Li etc.(2011) is that the pre-bankrupt stocks experience a stronger correlation between 

volatility and volume. Previous research has shown that volatility and volume exhibit a positive correlation, meaning that 

large changes in stock price are often accompanied by large changes in trading volume. This is confirmed by comparing 

Figure 1 and Figure 3, as we can see that both the log returns and the trading volume have large fluctuations in 2015. This is 

pretty odd situation which is obviously distinguishes ARO from healthy stocks. For healthy stocks, if the mean of return is 

negative, the trading volume should decrease. This phenomenon is also evidence that many insiders are selling a large 

amount of shares and short sales have increased significantly, which is mainly due to some inter-information on the potential 

bankruptcy of the company. We also find the asymmetric EGARCH Model with t-student distribution should be a suitable 

tool to predict the volatilities of ARO, which indicates that the market dynamics of the stock is mainly impacted by some 

“bad news” or certain negative information.  

 

FIGURE 11: THE SERIES PLOT OF DAILY CLOSE PRICE IN BLUE WITH VAR(95%) OF ARO IN RED 
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Our empirical study also shows that the VaR and the stock price are strongly correlated. In Fig.11, we plot the time series 

plot of daily close price in blue with VaR(95%) of ARO in red which are shifted by 20 units up. One can see that these two 

curves have similar up/downward trends in last few years.  

Consequently our statistical investigation of the historical data of ARO indicates that this stock has a strong tendency 

approaching bankruptcy. Therefore we suggest investors should avoid investing in ARO stocks 
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