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Abstract— The placement of wind turbines is a key technology for wind farm configuration, but the automatic placement of 

turbines is always still a difficult problem. The objective of every wind farm designer is producing as maximum as possible of 

energy, with minimal cost of installation The improved wind and turbine models are formulated into an optimal control 

framework in terms of minimizing the cost per unit energy of the wind farm. In this study, a code Wind Farm Optimization 

using a Genetic Algorithm (WFOAG) is developed for optimizing the placement of wind turbines in wind farm to minimize 

the cost per unit power produced from the wind farm. A genetic algorithm is employed for the optimization. WFOAG is 

validated using the results from previous studies. 
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I. INTRODUCTION 

Today, the part of production from renewable energy sources has increased dramatically compared to fossil fuels. This is 

generally due to some factors such as the high and rising price of traditional fossil fuels, during this, great social and 

environmental concerns and institutional support undertake to reduce foreign fossil fuels.  

Many countries have already invested in green energy and they will invest even more because of dwindling resources of 

fossil fuels, the commitment of the Kyoto Protocol and the obligations for all countries with regard to the protection of the 

environment. By focusing on the types of renewable energy, it is a well known fact that wind energy has increased the most. 

That is why the development of an efficient tool for the design and construction of wind farms has a special importance. The 

design of the wind farm involves several factors. These range from maximum desired installed capacity for the wind farm, 

site constraints, noise assessment for noise sensitive dwellings, visual impact and the total cost. The fundamental aim, while 

designing a wind farm, is to maximize the power production while reducing the total costs associated with the wind farm. 

‘Micro-siting’ is the process of optimizing the layout of the wind farm. This process is facilitated by the use of wind farm 

design tools (WFDTs) which are commercially available. 

In this work, wind turbine placement in a wind farm is optimized using an objective function that represents the cost per unit 

power produced by the wind farm for a particular wind distribution function. The wind distribution function, in general, 

represents a model of wind variations in speed and direction averaged over a year, or many years. A genetic algorithm is 

employed for optimizing the placement of the wind turbines. An analytical wake model is utilized for modeling wind turbine 

wakes in the wind farm. 

II. LITERATURE REVIEW 

Several researchers have utilized analytical wake models to optimize the placement of wind turbines in a wind farm. Use of 

computational wake models has been rare owing to high computational costs involved in obtaining specific results for each 

wind condition under consideration. In order to achieve better results, some studies on wind turbines positioning were 

performed, where different optimization methods and wind farm models were used. The first work that implemented an 

optimization method for this problem was introduced by Mosetti et al. in 1994 [1], which adopted the genetic algorithm as an 

optimization tool. The study of Mosetti et al. was to develop an algorithm able to place wind turbines in a defined area where 

the goals of the optimization were maximizing the production and reducing the cost of implementation. Mosetti et al. opted 

for simple wind farm and cost modeling, because their focus was the effectiveness of the optimization process. In 2005, 

Grady et al. [2] attempted the same problem as Mosetti et al. They examined the same three cases as Mosetti. Authors have 

used the exact same approach as was by Mosetti et al. such as Jensen’s analytical wake model and a genetic algorithm for 

optimization. Grady et al. showed that Mosetti et al.’s results are not optimum. They suggested that the probable cause is that 

the solution was not allowed to evolve for sufficient generations (i.e., it was not converged to the optimum point). Another 

work was developed by Marmidis et al. in 2008 [3], which used a different optimization method, the Monte Carlo method. 

Emami et al.[4] in 2010 proposes an improvement in wind farm layout optimization with the Jansens’s wake model by 
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modification of the objective function, which takes into account the efficiency of wind turbines and the wind farm 

deployment cost. 

TABLE 1 

DETAILED DESCRIPTIONS OF PAST APPROACHES 
 Detailed Descriptions 

 

Past Approaches 

Objective 

function 
Cost/year 

Technique 

used 
Power Efficiency 

Mosetti et al. Single  objective 
Same 

 

Genetic 

algorithm 
reported 

Not considered a 

parameter 

Grady et al. Single objective same 
Genetic 

algorithm 
reported 

Not considered a 

parameter 

Marmidis et al. Single objective same 
Monte Carlo 

simulation 
reported 

Not considered a 

parameter 

Emami et al. Multi-objective same 
Genetic 

algorithm 
reported 

Considered and 

calculated in some 

cases 

 

The literature review gives a clear vision that mostly research in the field of wind farm layout optimization focused only on 

the wind turbine positioning within the specific area of wind farm [5]. However the research on the wind farm area 

dimensions and fully utilization of upstream wind velocity is currently lacking in literature. The present work is based on the 

works mentioned above, as it also uses genetic algorithm as an optimization tool and a simple modeling of a wind farm. 

Nevertheless, new codifications have been adopted. 

III.  FORMULATION OF OPTIMIZATION PROBLEM  

3.1 Probability density function 

The wind speed histogram is approximated by a continuous function called the probability density function. This function 

expresses the probability (frequency or percentage of time) of occurrence of wind speed. 

The probability density function is given by: 

f V =
K
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V
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V
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                                                                                                                                 (1)                                                                 

The cumulative distribution function is given by: 

F = exp   
V
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The V value average and standard deviation σ of the distribution are expressed using the Γ function: 
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Γ is an Eulerian function of the second kind defined by: 

Γ x =  tx−1 exp −t dt  
∞
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The integration of  f v  between V and ∞ give the expression of the distribution function f v . To represent the distribution of 

the wind frequency using the Weibull distribution, there is a probability density function: 
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Where f (v) is the probability density at the speed V (m/s), K is the shape of the curve factor (dimensionless), C is the scale 

of the curve factor in m/s. 

3.2 Wake model 

Turbines interact with the wind captures part of the kinetic energy and are converted to usable energy. According to the first 

law of thermodynamics, this energy extraction creates a gap between the outgoing wind turbine and the oncoming wind 

turbine. Thus, the wind speeds at the rear of the turbine is lower than the wind speed upstream and consequently a reduction 

in output power is generated by the turbines. The wake effect also causes high levels for turbulence in the wind turbines, 

giving rise to an additional mechanical strain, which may reduce their lifetime.  

Many studies on the wake effect were conducted, and several models have been developed by researchers, as mosaic tile 

model [6], the Frandsen model [7], Ainslie [6] model, the model Jensen [9] and CFD (Computational Fluid Dynamics) model 

[10]. The choice of model depends on the desired accuracy of the prediction and the calculation time. A wake models most 

widely used, developed by Jensen [9], was chosen for this study because it provides sufficient accuracy and a reduction in 

computation time. The turbine interact with the wind, capture a portion of its kinetic energy and converts it into useable 

energy, this extraction of energy creates a gap between the outgoing wind turbine and the oncoming wind turbine. Thus, the 

wind speeds at the rear of the turbine is lower than the downstream speed of the wind, as a result it decreases the production 

of output energy [11]. The wake effect also causes high levels of turbulence in the outgoing wind turbines, giving rise to an 

additional mechanical stress, which may affect them, this behavior caused by the turbulent is neglected in this study because 

it does not affect directly output power. In both works of Mosetti and Grady's [1-2] the model used is similar to the model 

developed by Jensen [9] in 1986. Here we assume that the movement is kept inside the wake. 

For a single turbine, the downstream wake zone will be considered as a trapezoid such that the average speed of the wind can 

be expressed by the following equation: 

u = u0  1 −
2a

 1+α 
x

r
 

2
 

2                                                                                                                                           (7)                                                          

Where 𝛼 is the entrainment Constant,  𝑎 is the axial induction factor, 𝑥 is the distance from the turbine, and 𝑟 is the radius of 

the turbine downstream, as shown in Figure 1. 

 

FIGURE 1. Single Wake 

The relationships between 𝑟, 𝑟𝑟  the radius of turbine and 𝐶𝑇  the thrust coefficient are represented in the equations: 

                 r = rr 
1−a

1−2a
                                                                                                                                                              (8) 

 CT = 4a 1 − a                                                                                                                                                          (9)                                                                                                         

The entrainment Constant is empirically given by: 

α =
0.5

ln 
Z

 Z0
 
                                                                                                                                         (10)                                                                                            
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Where 𝑧 is the hub height of the wind turbine, and 𝑧0 is the surface roughness of the site. When the turbine downstream is not 

completely immersed in a wake, if Aw is the part of the rotor area that is inside the upstream turbine wake, as shown in Figure. 

2, the effect of the corresponding deficit must be reduced according to: 

(Up − U0)2 =
4Aw

πD0
2 (U − U0)2                                                                                                                               (11)                                                                                                                        

Assuming that 𝑅 and 𝑟 are respectively the radii of the bigger and lower circumferences (general but not necessarily the wake 

and rotor ones respectively) and 𝑋 is the distance between their centres, the overlapped area Aw  yields: 

Aw = R2cos−1  
R2+X2−r2

2RX
 − R20.5 sin  2cos−1  

R2+X2−r2

2RX
  + r2cos−1  

R2−X2−r2

2RX
 − r20.5 sin  2cos−1  

R2−X2−r2

2RX
        (12)          

 

 
FIGURE 2. The Shade Area of A Downstream Wind Turbine in Partial Wakes. 

For multiple wakes we supposed that the loss of kinetic energy is equal to the sum of the energy losses. So, for N turbines, 

the downstream speed can be expressed by the following expression: 

ui = u0  1 −    1 −
u

u0
 

2
N
i=1                                                                                                              (13)  

3.3 Cost model 

The electricity generated by an aero generator, is a function of the local wind speed. Furthermore, the hub height, the thrust 

coefficient and the rotor diameter also affects the extracted power. 

The total power P extracted from the wind is a function of the local section and wind speed, as shown in the following 

expression:  

P =  0.3ui
3N

i=0                                                                                                                                                       (14)  

To calculate the total cost, we modelled the investment cost such a way that only the number of wind turbines must be taken 

into consideration. 

The total cost per year for the entire wind farm can be expressed as follows: 

cost = N  
2

3
+

1

3
e−0.00174 N2

                                                                                                                          (15)  

Where N is the total number of wind turbines. 

The objective function that will lead to optimization (minimum cost per unit of energy produced) is expressed as follows: 

objective function =
cost

Ptotal
                                                                                                                         (16)  
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Where Ptotal  is the total production, while the cost is calculated as mentioned in equation (15). 

Minimize the objective function leads to a solution with the lowest cost of producing wind energy [12]. 

Wind turbines must be spread over the site to share the best wind between many machines. 

3.4 Efficiency Model 

Efficiency is determined as a ratio between the amount of energy extracted from the wind farm and the total energy without 

wake. The numerator represents the actual energy extracted from the rotor of each wind turbine, considering the Betz limit of 

aerodynamic theory. The wind farm efficiency can be formulated using the equation depending on the number of wind 

turbines. 

Total power produced in wind farm when considering wake effect can be calculated by using equation:  

PTotal =   0.3ui
3 NT

i=0                                                                                                                                              (17)  

Equation (15) is used to calculate the wind farm total power without wake effect:  

PWT = P × NT = NT 0.3ui
3                                                                                                                                  (18)  

Where, P, is the rated capacity of each wind turbine. 

The overall efficiency of the wind farm is calculated by using equation (19), as follows:  

Efficiency =
PTotal

PWT
=

  0.3×ui
3 

N T
i=0

NT 0.3×ui
3 

                                                                                                                          (19)  

IV. APPLICATION OF GENETIC ALGORITHMS  

In this study, we follow [1, 2, 3, 4] study the turbine placement problem on a flat and square farm. The wind farm is divided 

into 10×10 cells, the width of which is set to be five times that of turbine rotor diameter for safe operations. The center of 

each cell is the possible position of the turbines. The objective of the optimization is to determine the cells to place turbines 

so as to minimize the cost per unit energy produced. 

The wind turbines placement problem is of discrete type and presents an infinity of optimal solutions, which somehow 

discards the applicability of optimization methods based on local gradients [1]. Assuming a wind farm described by a 10 x 10 

matrix, where each element may contain or not a wind turbine, you can find 2100  different configurations, making it 

impractical to use conventional computers for such problem’s analysis.  

According to Mosetti et al., for this case, the genetic algorithm is a good tool in the search of the best configuration. This 

method is able to find an optimal solution to problems of great complexity, eliminating the need of evaluating each 

individual solution [1].  

The optimization algorithms are divided into two main groups: deterministic (based on differential calculus) and random 

(probabilistic). The deterministic methods are based on the calculation of derivatives or approximations thereof, seeking 

information from the gradient vector to find the point in which it is annulled, or to find its direction [13].  

The random methods use the results of the objective function, which can be difficult to represent, discontinuous, non-

differentiable, multimodal (with several minimum and maximum points). These methods look for the optimal value through 

operating rules of probability in a "randomly oriented" way [13]. One of the main random methods is the genetic algorithm.  

Genetic algorithms are probabilistic search algorithms, which are based on the logic of natural selection and the survival of 

the fittest to commit certain remarkable tasks. Unlike calculus-based methods, genetic algorithms are robust, global, and do 

not require the existence of derivatives [14]. 

Since the optimal micro-sitting problem is quite complicated and involves many independent variables, it cannot be solved 

by traditional gradient-based optimization methods. A genetic algorithm is employed to solve such a problem. In the genetic 

algorithm, the selection, crossover and mutation are the fundamental operators [14]. The selection operation chooses two 

parents from the population for crossing. The crossover operator takes two parent solutions to produce a child. The crossover 

probability Pc is usually between 0.6 ∼  0.9. The mutation operator introduces new genetic structures into the population by 

randomly modifying some of its building blocks. It avoids the trap of local minima and maintains diversity in the population.  

The mutation probability Pm is generally between 0.01 ∼  0.1. In the genetic algorithm, a few of the best chromosomes 

should be copied to the new population in case that such individuals can be lost by crossover or mutation operators [14]. 
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After the occurrence of crossover the mutation operator is applied. This operator inverts the values of some genes i.e., a 0 

gene can turn to 1 or a 1 gene can turn to 0. This operator is used for increasing the diversity of the chromosomes in a 

population. Figure 3, adapted from [2], illustrate crossover and mutation operators.  

 
FIGURE 3. Crossover and Mutation Operators 

In the present study, the field is described by a code matrix composed of m by n "zeros" and "ones", where 0 simply means a 

space without the presence turbine 1 and a wind turbine, as shown in figure 4.  

 
FIGURE 4. Codification Method 

V. NUMERICAL PROCEDURE  

The code is attached to the WFOAG optimization tool by genetic algorithm. The flowchart in figure 5 explains the process 

through which WFOAG is used as the objective function, generating the necessary results to evaluate individuals created. 

Basically, the optimization process is divided in three stages: Pre-processing (Initialization), Processing (genetic algorithm) 

and Post processing (a result evaluation).  

5.1 Pre-processing 

In the first stage, are specified the optimization parameters as: Number of input variables: for the proposed problem, the only 

variable input is the matrix position (layout of the wind farm); Size of initial population: the total number of solutions that are 

generated randomly for the first generation; Restrictions: In order to avoid unfeasible evaluations of individuals, as 

restrictions are imposed minimum production or efficiency; Optimization criteria: the optimization criteria include the 

maximum number of iterations (called generations), the probability of crossover, mutation and selection, and optimization 

method.  

5.2 Processing 

After the initialization process, starting from a given initial population, the fitting of each individual is evaluated by the 

objective function (WFOAG), and by the best individuals, the next generation will be designed. This new population is 

obtained through crossover and mutation among individuals with higher fitting in random regions. 

In the next step optimization criteria are checked if they are satisfied or not. When the optimization criteria are not met, all 

the solutions are ranked based on their objective function values. A solution with small objective function value is better as 

its cost per unit power is smaller and is placed before other solutions with larger objective function value. For example, a 

solution with objective function value of 0.02 is placed before a solution with objective function value of 0.03. 

After ranking is completed, some solutions are selected based on which new solutions are created (reproduced). This 

selection of solutions is affected by the ranking done in previous step and a solution with good ranking has a better chance of 



International Journal of Engineering Research & Science (IJOER)                 ISSN: [2395-6992]             [Vol-4, Issue-12, December- 2018] 

Page | 14 

being selected. New solutions are created but some solutions are copied from original set of solutions to the new set of 

solutions. These selected few solutions are one of the best in terms of the ranking and are called elite count. 

The next step before new set of solutions (new population) is ready is called Mutation. In this step some random changes are 

made in few solutions. This step is very important as it helps in maintaining diversity in the solution set. This new solution 

set is analyzed by WFOAG and this iterative procedure continues until one of the optimization criteria is satisfied. In the 

simulation, the type of selection is set as (Stochastic uniform), the type of crossover is set as (scattered) with the crossover 

probability Pc = 0.8, and the type of mutation set as (Uniform) with the mutation probability Pm = 0.05.  

5.3 Post-processing 

Just the once computations have stopped, the results are exported from the WFOAG and the exported structure is saved to a 

file for later use. The coordinates of all the wind turbines are saved in a separate variable and analyzed to determine the 

power produced. The layout can be plotted as per the requirement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5. Flowchart Describing the Optimization Process 

START 

Initialize number of variables, number of solutions in one 

solution set (population size), and optimization criteria 

First set of solutions (population) created randomly  
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VI. RESULTS AND DISCUSSIONS  

6.1 Influence of wake effect on wind speeds of each wind turbine 

In order to analyze how wind speeds of each turbine are affected by wakes, two different scenarios have been simulated. The 

first, a wind farm composed of 16 wind turbines (4X4) is presented. The y-axis is fixed to 0° which it is assumed to be 

coincident with the prevailing wind direction. The wind farm layout, as well as the wake effect caused by a particular 

incoming wind direction of 30°, is shown in Fig. 6(a). The distance between two nearby wind turbines in axis y (Dist_y) is 7 

rotor diameters (D) and 5 rotor diameters (D) in axis x (Dist_x).  

In Fig. 6 (b), the wind speed of each wind turbine is shown. As expected, the wind speeds obtained by means of simulation 

are consistent with the above mentioned.  The average wind speed for the entire wind farm is 8 m/s, which is relatively high, 

although lower than full load, and therefore the thrust coefficient has not dropped significantly as at high wind speeds.  

                                                 (a)                                                                    (b) 

 
FIGURE 6. (a) Wake Decay for A 16 Wind Turbine Array (4x4) Spaced 7d (Dist_Y) And 5d (Dist_X) When The 

Prevailing Wind Direction Is 30°. (b) Wind Speeds of Each Turbine.  

The second wind farm scenario consists of  16 wind turbines laid, out in 4 rows with a spacing of about 5 rotor diameters (D) 

between and along rows (Dist_x and Dist_y). The incoming wind direction is coincident with the prevailing wind direction, 

that is, 0° (see Fig. 7(a)). 

                                               (a)                                                                (b)             

 

FIGURE 7. (a) Wake Decay For A 16 Wind Turbine Array (4x4) Spaced 5d (Dist_Y) And 5d (Dist_X) When The 

Prevailing Incoming Wind Direction Is 0°. (b) Wind Speeds of Each Turbine.  
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In this case, the rows 2, 3and 4 are affected by wakes. The wind turbines located in the second row (green WTs) are affected 

by a single wake, whereas, the turbines in the third and fourth row are affected by multiple wakes. 

For both scenarios (30° and 0°), the entrainment constant k is 0.04. As in the previous case, the wind speeds of each wind 

turbine are depicted in Fig. 7(b) and are consistent with the wind farm layout of Fig. 7(a). The average wind speed for the 

entire wind farm is 9.5 m/s. 

6.2 Comparison to previously published wind farm optimization cases 

In a way to verify the WFOAG performance, some simulations were done and the results were compared with other authors’ 

works [1, 2, 3, 4]. These works were chosen because they use the same parameters used by Mosetti et al. model as well as 

Jensen’s wake model [9] and probabilistic algorithms as optimization tool, guaranteeing control and reliability of results.  

Without loss of generality, we suppose the wind speed distribution in both cases satisfies the Weibull function. The shape 

parameter of the Weibull function is set to k = 2, which represents a typical wind condition for turbine operations.  

The scale parameter of the function is calculated as c = 13.54. The surface roughness of the wind farm is 𝑧0 = 0.3𝑚. The 

parameters of the wind turbine are shown in Table 2. 

TABLE 2  

CARACTÉRISTIQUES OF TURBINES 

Description Parameter value 

Hub height z 60 m 

Radius of the rotor rr  40 m 

Thrust coefficient Ct  0.88 

In order to estimate the optimal number of wind turbines and for comparative purposes we will take the following basic 

conditions: uniform wind direction and speed steady wind of 12 m / s.  

TABLE 3 

 WFOAG RESULTS FOR COMPARISON WITH PREVIOUS STUDIES 

Mosetti et al. 

Number of turbines 26 

Total power 12921 KW/ year 

objective function 0.0016197 

Efficiency 95.5% 

Grady et al.  

Number of turbines 30 

Total power 14764KW/ year 

objective function 0.0015436  

Efficiency 94.6% 

Emami  

Number of turbines 26 

Total power 12921KW/ year 

objective function - 

Efficiency 95.5% 

  

Marmidis 

Number of turbines 32 

Total power 13467 KW/ year 

objective function - 

Efficiency 80.9% 

Present results  

Number of turbines 29 

Total power 14664 KW/ year 

objective function 0.0014710 

Efficiency 95.4% 
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This case has been discussed in detail in [1, 2, 3] where different approaches were used. Choosing this case study was 

performed for comparison. In this case, turbines affect each other. This makes it difficult to place the turbines through the 

experience. To describe the placement of a wind farm, it is necessary to evaluate parameters: layout Efficiency (%) and 

electricity production (kWh).To calculate this parameter a code has been developed which considers the wake effect as the 

main influence on the decline in production of a wind farm. This code will be used as the objective function of the 

optimization algorithm, and will provide the necessary parameters for comparison and selection of the best layouts.   

The input parameters are the velocity of the not disturbed flow upwind turbine, the rotor diameter of wind turbines, the hub 

height, the terrain roughness and the power curve with values of the thrust coefficient and power turbine velocity for any 

wind within the operating range. This code considers possible interactions between wakes. A wind turbine can be influenced 

by more than one wake from upwind turbines, plus there is the possibility of overlap between wakes.  

Some simplifying assumptions were considered in the code developing. They are: all the turbines in the wind farm are equal, 

i.e. have the same height of the cube, the same rotor diameter, same number of blades and the same power curve, the ground 

location of the wind farm is perfectly flat, uniform roughness, the turbines are arranged in a matrix, a result for a single value 

of velocity and direction. 

The layouts proposed by these authors were simulated in WFOAG to obtain the results for comparison, making it as 

impartial as possible. Then a different wind farm configuration was inserted in the WFOAG (under the same conditions used 

by Mosetti et al.) to be optimized. The aim of this process was to verify the capacity of the WFOAG to achieve a layout 

performance near or higher than the proposed by the authors. The simulated layouts are illustrated in Table 3. 

VII. CONCLUSION 

The placement of wind turbines is an initial step in the wind farm design and forms the foundation for the efficient operation 

of the farm. At present, empirical schemes are commonly adopted. As the wind condition becomes complicated, systematical 

approaches such as genetic algorithms are needed to reach an optimal or suboptimal design. This paper further previous 

research on genetic algorithm placement by incorporating more appropriate models of wind speed distributions and turbine 

power curves. Simulation results indicate that the new genetic-algorithm scheme can improve wind farm performance, which 

expands more computation due to complicated models. It is of importance to study more realistic situations, for example, to 

use a more relevant wind turbines probably with pitch control systems, to use a cost model including cabling, to study 

relatively complex terrain layouts. 

REFERENCES 

[1] Mosetti G, Poloni C, Diviacco B. Optimization of wind turbine positioning in large wind farms by means of a geneticalgorithm. 

Journal of Wind Engineering and Industrial Aerodynamics. 1994; 51(1):105–16. 

[2] Grady SA, Hussaini MY, Abdullah MM. Placement of wind turbines using genetic algorithms. Renewable Energy. 2005; 30(2):259–

70. 

[3] Marmidis G, Lazarou S, Pyrgioti E. Optimal placement of wind turbines in a wind park using Monte Carlo simulation. Renewable 

Energy. 2008; 33(7):1455–60. 

[4] Emami A, Noghreh P. New approach on optimization in placement of wind turbines within wind farm by genetic algorithms. 

Renewable Energy. 2010; 35(7):1559–64. 

[5] Shakoor R, Hassan M Y, Raheem A, Rasheed N, Mohd Nasir MN, editors. Wind farm layout optimization by using definite point 

selection and genetic algorithm. 2014 IEEE International Conference on Power and Energy (PECon 2014); 2014; IEEE Digital 

Explore. 



International Journal of Engineering Research & Science (IJOER)                 ISSN: [2395-6992]             [Vol-4, Issue-12, December- 2018] 

Page | 18 

[6] Rathmann O, Frandsen S, Barthelmie R. Wake modelling for intermediate and large wind farms. In: Wind energy conference and 

exhibition; 2007. 

[7] Frandsen S, Barthelmie R, Pryor S, Rathmann O, Larsen S, Hjstrup J, et al. Analytical modelling of wind speed deficit in large 

offshore wind farms. Wind Energy; 2006. 

[8] Ainslie JF. Calculating the flowfield in the wake of wind turbines. Journal of Wind Engineering and Industrial Aerodynamics 

1988;27:213e24. 

[9] Jensen NO. A note on wind generator interaction; 1983. Technical Report RISØ-M-2411, Denmark. 

[10] Rthor P-E, Bechmann A, Sørensen NN, Frandsen ST, Mann J, Jørgensen HE, et al. A CFD model of the wake of an offshore wind 

farm: using a prescribed wake inflow. Journal of Physics: Conference Series 2007; 75: 012047. 

[11] Chompoo-inwai C, Leelajindakrairerk M, Banjongjit S, Fuang foo P, Lee W-J.Design optimization of wind power planning for a 

country with low-medium wind-speed profile. IEEE Transactions on Industry Applications 2008; 44(5):1341–7. 

[12] R. Dechter and I. Meiri.Experimental evaluation of preprocessing techniques in constraint satisfaction problems. In Proc.of the 11th 

IJCAI, pages 271-277, Detroit, MI, 1989. 

[13] S. F. Saramago, G. T. S. Oliveira, Estratégias de Evolução Diferencial Aplicadas a Problemas de Otimização Restritos, 15º POSMEC 

– Simpósio do Programa de Pós-Graduação em Engenharia Mecânica – UFU, 2005. 

[14] S.N. Sivanandam and S.N. Deepa, Introduction to Genetic Algorithms, New York:Springer, 2008. 


