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Abstract— The present work was deliberated to predict thermoelastic behavior of AA6070 alloy / ZrO, nanoparticle metal
matrix composites. ZrO, is used is used in composite cutting tools and abrasive wheels. The RVE models were used to
analyze thermo-elastic behavior. The stiffness of AA6070 alloy / ZrO, nanoparticle metal matrix composites decreased with
the increase of temperature. ZrO, nanoparticles had undergone thermal shock at 300°C. The fracture was noticed at the
interphase between AA6070 alloy and ZrO, nanopatrticles.
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l. INTRODUCTION

Metal matrix composites consisting aluminum alloy matrix and nanoparticulate reinforcements, also termed
‘nanocomposites’, have fascinated the attention of researchers because of the enormous guarantee they give as novel
structural materials. Nanocomposites, in broad, have been the subject of thorough investigation in recent years, and
considerable progress has been made in the processing and in understanding of their essential properties. By reinforcing an
aluminum alloy with nanoparticulates of stronger and stiffer material such as SiC [1-4], alumina [5, 6], alumina trihydrate
[7], aluminum nitride [8] or carbon [9, 10], it is feasible to manufacture a composite that conserves the light weight of the
aluminum alloy while achieving greater strength and stiffness.

Thermal decomposition kinetics and interaction of thermal energy between particulate and matrix are of the essence for
durability of nanocomposites for high temperature applications. Zirconium oxide (ZrO,) has elastic modulus of
approximately 250 GPa and CTE (coefficient of thermal expansion) of 12.2 um/m-°C. Because of high strength and fracture
toughness coupled with high hardness, zirconia is used in composite cutting tools and abrasive wheels. AA6070 alloy has
elastic modulus of 69 GPa, shear modulus of 26 GPa and CTE of 23.2 um/m-°C. AA 2024 alloy is used for motorbike or
bicycle frames and armored vehicles. AA6070 alloy is used in manufacturing pipelines and heavy duty welded structures.
For composites consisting of nanoparticles, the strengthening could be mainly attributed to the Orowan and the Hall-Petch
strengthening mechanisms [11]. The significance of the direct and indirect strengthening is dependent on both the
interparticle spacing of the reinforcement and the grain size of the matrix material. In recent years, it has been proven the use
of finite element method (FEM) coupled with a unit cell model of the nanocomposites for this purpose [12].

The present work was to explore the thermoelastic behavior of nanoparticulate ZrO,/AA6070 alloy matrix composites. Finite
element analysis (FEA) was executed to determine the local response of the material using representative volume element
(RVE) reinforced by a single particle contingent on hydrostatic and isothermal loading.

1. MATERIAL AND METHODS

The matrix material was AA6070 alloy. The reinforcement nanoparticulate was ZrO, of average size 100nm. The mechanical
properties of materials used in the current work are given in table 1. The volume fractions of ZrO, nanoparticles were 10%
and 20%.

In this research, a square RVE (Fig. 1) was prepared to infer the thermo-elastic performance AA6070/ZrO, nanocomposites.
The PLANE183 element was exploited in the matrix and the interphase regions in the RVE models. The interphase between
nanoparticle and matrix was discretized with CONTACT172 element [13]. Both uniform thermal and hydrostatic pressure
loads were activated concurrently on the RVE model.
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MECHANICAL PROPERTIES OF AA-IE-SG% i/lj,-ATRIX AND ZrO, NANOPARTICLES.
Property AAG6070 ZrO,
Density, g/cc 2.71 3.54
Elastic modulus, GPa 69.0 330
Ultimate tensile strength, MPa 145 711
Poisson’s ratio 0.33 0.32
CTE, pm/m-oC 23.2 12.2
Thermal Conductivity, W/m-K 171.0 2.7
Specific heat, J/kg-K 891 540

T°C

AABDTO alloy (matrix)

Interphase

T°C
F1G.1. THE RVE MODEL
Poisson's ratio can have positive or negative values of large magnitude in anisotropic materials. For orthotropic materials,
Poisson's ratio is bounded by the ratio of Young's moduli E as follows [14]:
[v12| < (Ex /Ey )1/2 Q)
The other definition of major Poisson’s ratio is as follows:
V12| = - gy /ex (2

In the present work, Poisson’s ratio v12 was computed to confirm the results.

1. RESULTS AND DISCUSSION

The finite element analysis (FEA) was conceded at 0°C to 300°C isothermal conditions. The hydrostatic pressure load was
applied on RVE model to explore micromechanics of thermo-elastic tensile behavior of AA6070/ZrO, nanoparticulate
composites. The volume fractions of ZrO, nanoparticles in the AA6070 matrix were 10% and 20%.

3.1 Micromechanics of thermo-elastic behavior

The dependence of thermo-elastic strains on temperature is showed in Fig. 2. The increase of temperature increased the
strains. This trend was same for the strains along x- and y-directions. The strains were higher in the composites having
10%ZrO, than those having 20%ZrO,. The maximum tensile strains had occurred in the direction of tensile loading as
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showed in Fig. 3(a) and Fig. 4(a). The maximum compressive strains had cropped up in the transverse direction of tensile
loading as showed in Fig. 3(b) and Fig. 4(b).

The stresses induced along x- and y-directions as a function of temperature are depicted in Fig. 5. They increased with the
increase of temperature. Figs. 6 and 7 show raster images of stresses induced in the composites having 10% and 20% ZrO,
nanoparticles, respectively. In the composites the maximum stress were occurred along the direction according to its type.
The maximum was induced either in the nanoparticle or in the interphase as observed from Fig. 6 and Fig. 7. The transfer of
stresses increased with the increase of temperature from the matrix to the nanoparticle as seen from the order of colors. It is
also observed that the interphase between the nanoparticle and matrix had experienced different local stress fields as
indicated by the spectrum of different colors bands across it.
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FIG. 2. INFLUENCE OF TEMPERATURE ON THERMOELASTIC STRAINS: (A) £&x AND (B) &y.

ANSYS|
185

12 2016
19:30:22

-o01687 - 0n1es3
015

“o01336

_001218

12 2016
19:30:36

_s84z-03
001101 .8,

AN 5‘!"@

JAﬂ 12 2016
3

ﬂHSYS

155

12 2016
19:23:54

ooesa sozaid
“o02183 -oozess)

00 ~00a:
~00372

-o02687
03

~004753

”,

;008877
-0040i7

[0usss

083!
.00s788

005338 _0062:
04858

ANSYY]

2 2016
6:3

7338
-00sals oo7ssy)

ANSYS|

R14.5)
12 2016

ANSYS|
185

12 2016
38

-oos:

00739 = 01109
008765 010315 .01ls65

18
“oos77a _oveess)

ANSYS)

1S

12 2016
119:39:10

004378 008777 007176 -00eE74 009873
07875

009273 010677

FIG 3. RASTER IMAGES OF STRAINS OF AA6070/10%Zro2 COMPOSITES: (A) & AND (B) &,.
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FIG. 4. RASTER IMAGES OF STRAINS OF AA6070/20%Zro2 COMPOSITES: (A) & AND (B) &,.
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FIG. 6. RASTER IMAGES OF STRESSES INDUCED IN AA6070/10% ZrO, COMPOSITES: (A) 6, AND (B) Gy
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FIG. 7. RASTER IMAGES OF STRESSES INDUCED IN AA6070/20% ZrO, COMPOSITES: (A) ox AND (B) oy.

The elastic moduli decreased with the increase of temperature as showed in Fig. 8. The elastic modulus was higher along x-
direction than that along y-direction. The elastic moduli in the composites having 20% ZrO, was higher than those of
composites having 10% ZrO,. This might be attributed to the stiffness of ZrO, nanoparticles. The ZrO, nanoparticles are very
stiffer to undergo deformation under tensile loading. This phenomenon is also confirmed with the variation of major
Poisson’s ration with the temperature (Fig. 9). Poisson's ratio is bounded by the ratio of Young's moduli E as mentioned in
Eq. (2).
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FIG. 9. INFLUENCE OF TEMPERATURE ON MAJOR POISSON’S RATIO

3.2 Fracture behavior

400

The shear and von Mises strains increased with increase of temperature as showed in Fig. 10. Neither ZrO, nanoparticle nor
interphase experienced the failure von Mises strain but the matrix AA6070 alloy as illustrated in Fig. 11(a) and Fig. 12(a).
The orientation of shear strain for the composites subjected to no isothermal (0°C) loading was 135° at the same time as it
was 45° for the temperatures from 100°C to 300°C as sighted in figure 11(b) and Fig. 12(b).
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FIG. 11. RASTER IMAGES OF STRAINS OF AA6070/10%ZrO, COMPOSITES: (A) VON MISES AND (B) SHEAR.
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FIG. 12. RASTER IMAGES OF STRAINS OF AA6070/20%ZrO, COMPOSITES: (A) VON MISES AND (B) SHEAR.
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Fig. 13(a) describes the von Mises stress induced in the composites. The von Mises stress increased with the increase of
temperature from 0°C to 300°C. The von Mises stress was higher in the composites having 10% ZrO, nanoparticles than that
in the composites consisting of 20% ZrO,. The same kind of trend was observed with the shear stress as illustrated in Fig.
13(b).
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FIG. 15. RASTER IMAGES OF SHEAR STRESS OF STRESS AA6070/ZrO, COMPOSITES: 10% ZrO, AND (B) 20%
Zr0O,

In the ZrO, nanoparticles, the von Mises stresses were higher than their tensile strength (711 MPa) at temperature 300°C.
This indicates the experience of thermal shock by the ZrO, nanoparticles at and above 300°C. Fortunately, the ZrO,
nanoparticles were not damaged because the interphase was sheared at all temperatures (figure 15).

V. CONCLUSION

The thermoelastic strains and stresses increased with the increase of temperature. The stiffness decreased with increase of
temperature for AA6070 alloy/ZrO, nanoparticulate metal matrix composites. ZrO, nanoparticles had experienced thermal
shock at 300°C. The fracture was observed at the interphase between AAG6070 alloy and ZrO, nanoparticles.
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