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Abstract— An isomorphic structure that converts the Lorenz equations, whose dynamic properties are usually described in 

terms of three independent factors, into a single control-parameter system, is put forward and analyzed. Such an 

isomorphism is shown to bring an intrinsic simplification that offers much better depictions of the Lorenz non-linear 

dynamics, while it allows for quicker and forthright inspection of the control-parameter domains, inside which well-defined 

periodic, both symmetric and asymmetric, as well as chaotic solutions occur.   
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I. INTRODUCTION 

After decades of intensive attention since their initial derivation in fluid turbulence [1], and their analogy with Laser Physics 

[2], which resulted in hundreds, most likely thousands of contributions, including entire books and book chapters [3, 4], the 

Lorenz equations still remain one of the challenging problems, from both the mathematical and the physical points of view. 

On the one hand, physicists have been mainly concerned with experimental demonstrations that would eventually display 

deterministic low-dimensional chaotic behavior, in fluid turbulence [5] as well as in coherent-light-matter interactions [6]. 

On the other hand, mathematicians have dedicated extensive efforts towards computer assisted proofs pertaining to the 

existence of the so called Lorenz attractor [7-10]. These equations, whose unstable dynamics is governed by three control 

parameters, exhibit a rich variety of solutions. Yet, it appears that, for historical reasons, the barycenter of attraction spins 

around narrow zones of the large control-parameter domains, be it in fluid turbulence or in the nonlinear laser-matter-

interaction issue. For instance, numerous investigations devoted to fluid dynamics mostly paid attention to the initial set of 

parameters that was put forward by Lorenz in his primary work, while laser physicists concentrated their efforts on effective 

constraints that typically yield periodic solutions.  

It is also worth recalling that despite the huge amount of published reports that dealt, and continue to deal with Lorenz 

dynamics [11-16]; in terms of their mathematical properties, no particular connection between the innumerable results has 

ever been put forward, leaving one lone justification to each exotic report, which always associates to the unpredictable 

nonlinear nature that connects the three interacting variables. As a consequence, the reported data seems to go along some 

quite irregular sequences similar to the chaotic nature of these nonlinear equations. The lone and overall evidence that could 

somehow be extracted when digging into the countless publications is the fact that, for some control parameters, the solutions 

exhibit periodic time traces, that deviate into some hierarchical cascading with the increase or decrease of some external 

excitation level, while for others, the solutions become chaotic, with erratic trajectories, that depict some sort of “strange 

attractors” when represented in the associated phase space. Probably, the search for any generic law in the solution-structures 

has been left aside because of the fact that the primary concern has, in most cases, been devoted to the demonstration of 

deterministic chaos in experimental systems, and the proof of existence of the Lorenz attractor, from a mathematical point of 

view [7-10]. To the best of our knowledge, no generic study has ever been undertaken to give a complete synopsis of the 

Lorenz equations, out of which one might precisely forecast its unstable solutions, given the values of its control parameters. 

The purpose of the present paper is threefold. Its primary objective is to demonstrate, for the first time, that the solutions of 

the Lorenz equations possess some repeatedly organized and systematic properties that allow for straightforward 

identification of its periodic windows, asymmetric and chaotic solutions, following some functional arrangements of its 

control-parameter values. Based on such endorsement, a second step will naturally end-result to transforming the Lorenz 

equations into a single control-parameter set that encloses the same abundant dynamical solutions, while preserving the full 

hierarchies and features of the three-control-parameter system. As a final outcome, a summarizing generic map is given to 

sum up the predicted solution-windows associated with the single control-parameter range values, with the expectation that 

such a noteworthy simplification will render its hidden properties much easier to apprehend. First, let us give a quick 

reminder of the Lorenz equations, along with the main features of their solutions. 
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II. OUTLINE OF THE LORENZ-EQUATIONS MAIN-CHARACTERISTICS 

It took twelve years before the original Lorenz equations were accredited a one to one correspondence with the semi-classical 

theory that describes the nonlinear light-matter interactions that take place inside a unidirectional ring laser cavity operating 

in single mode and homogenously broadened amplifying medium. When the three interacting variables are normalised to 

their steady-state values, a set of three non-linearly coupled differential equations is derived to take the following basic 

structure [2, 4, 6, 15, 16] 

 YXXt          (1a) 

XZYYt         (1b) 

 XYZZt  1         (1c) 

Where X(t) is the electric field, Y(t) the polarization and Z(t)  the population inversion of the amplifying medium. 

Three control parameters appear in the above system: The excitation parameter  , which quantifies the level of some 

external pumping mechanism that transforms an initially absorbing material into an amplifying medium, the electric field 

decay rate , and the population inversion relaxation rate. For simplifying purposes, both decay rates are scaled to a 

polarisation relaxation rate, which naturally disappears from the initial equations [For details, see Ref. 4]. 

In the bad cavity configuration (for which the cavity decay rate exceeds the sum of the population inversion and polarisation 

decay rates), and beyond some critical pumping level 
th2  (so-called second laser-threshold, or instability threshold), the 

above equations become unstable, revealing a rich variety of more or less complex solutions, in the form of regular and 

irregular, quite often chaotic, pulse trains. In Laser physics, Eqs (1) are quite frequently called the Lorenz-Haken equations, 

in tribute to Hermann Haken who first recognized the quite surprising analogy between the original Lorenz system, which 

was derived in the field of fluid-turbulence [1], and the single-mode laser equations [2].  

Straightforward linear stability analysis yields an expression for the instability threshold (the level of excitation at which the 

system bifurcates from stable to unstable behavior) in terms of the field and population inversion decay rates [1-4] 






1

)3(
2




 th        (2a) 

provided the bad cavity condition  

1         (2b) 

is satisfied. 

When the system is excited above such a critical value, the stable steady-state solutions of Eqs (1) transform into 

unpredictable, quite often complex trajectories. The detailed time-trace features closely depend on the exact values of all 

three control parameters  ,  , and . 

Let us give some quick survey of the main points that were focused on in hydrodynamics and in laser physics. The first set of 

control parameters that led Lorenz to introduce the notion of unpredictability in deterministic systems corresponds to  =10, 

=8/3, and  =28. For these parameters, the solution follows a non-periodic flow, describing the so called strange-attractor 

in phase space. In laser physics, a few systems have been revealed to satisfy the above mentioned bad cavity condition. In 

such systems, the population-inversion decay-rate is relatively small, and the corresponding solutions develop in the form 

of regular limit cycles, with increasing periodicity, when the excitation parameter  is scanned beyond its instability 

threshold value
th2 . Despite a huge amount of numerical investigations that have been reported to characterize the unstable 

solution of Eqs (1), these never seemed to follow any identifiable standards that would result in the figuring out of any 

control-parameter chart out of which discernible and predictable information could be extracted. The lone figures that one 
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may extract from any related literature is that for some control parameter values, the solution is chaotic, while for others it is 

regular. In between, a series of cascading and bifurcations routes with typical hierarchies of periodic solutions (period one, 

period two, period four, etc…) depending on how and which of the control parameters is increased or decreased. Indeed, with 

three control parameters, a complete solution diagram of Eqs (1) would require a three-dimensional representation that takes 

into account infinite scans of the parameters ,  and  . Needless to say, that is a hopeless task to undertake. However, the 

isomorphic structure of paragraph IV will render such a duty quite easy to carry out. Let us first identify some hidden 

properties of the Lorenz equations that have never been put forward before.  

III. SELF-ORGANIZED SOLUTION-RECURRENCE 

The orderly property that we report in this section is described here for the first time. It leaked out after huge amounts of 

numerical simulations and many years of often “dark-fumbling” in the issue of laser dynamics. These investigations have led 

us to identify the following property: the ratio of the two decay rates 






        (3) 

defines an isomorphic class of solutions. This means that for any given couple ( ,), a similar solution is obtained if the 

ratio  / remains unaffected. In other words, replacing   with   in Eqs (1), while scanning over  values, for a fixed 

 , yields the same and identical solution structure. 

A wealth of numerical experiments has led us to the same observations and conclusions, i.e. that a fixed   defines a 

representative class of solutions, for which the value of  plays no more role. Therefore, once   is fixed, whatever the 

variation of , the solution structure remains unaltered, as will hereafter be demonstrated with typical examples. 

In order to extract conclusive results, we scanned over the values of , up to the calculating limits of our lap-top computer, 

ie  =10
11

, and it always appeared that, in all cases, once   is fixed, the structure of the solution remains unaffected, no 

matter the selected value of . The following examples are randomly chosen among countless simulations.  

Figure 1 represents two identical period-one orbits, obtained with Eqs (1), for  =30 and far apart values of   and : 

a) =3, =0.1, b) =3.10
10

, =10
9
. These first illustrations undoubtedly exhibit a systematic recurrence of the solutions. 

Indeed, one may use any pair of ( ,) values that lay between those of case a) and case b), as long as these satisfy 

 /= =30, the structure of the period-one solution remains unchanged. 

         

FIG.1 ISOMORPHIC PERIOD-ONE SOLUTIONS OF EQS (1), OBTAINED AT THE INSTABILITY THRESHOLD, WITH EXTREME 

DECAY-RATE VALUES; A)  =3, =0.1, AND B)  =3.10
10

, =10
9
. 
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A second series of examples, represented in Fig. 2, concerns a period-two orbit in the (X, Z) phase-space, obtained with   = 

20 and a)  =3,  = 0.15, b)  =21,  = 1.05, and c)  =20000,  = 1000. Again, regardless of the   and  values, 

the orbit remains the same. Once more, the isomorphic nature of the solutions cannot be ignored. 

   

FIG.2 ISOMORPHIC PERIOD-TWO ORBITS, OBTAINED WITH THE SAME, / =20, RATIO, AND A)  =3, =0.15, B) 

 =21, =1.05, and c)  =20000, =1000. 

   

FIG.3 LORENZ ATTRACTOR, AS SIMULATED AT THE INSTABILITY THRESHOLD, WITH A FIXED RATIO /  = 3.75, AND A) 

 =3.75, =1, B)  =375, =100, AND C)  =3750, =1000. 

As a last example, let us focus on the Lorenz attractor, i.e. the one that corresponds to the original parameters used by Lorenz 

( =10, =8/3), and an instability threshold 
th2  = 24.74. For these parameters,  =3.75. Accordingly, an isomorphic 

solution is expected with the set ( =3.75, =1), yielding an instability threshold 
th2  = 16.61; a value which is one-third 

lower. The phase-space orbits obtained with  =3.75 and increasing   and values are represented in Fig. 3, for 

a) =3.75, =1, b)  =375, =100, and c) =3750, =1000. Indeed, for these chaotic solutions, one may be entitled to 

contest the evidence of any isomorphism between these three Lorenz attractors, as compared to the quite convincing 

examples of periodic solutions. However, since all three attractor follow an erratic path, all three conform to the 

unpredictable nature that signatures deterministic chaos! Therefore, in view of the remarkable similarities between the 

periodic examples, undoubtedly, we are entitled to consider that the series of solutions obtained with  =3.75 are all 

isomorphic to the original Lorenz attractor. 

Uncountable examples of such isomorphic solutions have been simulated with fixed values of  , while proportionally 

scanning over   and . We leave the reader free to choose any other set of parameters, and convince himself, of the 

recurring nature of the solutions once   is fixed. 

Now, let us proceed to the final step and transform Eqs (1) into an isomorphic single-control-parameter system.  
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IV. A SINGLE-CONTROL-PARAMETER SYSTEM 

First, let us note that among the class of isomorphic solutions associated to some fixed   value, there is a particular one 

which corresponds to  =  and = 1. For example, the same class of solutions is obtained with the following ( , ) 

sets: (3, 0.1), (6, 0.2), (9, 0.3)….. (30,1) , (60, 2) , (120, 4) ….etc, including the (30,1) set, for which  = =30 and = 1. 

The same analysis is applicable to any series of isomorphic solutions. As a consequence, fixing  equal to 1 while replacing 

  with  , in Eqs (1), reduces the set of control parameters from three to two, i.e. from ( , ,  ) to ( ,  ). Any 

solution obtained with the first set may be simulated, with an outright corresponding trajectory, with the second set of control 

parameters. 

Furthermore, our countless numerical experiments (some of which will be specified hereafter) indicate that any solution 

obtained with a given ( ,  ) set may be identically simulated at the instability threshold, with some other  ’ value. In 

other words, at the instability threshold, we retrieve all the wealth of regular and complex solutions that are described with 

Eqs (1), when any of the three control parameters is scanned over. Replacing the excitation parameter with its instability-

threshold expression 

2

)4(
2









 th        (4) 

does not yield any limitation or whatsoever in terms of the solution structures that are obtained directly with Eqs (1). Note 

that Eq. (4) straightforwardly derives from Eqs (2) and (3). 

According to these elements, Eqs (1) transform into 

 YXX tht )(2         (5a) 

XZYYt         (5b) 

 XYZZt  1        (5c) 

showing an exclusive dependence on the lone control-parameter .  Each value of     now defines a class of isomorphic 

solutions. As a consequence, at the instability threshold, exclusively related to  , we are left with a single control-parameter. 

The bad-cavity condition, under which instability sets in, now amounts to 2 . 

Indeed, for a sealed laser system, the material and cavity decay-rates  and  , respectively, remain fixed. Thus, in order to 

study the instability hierarchies that take place inside some bad-cavity configured self-pulsing laser, only one parameter, i.e. 

the excitation level  , remains controllable. However, although Eqs (5) exclusively describe the solution structures at the 

onset of instability, one may always add a quantifying factor, in order to normalize the excitation level with respect to the 

instability threshold, thus extending its dynamical response to any level of excitation. For such a purpose, the excitation level 

is parameterized according to 

th2          (6) 

transforming Eq. (5) into  

 YXX tht )(2        (7) 

while Eqs (5b) and (5c) remain unchanged. Scanning over   amounts to varying  . Therefore, the dynamic characteristics 

may be delimited in terms of   values :  =1 now defines the instability threshold. So that for  <1, the solutions of Eqs (5) 

are stable, while for  1 these are unstable. 
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It is worth insisting on the fact that the introduction of an additional factor   does not add nor subtract any particular 

solution to the structures that are characteristic of the instability threshold. Such a fact is quite easy to understand, since for 

any given set of ( , ) values, one may always find some matching  ’ value for which an isomorphic solution is obtained 

directly from Eqs (5). The following comparisons illustrate such a property. 

As a last convincing example of the isomorphic nature of the solutions of Eqs (1) with those of Eqs (5), which explicitly 

illustrates the idleness of the factor  in Eq. (7), with respect to the dynamic solution structures, let us focus on the period-

doubling window, described in [3]. The series of figures represented in pages 66-67 of the reference are the solutions of Eqs 

(1) that correspond to  =10, =8/3, and a)  =350 b)  =260, and c)  =216.2. Now, the same series of solutions is 

obtained with Eqs (7), (5b), and (5c) with  =3.75, and respectively a)  =14, b)  =7.62, and c)  =7.2. The corresponding 

orbits are shown in Fig 4. A series of identical trajectories are obtained, at the instability threshold (  =1) with varying  , 

which now represents the lone control parameter of the system. The orbits, shown in Fig. 5, were obtained with a)   = 2.1, 

b)   = 2.14, and c)  =2.141. A first glance comparison between Fig. 4 and Fig. 5 undoubtedly demonstrates a one-to-one 

equivalence between the three control-parameter equations (Eqs (1)) with the single-control parameter system (Eqs (5)). 

We leave to the curious reader the probing of the following example, which we did not include in order to avoid ineffective 

redundancy: a period-one and a period-two solutions may be simulated with  =30, and, respectively, an excitation level 

 =5, and  =7. Meanwhile, their isomorphic solutions may be obtained at the instability threshold ( =1), calling for Eqs 

(5), respectively with  =24.4 and  =23.2. 

   

FIG. 4 FIRST FEW ORBITS OF A PERIOD-DOUBLING CASCADE, OBTAINED WITH  =3.75 AND DECREASING EXCITATION 

PARAMETER; A)  =14, B)  =7.62, AND C)  =7.2. 

   

FIG. 5: ISOMORPHIC ORBITS TO THOSE OF FIG. 4, OBTAINED WITH THE SINGLE-CONTROL-PARAMETER EQS (5); A)  =2.1, 

B)  =2.14, AND C)  =2.147. 
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A straightforward consequence, which directly concludes the above presented examples, is that one and only one control 

parameter is needed to describe the full dynamic properties of the Lorenz-Haken equations. These properties are fully 

contained in the single-control-parameter set (5).  

The presence of a single control-parameter in the new set of equations allows for a one-dimensional graphical representation 

of the distinctive solutions that characterize the nonlinear dynamics. Such a one-dimensional depiction tremendously 

simplifies the intricate three-dimensional space, which is required to handle the full dynamic properties of Eqs (1).  

Such a graph, drawn in Fig. 6, is divided into three main parts, for the purpose of more clarity. It represents a summary of all 

possible dynamic solutions of Eqs (5) as a function of the lone control parameter . 

 

 

 

FIG. 6: COMPLETE DIAGRAMS OF THE SOLUTION-STRUCTURES, ILLUSTRATED WITH A th2 -VERSUS-   CURVE. THE 

REPRESENTATION DIVIDES ITSELF INTO THREE MAIN ZONES; A) LARGE CHAOTIC REGION, EXTENDING FROM  =2.21 to 

 =16.8, b) SERIES OF SYMMETRIC, ASYMMETRIC AND CHAOTIC WINDOWS THAT BECOME LARGER WITH INCREASING  , 

BEFORE ENDING IN SYMMETRIC PERIOD-ONE SOLUTION, FOR  >28.3, c) SMALL REGION   = [2 - 2.21] WITH DISTINCT 

WINDOWS, AS INDICATED IN THE GRAPH. NOTE THE LOGARITHMIC SCALE OF THE th2  AXIS, IMPOSED BY THE FACT THAT 

FOR SMALL 


 VALUES, th2  EXHIBITS LARGE VARIATIONS. 
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A functional summary of the non-linear dynamics, which is rooted in the Lorenz-Haken equations, plainly emerge from the 

charts of Fig. 6. We first note a large window of persisting chaotic solutions that extends from  =2.21 to  =16.8, and 

indeed includes the Lorenz attractor, as indicated on the graph. Such a large window, represented in Fig. 6a, clarifies the fact 

that the Lorenz chaotic attractor is referred to as robust, for it survives any small perturbation inflicted to the coefficients 

appearing in the Eqs (1). We also notice that chaotic solutions remain robust even under strong   variations, as long as these 

variations do not step out the chaotic window. Figure 6b indicates that for  >28.3, a symmetric period-one solution is the 

rule, while the range [16.8, 28.3] contains a series of more or less small windows of Symmetric (Sn) and Asymmetric (ASn) 

high-order periodic as well as chaotic solutions. Figure 6c magnifies an interesting, yet very narrow region, merely extending 

from   = 2.00 to   = 2.21, which also shows distinctive windows of chaotic and asymmetric solutions, along with 

relatively larger gaps of symmetric (S1) and asymmetric (AS1) period-one solutions, as clearly indicated in the graph. Note 

the logarithmic scale of the 
th2  axis imposed by the very high 

th2  levels associated with small   variations. 

Let us note that in practical laser systems,   is the ratio between the cavity and population inversion decay- rates. These two 

parameters are usually unconnected to one another, yet the graphical representations of Figs 6 may be of great relevance in 

the design of self-pulsing lasers with predictable yet unsteady outputs, for instance. As a typical example, suppose a given 

amplifying medium is characterized by a =0.5 value, and that we want to observe a chaotic intensity output at the onset of 

instability. Such a requirement imposes mirror-reflectivity that must comprise cavity decay-rates in the range 

4.8105.1  , along with the bad cavity condition 5.1 , in order to ensure chaotic trajectories. If, on the contrary, 

the aim is to prevent chaos, at the onset of instability, the chosen values must lay outside this range. One may indeed extend 

such an example to any other experimental situation.  

It is also expected, from the charts of Figs 6, that our findings be helpful in the field of fluid-turbulence, particularly for 

quicker set-ups of didactic experiments. 

V. CONCLUSION 

Leaning on the extraction of, so far unidentified, recurrent-properties of the Lorenz equations, we have constructed and 

analysed an isomorphic system which carries one single control-parameter only. Such an isomorphic system has been 

demonstrated to contain the full nonlinear dynamics of the original set, whose unstable solutions are governed by three 

independent, so far assumed to be unconnected, parameters. Functional graphical-representations, with respect to this lone 

control-parameter, have been constructed. Such graphs were shown to depict the complete hierarchy of typical windows, 

each bearing specific solutions. It is expected that this isomorphic system will bring some additional insights to non-linear 

dynamics studies, both from analytical and experimental points of view. 
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