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Abstract— Cancer is a great threat to the health of all mankind, and cancer monotherapy has been characterized by 

drawbacks such as toxicity and drug resistance. With the development of network pharmacology, multi-targeted drug 

combinations have become an ideal choice for cancer treatment. The dosage of combination drugs is usually lower than that 

of monotherapies, which has the advantages of improving efficacy, reducing toxicity, and delaying the development of drug 

resistance. In order to obtain better prediction results, this paper proposes a method for constructing drug potential features 

based on graph embedding model to predict anticancer drug combinations, establishes a control group to validate our method, 

and selects four performance metrics to measure the prediction performance of the model. The results show that the prediction 

results obtained from the drug potential features are better than the drug features. The drug potential features we designed 

can be used as one of the optional features for predicting drug combinations. 
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I. INTRODUCTION 

Chemotherapy is a commonly used treatment for cancer, which often has many side effects, such as drug resistance and toxicity. 

With the development of modern medicine, drug combinations have become an ideal method for cancer treatment. By 

combining two or more anticancer drugs, drug toxicity can be reduced, drug resistance can be delayed, and efficacy can be 

improved. Therefore, finding synergistic combinations of drugs for specific cancer types is important to improve the efficacy 

of anticancer therapy[1-3]. 

Methods such as machine learning models offer the possibility to explore the combination space effectively. Machine learning 

models can quickly adapt to the ever-changing task of anticancer drug combination prediction and continuously optimize the 

prediction results. For example, by using machine learning models such as support vector machines, random forests, and neural 

networks, synergistic effects between different drugs can be effectively predicted[2, 4, 5]. 

In recent years, various prediction methods for anticancer drug combinations have been developed rapidly, e.g., Li et al 

[6]proposed a novel network propagation method based on gene-gene networks and drug-target information to simulate 

molecular signatures after treatment. By comparing the models of individual features, it was found that single-drug treatment 

data were better predictors of drug synergism than simulated molecular profiles. Janizek et al[7] predicted drug synergism 

using the physicochemical properties of the drug and the gene expression level of the cell line based on the XGBoost, and the 

results showed that 83 out of the 100 features with the highest level of evaluation were drug-based, which suggests that in the 

importance of drug features is higher than that of cell line features in the experiments for predicting drug combinations. 

Recently, Wang et al[8] proposed a new deep learning prediction model, PRODeepSyn. The model utilizes graph convolutional 

neural networks to integrate protein-protein interaction networks (PPIs) and histological data to construct low-dimensional 

embeddings of cell lines, and then constructs feed-forward neural networks with a batch normalization mechanism to compute 

drug synergy scores. In addition, Hu et al[9] understood the mechanism of drug synergism from the perspective of chemical-

gene-tissue interactions and proposed a DTSyn model based on the mechanism of multiple attention to identify new drug 
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combinations, and they designed a fine-grained transformer encoder to capture chemical substructure-gene and gene-gene 

associations as well as a coarse-grained transformer encoder to extract chemical-chemical and chemical-cell lineage 

interactions, and finally designed a multilayer perceptron (MLP) to predict new drug combinations by connecting the outputs 

of the two transformer encoders in series as inputs to the MLP. 

By summarizing the previous research, this paper understands that drug features are more important than cell line features in 

the experiments of predicting drug combinations, but through the research of the above scholars, there are few innovative 

studies on drug features, this paper constructs a set of potential features of drugs by using the graph embedding model, and 

puts forward a new method of predicting synergistic effects of anticancer drugs based on the constructing of potential features 

of drugs by the graph embedding model. 

II. FEATURE ENGINEERING 

2.1 Data set: 

NCI-ALMANAC(National Cancer Institute - Analysis of Large-Scale Molecular Cancer Pharmacogenomic Data) is a publicly 

available database developed by the National Cancer Institute (NCI) to improve cancer therapeutic outcomes by identifying 

effective drug combinations and predicting patient response[10]. NCI-ALMANAC contains data on more than 60 cancer cell 

lines and more than 100 drugs, including FDA-approved drugs and experimental compounds. In this paper, we use the NCI-

ALMANAC dataset as a source of anticancer drug synergy prediction data. In NCI-ALMANAC, the combinatorial effects of 

drugs are quantified by a method called ComboScore (a modified version of the Bliss independence model). The theoretical 

expectation of the effect when the effect is additive is calculated from the entire dose-response matrix considering the effects 

achieved by the combination of drug combinations, cell lineage metagenomes, and gains (or losses). Positive values of the 

ComboScore indicate that the drug combinations are synergistic, whereas negative values indicate that the drug combinations 

are not synergistic (those with purely additive effects obtain a ComboScore value of zero). In this paper, only drugs possessing 

at least one target gene were considered (68 drugs), and 59 cancer cell lines were selected through screening, with a total of 

130,182 samples for model training and prediction. All NCI-60 cell line characteristics (expression, mutation, CNV, etc.) were 

downloaded from CellMinerCDB. Drug target information was obtained from DrugBank, and drug molecular properties were 

calculated using the RDKit package in Python. 

2.2 Feature selection: 

Gene expression profiling plays an important role in the prediction of anticancer drug combinations, and gene expression 

profiling can help reveal the mechanism of drug action on tumor cells. By analyzing the changes in gene expression profiles, 

the regulatory effects of certain anticancer drug combinations on specific signaling pathways, genes, or proteins can be 

understood, providing clues for understanding drug action. Referring to the studies of Janizek, RemziCelebi, and Preuer, et al 

[7, 11, 12], this paper decides to use the gene expression profiles as the cell lineage characteristics. 

Morgan molecular fingerprints can be used to compare the similarities and correlations between different compounds, and by 

comparing the Morgan molecular fingerprints of anticancer drug molecules with those of other compounds, it is possible to 

predict possible interactions, including synergism, antagonism, etc., between them. Drug target information helps to better 

understand drug-target interactions. Monotherapy information may play an important role in anticancer drug combination 

prediction[6], and drug features may be more important than cell line features in prediction[7], In summary, in this paper, 

Morgan molecular fingerprints, drug target information, and monotherapy information are selected as drug features. In this 

paper, the selected drug features are utilized for comparison experiments with the designed drug potential features. 

2.3 Machine learning and deep learning models: 

2.3.1 CatBoost: 

CatBoost is a gradient boosting tree framework with fewer parameters, support for categorical variables, and high accuracy, 

implemented as an oblivious trees-based learner. CatBoost uses ranked boosting to counteract noisy points in the training set, 

thus avoiding biased gradient estimation, and thus solving the prediction bias problem. CatBoost can match any state-of-the-

art machine learning algorithm in terms of performance. rivals any state-of-the-art machine learning algorithm in that it reduces 
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the need for much hyper-parameter tuning, reduces the chance of overfitting, and makes the model more generalizable. In 

addition, CatBoost can handle categorical and numerical features and supports customized loss functions. 

2.3.2 Deep Neural Network: 

Feedforward Neural Network (FNN), also known as Multilayer Perceptron (MLP). It consists of multiple neurons and these 

neurons are arranged in a hierarchical structure. The basic structure of a feed forward neural network consists of an input layer, 

a hidden layer and an output layer. The input layer receives external input data, the hidden layer processes the data and extracts 

features, and the output layer performs classification or regression prediction based on the results of the hidden layer. 

2.3.3 XGBoost: 

XGBoost (eXtreme Gradient Boosting) is a machine learning algorithm based on gradient boosting decision trees. The core 

idea of XGBoost is to iteratively train weak classifiers (usually decision trees) and combine them into a powerful model. It 

employs gradient boosting to effectively optimize the objective function. Specifically, XGBoost improves the model's 

predictions incrementally by minimizing the negative gradient of the loss function. XGBoost performs well in all kinds of 

machine learning tasks, including classification, regression, and sorting. 

2.3.4 Logistic Regression: 

Logistic Regression is a statistical learning method for classification problems. It is a generalized linear model that makes 

classification decisions by mapping the output of a linear regression model to a probability value and using a logistic function. 

Logistic Sti regression assumes that there is a linear relationship between the dependent and independent variables and uses a 

logistic function (also known as a sigmoid function) to map the outcome of the linear combination to a probability between [0, 

1], the sigmoid function formula is shown below: 

𝑃(𝑦 = 1|𝑥) =
1

1+𝑒−𝑧            (1) 

where 𝑃(𝑦 = 1|𝑥) denotes the probability that the dependent variable y takes the value 1 when the independent variable x is 

given, and z denotes the outcome of the linear combination. The training process of logistic Steele regression is to solve the 

parameters of the model by maximum likelihood estimation. Logistic Steele regression is widely used in practical applications, 

especially for binary classification problems, and is often used as a benchmark comparison for other machine learning 

algorithms. 

III. CONSTRUCTION OF POTENTIAL DRUG FEATURES 

In this paper, graph embedding model is utilized to construct drug based potential features. Graph embedding model is a 

technique for mapping nodes in a graph to a low-dimensional vector space, also known as graph representation learning. It 

converts high-dimensional graph data into a low-dimensional continuous vector representation by learning the relationships 

and features between nodes while preserving the original graph structure information. 

Here, this paper proposes a network on drug-drug interaction. In this network, drugs are nodes and drug-drug interactions are 

edges. Considering that there are two kinds of drug-drug interactions, synergistic or antagonistic, a set of signed directed graphs 

is constructed, where "+" indicates that there is a synergistic interaction between two drugs and "-" idicates the existence of 

antagonism between two drugs. However, the effect of anticancer combination drugs can vary in different cell lines. This is 

because different cell lines have different genetic backgrounds, gene expression patterns, metabolic characteristics, etc., and 

thus the sensitivity and responsiveness to drugs will be different. Therefore, when constructing the drug-drug interaction 

network in this paper, cell lines need to be included in the consideration of the network. 

In this paper the drug network contains three kinds of relationships, synergistic, antagonistic and unconnected edges, where 

synergistic represents a positive relationship and antagonistic represents a negative relationship. Referring to the study of Xu 

et al[13], for a given node pair (u, v), this paper calculates the inner product of 𝑈𝑢
𝑜𝑢𝑡(positive outward vector) and 𝑈𝑣

𝑖𝑛 (positive 

received vector) and calls the result positive feedback 𝐹𝑢𝑣
+ , and calculates the inner product of 𝑊𝑢

𝑜𝑢𝑡 (negative outward vector) 

and 𝑊𝑣
𝑖𝑛 (negative received vector) and calls the result negative feedback 𝐹𝑢𝑣

− . Next, this paper quantifies the effects of positive 

and negative feedback on the drug relationship with distributions denoted as 𝑓𝑎(𝑈𝑢
𝑜𝑢𝑡𝑈𝑣

𝑖𝑛)and 𝑓𝑎(𝑊𝑢
𝑜𝑢𝑡𝑊𝑣

𝑖𝑛), where: 
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𝑓𝑎(𝑥) =
𝑝0𝑒𝑥

1+𝑝0(𝑒𝑥−1)
           (2) 

𝑓𝑎(𝑥) is the activation function and 𝑝0denotes the effect of no feedback. Next this paper defines the quantization of synergy, 

antagonism and zero as 𝐹𝑢𝑣
+ (1 − 𝐹𝑢𝑣

− ), (1 − 𝐹𝑢𝑣
+ )𝐹𝑢𝑣

−  and (1 − 𝐹𝑢𝑣
+ )(1 − 𝐹𝑢𝑣

− ),respectively. The node information in this paper 

is represented by four vectors, 𝑈𝑢
𝑜𝑢𝑡 , 𝑈𝑣

𝑖𝑛 , 𝑊𝑢
𝑜𝑢𝑡  and 𝑊𝑣

𝑖𝑛 , and the relationship from node u to v may contain synergism, 

antagonism and zero, which can be expressed as 𝑓𝑎(𝑈𝑢
𝑜𝑢𝑡𝑈𝑣

𝑖𝑛) (1 − 𝑓𝑎(𝑊𝑢
𝑜𝑢𝑡𝑊𝑣

𝑖𝑛)),(1 − 𝑓𝑎(𝑈𝑢
𝑜𝑢𝑡𝑈𝑣

𝑖𝑛)) 𝑓𝑎(𝑊𝑢
𝑜𝑢𝑡𝑊𝑣

𝑖𝑛) and 

(1 − 𝑓𝑎(𝑈𝑢
𝑜𝑢𝑡𝑈𝑣

𝑖𝑛)) (1 − 𝑓𝑎(𝑊𝑢
𝑜𝑢𝑡𝑊𝑣

𝑖𝑛)). 

In this paper, the negative log-likelihood loss function is chosen as the objective function, Negative Log-Likelihood Loss 

Function is a common loss function used in classification models, especially in logistic regression models are often used, 

Negative Log-Likelihood Loss Function has a lot of advantages in classification models. In order to relate the four vectors and 

the three drug relationships, the objective function is defined in this paper as the following equation: 

𝐿 = − ∑ log(𝐹𝑢𝑣
+ (1 − 𝐹𝑢𝑣

− ))(𝑢,𝑣)∈𝐸𝑝 − ∑ log((1 − 𝐹𝑢𝑣
+ )𝐹𝑢𝑣

− )(𝑢,𝑣)∈𝐸𝑛 − ∑ log((1 − 𝐹𝑢𝑣
+ )(1 − 𝐹𝑢𝑣

− ))(𝑢,𝑣)∈𝐸𝑛𝑜𝑛   (3) 

Where 𝐸𝑝 denotes the set of positively connected edges, 𝐸𝑛 denotes the set of negatively connected edges, and 𝐸𝑛𝑜𝑛 denotes 

the set of node pairs with no connected edges. 

In order to minimize the objective function, this paper chooses gradient descent as the optimization function, which is a 

commonly used optimization algorithm to minimize the loss function and find the optimal parameters. The basic idea of 

gradient descent is to gradually reduce the value of the loss function by iteratively updating the parameters. Equation 3 consists 

of three components three components, the distribution for the synergistic, antagonistic and null relationships. In this paper, 

we use gradient descent to update the three vectors of one node in each iteration while fixing the vectors of all other nodes, so 

the problem becomes a convex optimization problem. The specific formulation is as follows: 

𝐿(𝑢) = − ∑ log(𝐹𝑢𝑣
+ (1 − 𝐹𝑢𝑣

− ))𝑣∈𝑁𝑜𝑢𝑡
𝑝 (𝑢) − ∑ log(𝐹𝑢𝑣

+ (1 − 𝐹𝑢𝑣
− ))𝑣∈𝑁

𝑖𝑛
𝑝 (𝑢) − ∑ log((1 − 𝐹𝑢𝑣

+ )𝐹𝑢𝑣
− )𝑣∈𝑁𝑜𝑢𝑡

𝑛 (𝑢) −

∑ log((1 − 𝐹𝑢𝑣
+ )𝐹𝑢𝑣

− )𝑣∈𝑁𝑖𝑛
𝑛 (𝑢) − ∑ log((1 − 𝐹𝑢𝑣

+ )(1 − 𝐹𝑢𝑣
− ))𝑣∈𝑁𝑜𝑢𝑡

𝑛𝑜𝑛(𝑢) − ∑ log((1 − 𝐹𝑢𝑣
+ )(1 − 𝐹𝑢𝑣

− ))𝑣∈𝑁𝑖𝑛
𝑛𝑜𝑛(𝑢)   (4) 

Where 𝑁𝑜𝑢𝑡
𝑝 (𝑢),𝑁𝑜𝑢𝑡

𝑛 (𝑢),𝑁𝑜𝑢𝑡
𝑛𝑜𝑛(𝑢) denotes the set of three types of nodes with synergistic, antagonistic and zero relationships 

that node u outputs to node v. 𝑁𝑖𝑛
𝑝 (𝑢),𝑁𝑖𝑛

𝑛 (𝑢),𝑁𝑖𝑛
𝑛𝑜𝑛(𝑢) denotes the set of three types of nodes with synergistic, antagonistic 

and zero relationships that node v inputs to u. 

The dataset in this paper contains a total of 59 cell lines, which need to be divided into 59 copies, with each cell line 

corresponding to one copy of the dataset, which eliminates the interference of cell lines on the drug-drug interaction network. 

Next, the drug-drug interaction network needs to be established for each of these 59 copies of data. In this paper, the dimension 

of the potential features is set to be 16 dimensions, so the 16-dimensional potential features of each drug in the 59 cell lines are 

obtained. Since the data contained in these potential features are abstract and topological information of the network structure, 

it is difficult to capture the significance represented by each column, so this paper decided to merge the potential features of 

each drug in these 59 cell lines. Eventually, the dimension of the potential features for each drug is 944 dimensions, which is 

a 1 × 944 vector. 

IV. PREDICTION RESULTS AND ANALYSIS 

4.1 Experimental setup 

In order to make the model generalizable to unseen datasets, this paper uses Stratified k-fold cross-validation to test the model. 

The advantage of stratified k-fold cross-validation is that it can better handle unbalanced datasets and ensure that the samples 

of each category are adequately represented during training and testing. This helps to reduce bias problems due to category 

imbalance and provides a more reliable assessment of model performance. Through stratified 5-fold cross-validation, this paper 

also adjusts the parameters of each model to obtain the optimal model. 

Drug synergy prediction can be classified into two categories: regression task and classification task. In this paper, synergy 

prediction is considered as a classification task. Therefore, this paper chooses to binarize the synergy score, i.e., synergy is 1 
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and antagonism is 0. In this paper, the prediction thresholds of the models are optimized through hierarchical 5-fold cross 

validation to achieve the optimal equilibrium, and the final threshold is set to 10. 

4.2 Comparison of predictive performance 

In this paper, four performance metrics are used to measure the prediction performance of the model, which are the area under 

the receiver operating characteristic curve (ROC AUC), the area under the precision recall curve (PR AUC), the mean square 

error (MSE) and the Pearson correlation coefficient (PCC). The above performance metrics were calculated by five hierarchical 

cross-folding, and the average of the five results was taken as the final performance evaluation result. The predicted results are 

as follows: 

TABLE 1 

PERFORMANCE RESULTS OF FOUR MODELS (CELL LINE CHARACTERISTICS AND DRUG CHARACTERISTICS) 

Model ROC AUC PR AUC MSE Pearson 

CatBoost 0.9217 0.4651 0.1365 0.5335 

Deep Neural Networks 0.9118 0.3876 0.1441 0.4761 

XGBoost 0.8856 0.3601 0.1439 0.4552 

Logistic Regression 0.8505 0.1945 0.1534 0.3101 

 

TABLE 2 

PERFORMANCE RESULTS OF FOUR MODELS (CELL LINE FEATURES AND DRUG POTENTIAL FEATURES) 

Model ROC AUC PR AUC MSE Pearson 

CatBoost 0.9258 0.4937 0.1348 0.5497 

Deep Neural Networks 0.9178 0.4065 0.1459 0.4760 

XGBoost 0.8943 0.3690 0.1430 0.4635 

Logistic Regression 0.8657 0.2460 0.1507 0.3583 

 

 

FIGURE 1: ROC curves of four models (cell line characteristics and drug characteristics) 
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FIGURE 2: ROC curves of four models (cell line characteristics and drug potential characteristics) 

Since Morgan molecular fingerprints, drug target information and monotherapy information have been outstanding in drug 

combination prediction, this paper firstly selects these three features together with cell line gene expression profiles as input 

features, and then utilizes popular machine learning algorithms for prediction respectively. Using different models for 

prediction and comparing the performance indexes of the above evaluated models, CatBoost, Deep Neural Networks, XGBoost 

and Logistic Regression algorithms finally show good prediction effects. The specific indexes are shown in Table 1, and the 

ROC curve is shown in Figure 1. Afterwards, in order to reflect the role of potential features of drugs in predicting effective 

drug combinations, this paper utilizes the potential features of drugs designed by the graph embedding model to replace the 

drug features to join, keep the parameters unchanged, and then carry out the same operation as above, and then the obtained 

indicators are shown in Table 2, and the ROC curves are shown in Fig. 2. 

4.3 Result analysis 

From the comparison of Tables 1 and 2, it can be seen that CatBoost and Deep Neural Networks have the best prediction effect, 

while XGBoost and Logistic Regression have poorer prediction effect when using cell line features and drug features for 

prediction. After using cell line features and drug potential features for prediction, the performance of the quasi-four models 

are improved to different degrees. In the case of ROC AUC, XGBoost and Logistic Regression improved more significantly, 

by 0.0087 and 0.0179, respectively. In the PR AUC, CatBoost and Logistic Regression are improved by 0.0283 and 0.0515 

respectively, and in the MSE, CatBoost and Logistic Regression are reduced by 0.0087 and 0.0179 respectively. In the item of 

PCC, CatBoost and Logistic Regression improved more obviously. In summary, the drug potential features proposed in this 

paper are significantly better than the drug features and can be used as one of the optional features for predicting drug 

combinations. 

V. CONCLUSION 

The use of combinatorial drugs can undoubtedly help people to treat complex diseases, while the use of computer technology, 

histology and network technology helps people to discover new drug combinations and is therefore a proven means. The 

method greatly reduces the scope of the search and is safer and more reliable in a small area before experimental tests are 

carried out. Discovering new reliable features is also one of the keys to accurate prediction, and the drug potential features 

designed in this paper play an important role in improving the prediction accuracy, and among the four models, the contribution 

of drug potential features to the prediction accuracy is significantly higher than that of drug features. The Morgan molecular 

fingerprints, drug target information and monotherapy information used in this paper are basically classical and have been used 

by previous authors, so their credibility can be guaranteed. 

The principle of constructing drug potential features in this paper lies in the need for a large amount of drug synergy 

information, and the accuracy can be further increased if enough drug synergy information is available. In addition, the drug 
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potential features constructed in this paper can also be utilized in the migration learning method, using a large number of drug-

drug interactions in the data set, to extract the potential information to construct drug potential features, which can be applied 

to other prediction tasks that lack cell line information or drug feature information, which is also one of the future research 

directions. Finally, the models used in this paper are supervised models, and it is believed that the prediction accuracy will be 

further improved if semi-supervised models or other more advanced algorithms are utilized. 
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