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Abstract— High accuracy and stability are generally indispensable in industrial control applications of servomechanism. 

Many unavoidable factors negatively influence the control performance, such as modeling uncertainties. Therefore, this 

investigation is concerned with the disturbance compensation for the reduction of modeling uncertainty and proposes an 

adaptive open-loop observer in which the output of the actual plant can asymptotically converge to the output of the nominal 

plant by using the adaptive gain adjustment. The gain is bounded through the projection-type adaptive law. Furthermore, the 

backstepping algorithm enhances the robustness for the disturbance attenuation. Additionally, the velocity control of a motor 

is simulated to confirm the performance of the proposed approach, and the experiments of trajectory tracking on a two-link 

rotor manipulator is used to verify the ability of the proposed approach. 
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I. INTRODUCTION 

High accuracy and stability are generally indispensable in industrial control applications of servomechanism. Many 

unavoidable factors negatively influence the control performance in real-word applications, such as the modeling uncertainties 

and the external disturbance. Therefore, a disturbance compensation scheme is stipulated need to reduce ad-verse effects 

resulting from modeling uncertainty and external disturbance. 

The disturbance observer (DOB) is a popular control scheme for disturbance estimation and attenuation in actual applications 

[1-8]. The conventional DOB design requires an in-verse nominal model and a low pass filter, and the disturbance can be 

accurately estimated within the bandwidth of the low pass filter [1, 2]. Furthermore, the Luenberger observer can be considered 

as a closed-loop observer structure, whose gain can be adopted to estimate the disturbance [3-5]. Additionally, the extended 

state observer regards the lumped disturbance as an augmented state and utilizes the Luenberger observer structure to estimate 

the lumped disturbance [6-8]. 

Even if a DOB-based controller provides excellent disturbance attenuation, the disturbance rejection performance of the DOB 

is constrained by the bandwidth of the low pass filter. Moreover, since Luenberger observer would feed the estimated 

disturbance back to the nominal plant, this method may reduce the accuracy of disturbance estimation. Significantly, the open 

loop disturbance observer avoids this problem, but has another inherent drawback, its performance depends strongly on the 

accuracy of system modeling. To solve this problem, this investigation develops an adaptive algorithm to improve the 

performance affected by the modeling uncertainty, the adaptive control is a popular approach for the modeling uncertainties in 

control application [9-11]. The proposed algorithm aims to ensure that the output of the actual plant asymptotically con-verges 

to the output of the nominal plant by using the adaptive gain adjustment, and the gain is bounded through the projection type 

adaptive law. Additionally, the backstepping algorithm is adopted to enhance robustness in the disturbance compensation. The 

study makes three contributions: (1) adaptive gain adjustment of the disturbance compensation is proposed to solve the 

modeling inaccuracy, and the stability and convergence have proved by Lyapunov theorem, and (2) the proposed adaptive open 

loop observer can effectively suppress the external disturbance in the absence of modeling uncertainties; (3) the backstepping 

algorithm is adopted to enhance the performance of the proposed approach. Additionally, the velocity control of a motor is 

used as a simulation example to describe the performance comparisons of the conventional DOB and the proposed approach, 
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and the experiment of the trajectory tracking task has been conducted to verify the abilities of the proposed approach. 

Simulation and experimental results show that the proposed approach exhibits satisfactory performance. 

The rest of the paper is organized as follows. A brief review of the open-loop observer structure for disturbance compensation 

is provided in Section 2. The proposed adaptive robust design for open-loop observer are descripted in Section3. The simulation 

and experimental results are introduced in Section 4. Section 5 gives the conclusions. 

II. BRIEF INTRODUCTION OF THE OPEN-LOOP OBSERVER FOR DISTURBANCE COMPENSATION 

The disturbance compensation structure can be demonstrated in a physical system described by using an nth-order LTI state 

space equation as 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵(𝑢(𝑡) + 𝑢𝑑 − 𝑢̂𝑑)          

𝑦(𝑡) = 𝐶𝑥(𝑡)                                                                                                                                (1) 

where 𝑥 ∈ 𝑅𝑛 denotes the state vector; 𝑦 ∈ 𝑅𝑞×1 denotes the output vector; 𝑢 ∈ 𝑅𝑝×1 denotes the control input vector; 𝑢𝑑 ∈

𝑅𝑝×1 denotes the unknown disturbance vector connected with the physical plant; 𝑢̂𝑑 ∈ 𝑅𝑝×1 denotes estimated disturbance; 

𝐴 ∈ 𝑅𝑛×𝑛 denotes the state matrix; 𝐵 ∈ 𝑅𝑛×𝑝 denotes the input matrix, and 𝐶 ∈ 𝑅𝑞×𝑛 denotes the output matrix. 

The nominal plant of Eq. (1) can be expressed as 

𝑥̇𝑟(𝑡) = 𝐴𝑟𝑥𝑟(𝑡) + 𝐵𝑟𝑢(𝑡)           

𝑦𝑟(𝑡) = 𝐶𝑥𝑟(𝑡)                                                                                                                          (2) 

where 𝑥𝑟 ∈ 𝑅𝑛 is the nominal state vector; 𝑦𝑟 ∈ 𝑅𝑞×1 is the nominal output vector; 𝑢 ∈ 𝑅𝑝×1 is the nominal control input; 

𝐴𝑟 ∈ 𝑅𝑛×𝑛 is the nominal state matrix, and 𝐵𝑟 ∈ 𝑅𝑛×𝑝 is the nominal input matrix. 

Fig. 1 shows the open-loop disturbance observer. To estimate the disturbance 𝑢𝑑 without the modeling error (i.e. 𝐴 = 𝐴𝑟 and 

𝐵 = 𝐵𝑟), the state error is defined as 𝑥𝑒 = 𝑥 − 𝑥𝑟, and the error dynamics equation can be expressed as 

𝑥̇𝑒 = 𝑥̇ − 𝑥̇𝑟 = 𝐴𝑥𝑒 + 𝐵(𝑢𝑑 − 𝑢̂𝑑)           (3) 

where 𝑢̂𝑑 denotes the disturbance estimation, which can be written as 

𝑢̂𝑑 = 𝛤(𝑦 − 𝑦𝑟) = 𝛤𝐶𝑥𝑒             (4) 

where Γ indicates the compensation gain. According to (3) and (4), the disturbance 𝑢𝑑 can be suppressed by specifying a 

suitable gain Γ. However, the modeling error (i.e. 𝐴 ≠ 𝐴𝑟 and 𝐵 ≠ 𝐵𝑟) can in practice influence the disturbance estimation 

accuracy 𝑢̂𝑑 and state error 𝑥𝑒 convergence, since the performance of the open-loop disturbance observer is based on that the 

system parameters are accurately known in advance. To improve the disturbance compensation capabilities of the open-loop 

disturbance observer, an adaptive algorithm is used for adaptive adjustment of the compensation gain Γ, which improves the 

performance of the open-loop disturbance observer in the presence of modeling inaccuracy. 

 
FIGURE 1: Open-Loop Disturbance Observer Structure for Disturbance Compensation 
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III. ADAPTIVE OPEN-LOOP DISTURBANCE OBSERVER 

Considering the modeling inaccuracy, the error dynamic equation of (1) and (2) can be written as 

𝑥̇𝑒 = 𝐴𝑥 + 𝐵(𝑢 + 𝑢𝑑 − 𝑢̂𝑑) − 𝐴𝑟𝑥𝑟 − 𝐵𝑟 

= 𝐴𝑥 + 𝐵(𝑢 + 𝑢𝑑 − 𝑢̂𝑑) − 𝐴𝑟𝑥𝑟 − 𝐵𝑟𝑢 + 𝐴𝑟𝑥 − 𝐴𝑟𝑥 + 𝐵𝑟(𝑢𝑑 − 𝑢̂𝑑) − 𝐵𝑟(𝑢𝑑 − 𝑢̂𝑑) 

= 𝐴𝑒𝑥 + 𝐴𝑟𝑥𝑒 + 𝐵𝑒(𝑢 + 𝑢𝑑 − 𝑢̂𝑑) + 𝐵𝑟𝑢𝑑 − 𝐵𝑟𝑢̂𝑑                                                                    (5) 

where𝐴𝑒 = 𝐴 − 𝐴𝑟 and 𝐵𝑒 = 𝐵 − 𝐵𝑟 indicate the modeling error, and 𝑢̂𝑑 can be chosen as follows: 

𝑢̂𝑑 = 𝐵𝑟
−1[𝐴𝑒𝑥 + 𝐴𝑟𝑥𝑒 + 𝐵𝑒(𝑢 + 𝑢𝑑 − 𝑢̂𝑑) + 𝐵𝑟𝑢𝑑 − 𝐴𝑘𝑥𝑒]                                                    (6) 

Notably, 𝐵𝑟 is not a square matrix, therefore 𝐵𝑟
−1 represents the pseudo inverse matrix. If Br has full row rank, then 𝐵𝑟

−1 =

(𝐵𝑟
𝑇𝐵𝑟)

−1𝐵𝑟
𝑇. If Br has full column rank, then 𝐵𝑟

−1 = 𝐵𝑟
𝑇(𝐵𝑟𝐵𝑟

𝑇)−1. 

Substituting Eq. (6) into Eq. (5), the error dynamics equation can be rewritten as 

𝑥̇𝑒 = 𝐴𝑘𝑥𝑒                                                                                                                                     (7) 

where 𝐴𝑘 =

[
 
 
 
 

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋯ ⋮
0 0 0 ⋯ 1

−𝑘1 −𝑘2 −𝑘3 ⋯ −𝑘𝑛]
 
 
 
 

. Eq. (7) can be further described by      

{
𝑥̇𝑒

𝑛 = 𝑥𝑒
𝑛+1

𝑥̇𝑒
𝑛+1 = 𝑥̇𝑒

𝑛 + 𝑘𝑛𝑥𝑒
𝑛 + 𝑘𝑛−1𝑥𝑒

𝑛+1 + ⋯+ 𝑘1𝑥𝑒
1                                                                             (8) 

Eq. (8) indicates that xr(t)→x(t) as t→∞, namely that the output error between y and yr will asymptotically converge to zero. 

Theoretically, Eq. (6) can completely eliminate the modeling error and the unknown external disturbance. However, since the 

modeling error and unknown external disturbance are very difficult to identify in advance, then Eq. (6) cannot be used in real 

application. If the objective of applying the open-loop disturbance observer is to ensure that the output error between y and yr 

converges to zero, then an adaptive design can be adopted to formulate the disturbance compensation as Eq. (4) instead of Eq. 

(6). In the formulation proposed in Eq. (4), 𝑢̂𝑑 can be further set as 

𝑢̂𝑑(𝛤, 𝑦𝑒) = 𝛤𝑝𝑖𝑑𝐸(𝑦𝑒)                                                                                                                  (9) 

In Eq. (9), 𝛤𝑝𝑖𝑑 denotes the PID gain vector (Г can be the 𝛤𝑝, 𝛤𝑝𝑖 or 𝛤𝑝𝑖𝑑 type depending on the application requirements) and 

𝐸(𝑦𝑒) denotes the error vector which combines the proportional, integral and differential errors. In order to design PID gain of 

𝛤𝑝𝑖𝑑 using the adaptive algorithm, the ideal disturbance compensation can be defined as 

𝑢𝑖𝑑𝑒𝑎𝑙 = 𝐵𝑟
−1[𝐴𝑒𝑥 + 𝐴𝑟𝑥𝑒 + 𝐵𝑒(𝑢 + 𝑢𝑑 − 𝑢̂𝑑) + 𝐵𝑟𝑢𝑑 − 𝐴𝑘𝑥𝑒]                                             (10) 

Adding and subtracting the 𝐵𝑟𝑢𝑖𝑑𝑒𝑎𝑙 term to the right side of (5) leads to  

𝑥̇𝑒 = 𝐴𝑒𝑥 + 𝐴𝑟𝑥𝑒 + 𝐵𝑒(𝑢 + 𝑢𝑑 − 𝑢̂𝑑) + 𝐵𝑟𝑢𝑑 − 𝐵𝑟𝑢𝑖𝑑𝑒𝑎𝑙 + 𝐵𝑟(𝑢𝑖𝑑𝑒𝑎𝑙 − 𝑢̂𝑑) 

Substituting Eq. (10) into the fifth term on the right side of the above equation yields 

𝑥̇𝑒 = 𝐴𝑘𝑥𝑒 + 𝐵𝑟(𝑢𝑖𝑑𝑒𝑎𝑙 − 𝑢̂𝑑)                                                                                                     (11) 

Let the 𝛤∗
𝑝𝑖𝑑  be the optimal constant gain vector with a minimum error 𝑢𝑒𝑟 between 𝑢𝑖𝑑𝑒𝑎𝑙 and 𝑢̂𝑑. Thus, 𝛤∗

𝑝𝑖𝑑can be defined 

as 

𝛤𝑝𝑖𝑑
∗ = 𝑎𝑟𝑔  𝑚𝑖𝑛𝛤∈𝛺𝛤

[𝑠𝑢𝑝𝑥∈𝛺𝑥
‖𝑢𝑖𝑑𝑒𝑎𝑙 − 𝑢̂𝑑(𝛤𝑝𝑖𝑑 , 𝐸)‖]                                                            (12) 

Based on Eq. (12), 𝑢𝑒𝑟 can be defined as 

𝑢𝑒𝑟 = 𝑢𝑖𝑑𝑒𝑎𝑙 − 𝑢̂𝑑(𝛤𝑝𝑖𝑑
∗ , 𝐸)                                                                                                         (13) 

Moreover, 

𝑢̂𝑑(𝛤𝑝𝑖𝑑 , 𝐸) − 𝑢̂𝑑(𝛤𝑝𝑖𝑑
∗ , 𝐸) = (𝛤𝑝𝑖𝑑 − 𝛤𝑝𝑖𝑑

∗ )𝐸                                                                               (14) 
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according to Eqs. (11) and (13), the error dynamic equation can be rewritten as 

𝑥̇𝑒 = 𝐴𝑘𝑥𝑒 + 𝐵𝑟(𝑢̂𝑑(Γ𝑝𝑖𝑑
∗ , 𝐸) − 𝑢̂𝑑(Γ𝑝𝑖𝑑 , 𝐸) + 𝑢𝑒𝑟) = 𝐴𝑘𝑥𝑒 + 𝐵𝑟(𝑢𝑒𝑟 − (𝛤𝑝𝑖𝑑 − 𝛤𝑝𝑖𝑑

∗ )𝐸)        (15) 

Consider the Lyapunov function candidate 𝑉(𝑥𝑒(𝑡)) 

𝑉(𝑥𝑒(𝑡)) =
1

2
𝑥𝑒

𝑇𝑃𝑥𝑒 +
1

2
𝜂−1(𝛤𝑝𝑖𝑑 − 𝛤𝑝𝑖𝑑

∗ )𝑇(𝛤𝑝𝑖𝑑 − 𝛤𝑝𝑖𝑑
∗ )                                                         (16) 

where P is a positive definite symmetric matrix that satisfies the Lyapunov equation 𝐴𝑘
𝑇𝑃 + 𝑃𝐴𝑘 = −𝑄, where Q is a given 

positive definite symmetric matrix with a minimum eigenvalue greater than 1, i.e. 𝜆𝑚𝑖𝑛(𝑄) > 1, and η is an arbitrary constant. 

The time derivative of Eq. (16) can be expressed as 

𝑉̇(𝑥𝑒(𝑡)) = 𝑥𝑒
𝑇𝑃𝑥̇𝑒 − 𝜂−1(𝛤𝑝𝑖𝑑 − 𝛤𝑝𝑖𝑑

∗ )𝑇𝛤̇ 

= −
1

2
𝑥𝑒

𝑇𝑄𝑥𝑒 + 𝑥𝑒
𝑇𝑃𝐵𝑟𝑢𝑒𝑟 − 𝜂−1(𝛤𝑝𝑖𝑑 − 𝛤𝑝𝑖𝑑

∗ )𝑇(𝜂𝑥𝑒
𝑇𝑃𝐵𝑟𝐸 + 𝛤̇𝑝𝑖𝑑)                                      (17) 

According to Eq. (17), the gain 𝛤𝑝𝑖𝑑 is updated according to projection type parameter adaptation law [13] 

𝛤̇𝑝𝑖𝑑 = Proj
𝛤
(−𝜂𝑥𝑒

𝑇𝑃𝐵𝑟𝐸)                                                                                                         (18) 

where the projection mapping Proj
𝛤
(−𝜂𝑥𝑒

𝑇𝑃𝐵𝑟𝐸) is defined as  

Proj
𝛤
(−𝜂𝑥𝑒

𝑇𝑃𝐵𝑟𝐸) = {
0,  if {

𝛤𝑝𝑖𝑑 = 𝛤𝑝𝑖𝑑
𝑚𝑎𝑥  and   − 𝜂𝑥𝑒

𝑇𝑃𝐵𝑟𝐸 > 0

𝛤𝑝𝑖𝑑 = 𝛤𝑝𝑖𝑑
𝑚𝑖𝑛  and   − 𝜂𝑥𝑒

𝑇𝑃𝐵𝑟𝐸 < 0

−𝜂𝑥𝑒
𝑇𝑃𝐵𝑟𝐸,  otherwise

                                  (19) 

Consequently, (18) becomes: 

𝑉̇(𝑥𝑒(𝑡)) = −
1

2
𝑥𝑒

𝑇𝑄𝑥𝑒 + 𝑥𝑒
𝑇𝑃𝐵𝑟𝑢𝑒𝑟 ≤ −

1

2
𝜆𝑚𝑖𝑛(𝑄)‖𝑥𝑒‖

2 + ‖𝑥𝑒‖‖𝑃𝐵𝑟𝑢𝑒𝑟‖                       (20) 

The stability of the proposed method of compensation gain tuning through a projection type parameter adaptation law is 

analyzed as described in [12], in which the Barbalat lemma was used to prove that 𝑙𝑖𝑚
𝑡→∞

‖𝑥𝑒(𝑡)‖ = 0. 

Remarks: 

According to (20), assume that ‖𝑢𝑒𝑟‖ ≤ 𝜀‖𝑥𝑒𝑟‖, where ε is an unknown positive constant. Eq. (20) can be rewritten as 

𝑉̇(𝑥𝑒(𝑡)) ≤ −
1

2
𝜆𝑚𝑖𝑛(𝑄)‖𝑥𝑒‖

2 + 𝜀‖𝑃𝐵𝑟‖‖𝑥𝑒‖
2                                                                        (21) 

From Eq. (21), if 𝑉̇(𝑥𝑒(𝑡)) ≤ 0, which must satisfy the condition 𝜀 ≤
1

2

𝜆𝑚𝑖𝑛(𝑄)

‖𝑃𝐵𝑟‖
, which clearly indicates whether the norm of P 

is larger (i.e., system robustness is increased). Additionally, 𝜂 of Eq. (18) is used to determine the adjusted rate of 𝛤𝑝𝑖𝑑. A larger 

𝜂 indicates a quicker adjusted rate. However, a high value for 𝜂 may cause oscillation or instability. □ 

Although a suitable P and 𝜂 can be chosen, the 𝑥𝑒 asymptotically converges to zero. However, Eq. (16) is still subject to 𝑢𝑒𝑟 −

(𝛤𝑝𝑖𝑑 − 𝛤𝑝𝑖𝑑
∗ )𝐸, i.e., according to Eqs. (13) and (14), the ideal disturbance compensation can be expressed as 

𝑢𝑖𝑑𝑒𝑎𝑙 = 𝑢̂𝑑 + 𝑢𝑒𝑟 − (𝛤𝑝𝑖𝑑 − 𝛤𝑝𝑖𝑑
∗ )𝐸 = 𝑢̂𝑑 + 𝑢𝑟𝑐                                                                       (22) 

where 𝑢𝑟𝑐 = 𝑢𝑒𝑟 − (𝛤𝑝𝑖𝑑 − 𝛤𝑝𝑖𝑑
∗ )𝐸 is the approximation error for the disturbance estimation, and (15) can be rewritten as 

𝑥̇𝑒 = 𝐴𝑘𝑥𝑒 + 𝐵𝑟𝑢𝑟𝑐                                                                                                                     (23) 

Generally, many control applications calculate 𝑢𝑟𝑐  using the high gain technique. However, an appropriate high gain value for 

𝑢𝑟𝑐  is hard to select in real-word applications. Therefore, this study adopted the backstepping algorithm presented in [13] to 

design 𝑢𝑟𝑐 . For a convenient description of the derivation of 𝑢𝑟𝑐 , let the nominal parameters 𝐵𝑟 be the case where 𝐵𝑟 =

[0 0 ⋯ 𝑏] ∈ 𝑅𝑛×1, Equation (23) can then be further written as 

𝑥̇𝑒
𝑛+1 = −𝑘1𝑥𝑒

1 − 𝑘2𝑥𝑒
2 − ⋯− 𝑘𝑛𝑥𝑒

𝑛 + 𝑏𝑢𝑟𝑐                                                                              (24) 

The new error variable is defined as 

𝑍𝑛+1 = 𝑥𝑒𝑛+1 − 𝛼𝑛                                                                                                                     (25) 
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where 𝛼𝑛 is the virtual control expressed as 

𝛼𝑛 = −𝑐𝑛𝑍𝑛 − 𝑍𝑛−1 + 𝛼̇𝑛−1                                                                                                      (26) 

where 𝑐𝑛 is the positive constant. The control Lyapunov function can thus be formulated as 

𝑉𝑛+1 =
1

2
∑ 𝑍𝑖

2𝑛+1
𝑖=1                                                                                                                         (27) 

and from (25) to (27), one can give 

𝑍̇𝑛 = 𝑍𝑛+1 − 𝑐𝑛𝑍𝑛 − 𝑍𝑛−1                                                                                                          (28) 

𝑉̇𝑛+1 = −∑ 𝑍𝑖
2𝑛+1

𝑖=1 + 𝑍𝑛+1(𝑥̇𝑒
𝑛+1 − 𝛼̇𝑛 + 𝑍𝑛)                                                                             (29) 

which results in  

𝑍̇𝑛+1 = −𝑐𝑛+1𝑍𝑛+1 − 𝑍𝑛                                                                                                            (30) 

𝛼𝑛+1 = −𝑐𝑛+1𝑍𝑛+1 − 𝑍𝑛 + 𝛼̇𝑛                                                                                                   (31) 

According to (24) to (31), 𝑢𝑟𝑐  can be chosen as 

𝑢𝑟𝑐 = 𝑏−1[𝑘1𝑍1 + 𝑘2(𝑍2 + 𝛼1) + 𝑘3(𝑍3 + 𝛼2) + ⋯𝑘𝑛(𝑍𝑛 + 𝛼𝑛−1) + 𝛼̇𝑛 − 𝑍𝑛]                   (32) 

Substituting the (32) into (29) yields  

𝑉̇𝑛+1 = −∑ 𝑍𝑖
2𝑛+1

𝑖=1                                                                                                                        (33) 

Therefore, Eq. (27) is a positive definite; Eq. (33) is a semi-negative definite, and the new error variable 𝑍𝑛 can asymptotically 

converge to zero according to the Lyapunov stability theory [14]. Figure 2 is a block diagram of the adaptive open-loop 

disturbance observer. 

 

FIGURE 2: Adaptive Open Loop-Disturbance Observer 
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IV. SIMULATIONS AND EXPERIMENTS 

This section may be divided by subheadings. It should provide a concise and precise description of the simulation and 

experimental results, their interpretations, as well as the conclusions that can be drawn. 

4.1 Simulation results 

To verify the proposed approach, a simulation was run using the constant velocity control of a motor as a potential application 

to compare the control performance of the proposed approach and the conventional DOB. The simulation software was 

MATLABR2014a.       

The model parameters of the motor ware J=3.2964×10-4Nm/(rad/s2) and B=2.7312×10-4 Nm/(rad/s). The nominal models of 

DOB were set as JDOB=2×10-4Nm/(rad/s2) for the DOB model Jn=2.747×10-4Nm/(rad/s2) and Bn=2.7312×10-4 Nm/(rad/s) . The 

PI controller was used as the feedback control, in which Kp=2 and Ki=0.8. The bandwidth of the low pass filter for the DOB 

was 100Hz. The parameter settings of the proposed approach were: 𝐴𝑘 = [ 0 1
−2 −10

] and 𝑄 = diag[4,4]. For the Lyapunov 

equation𝐴𝑘
𝑇𝑃 + 𝑃𝐴𝑘 = −𝑄, 𝑃 = [

10.6 1
1 0.3

]. The definition of 𝛤𝑝𝑖 was 𝛤𝑝𝑖 = [𝛤𝑝 𝛤𝑖]𝑇; the upper and lower bounds of the 

gain matrix 𝛤𝑝𝑖 were 𝛤𝑝𝑖
𝑚𝑎𝑥 = [60 40]𝑇 and 𝛤𝑝𝑖

𝑚𝑖𝑛 = [10 5]𝑇, and the adaptation rate 𝜂 = 10. According to Eq. (32), the 

𝑢𝑟𝑐  can be designed as 

𝑢𝑟𝑐 = 𝐽𝑛[𝑘1𝑍1 + 𝑘2(𝑍2 + 𝛼1)]                                                                                                   (34) 

where 𝑍1 = 𝑥𝑒1 = 𝜃 − 𝜃𝑛, 𝑍2 = 𝑥𝑒2 − 𝑐1𝑍1 = 𝑥̇𝑒1 − 𝑐1𝑍1, and 𝛼1 = −𝑐1𝑍1. In these equations, 𝜃 denotes the rotation position 

of motor; 𝜃𝑛 denotes the rotation position of nominal plant, and 𝑐1 = 10.  

The time-varying external disturbance of 15sin(2πft) Nm is used in this simulation to verify the performance of the proposed 

approach. The frequency f had two cases, case1 10Hz and case2 80Hz.  

Fig. 3 indicates the velocity response for case1 and case2. Clearly, the proposed approach performs better than the conventional 

DOB when the frequency of the external disturbance from low frequency becomes high frequency. Although the conventional 

DOB can increase the bandwidth of the low-pass filter, this method may increase noise levels, reducing the control performance 

in real applications. 

  
                                                     (a)                                                                                     (b) 

FIGURE 3: Velocity Response (A) Case 1 (B) Case 2. 

4.2 Experimental results 

The circle-shaped trajectory tracking control experiment of the two-link rotor manipulator is aimed at evaluating the 

performances. The two-link robot manipulator is shown in Fig.4, which driven by two Panasonic AC servomotors 

(MHMD022S1S and MHMD042S1S), and a personal computer equipped with a motion control card (EPCIO-6000). Both 

servomotors have built-in incremental encoders (2500×4 pulses/rev) that can be used to provide position feedback. The 

parameters of the two-link robot manipulator are listed in TABLE 1. 
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FIGURE 4: Two-Link Robot Manipulator 

TABLE 1 

THE PARAMETERS OF THE TWO-LINK ROBOT MANIPULATOR 

 Length Mass Center of Mass Inertia 

Link 1 0.24 m 2.35 kg 0.1557 m 0.01238 kgm2 

Link 2 0.16 m 0.751kg 0.0981 m 0.00187 kgm2 

 

In order to descript the modeling uncertainty suppression effect of the proposed approach, the controller of the two-link robot 

manipulator for the circle-shaped trajectory tracking has incorporated the friction compensation that worked the LuGre model 

[15], which can be described as follows: 

𝑧̇ = 𝜃̇ −
𝜎0|𝜃̇|

𝑠(𝜃̇)
z                                                                                                                             (35) 

𝜏𝑓 = 𝜎1𝑧̇ + 𝜎0𝑧 + 𝜎2𝜃̇                                                                                                                 (36) 

where z is the average deflection of the bristles between two contact surfaces, 𝜎0 is the stiffness which describes the relationship 

between displacement and friction in a reversal motion, 𝜎1 is the damping coefficient, 𝜎2 is the viscous coefficient, and s(𝜃̇) 

is a nonlinear function used to describe the Stribeck effect. In [15], s(𝜃̇) is expressed as 

s(𝜃̇) = 𝐹𝑐 + (𝐹𝑠 − 𝐹𝑐)𝑒
−𝛼|𝜃̇|                                                                                                       (37) 

where Fc is the Coulomb friction, Fs is the stiction force, and  describes the variation of s(𝜃̇) between Fs and Fc. The 

parameters of the LuGre friction model, i.e. 𝜎0, 𝜎1, 𝜎2, 𝐹𝑐, 𝐹𝑠, and α can be identified using the method proposed in [16]. The 

identified friction-velocity map of the two-link robot manipulator is shown in Fig. 5, and the obtained friction model parameters 

are listed in TABLE 2. 

      
(a)                                                                                             (b) 

FIGURE 5: Experimental Friction Velocity Map. (A) Joint 1 (B) Joint 2. 
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TABLE 2 

FRICTION MODEL PARAMETERS OF THE TWO-LINK ROBOT MANIPULATOR 

 

The parameter settings for the proposed approach are: 𝜂 = 100, 𝐴𝑘 = [
02×2 𝐼2∗2

𝐾1 𝐾2
] and 𝑄 = diag[50,50,50,50], where 𝐾1 =

[−0.5 0
0 −0.5

] and 𝐾2 = [−0.7 0
0 −0.7

]. For the Lyapunov equation 𝐴𝑘
𝑇𝑃 + 𝑃𝐴𝑘 = −𝑄, 𝑃 =

[

88.57 0
0 88.57

50 0
0 50

50 0
0 50

107.14 0
0 107.14

]is used in the simulation. Moreover, since the two-link planar robot manipulator has two 

joints, it can be designed according to the definition of 𝛤𝑝𝑖𝑑 as 𝛤𝑝𝑖𝑑 = [𝛤𝑝1 𝛤𝑖1 𝛤𝑑1 𝛤𝑝2 𝛤𝑖2 𝛤𝑑2]𝑇, in which 𝛤𝑝1, 𝛤𝑖1, and 

𝛤𝑑1 are observer gain of joint1, moreover 𝛤𝑝2, 𝛤𝑖2, and 𝛤𝑑2 are observer gain of joint2, the upper bound and lower bound of the 

𝛤𝑝𝑖𝑑 are 𝛤𝑝𝑖𝑑
𝑚𝑎𝑥 = [60 30 50 50 20 40]𝑇 and 𝛤𝑝𝑖𝑑

𝑚𝑖𝑛 = [20 6 10 10 5 4]𝑇, respectively. The adaptation rate 

𝜂 = 100. According to (32), the approximation error 𝑢𝑟𝑐  for the disturbance estimation can be described in 

𝑢𝑟𝑐 = 𝑀𝑟[𝐾1𝑍1 + 𝐾2(𝑍2 + 𝛼1)]                                                                                                 (33) 

where Mr is the inertia matrix of the nominal plant of the two-link planar robot manipulator, 𝑍1 = 𝑥𝑒1 =

[𝑞1 − 𝑞𝑟1 𝑞2 − 𝑞𝑟2]𝑇, 𝑍2 = 𝑥𝑒2 − 𝑐1𝑍1 = 𝑥̇𝑒1 − 𝑐1𝑍1, and 𝛼1 = −𝑐1𝑍1, in which 𝑞1 and 𝑞2 are the joint angle of the robot 

manipulators, 𝑞𝑟1 and 𝑞𝑟2 are the joint angle of the nominal plant, and 𝑐1 = 0.3. 

    
(a)                                                                                                 (b) 

FIGURE 6: The Experimental Result. (A) Circle-Shaped Trajectory Tracking (B) Comparisons of Contour Error 

Among Different Control Schemes. 

Fig.6 (a) shows the experimental result of the circle-shaped trajectory tracking task, where the black line is the desired circle-

shaped contour; the green line is the actual trajectory obtained using PI controller (PI) only; the blue line is the actual trajectory 

obtained using PI and friction compensation (PI+Friction); the red line is the actual trajectory obtained using the combinations 

of the PI, friction compensation, and proposed approach  (PI+Friction+Proposed approach). The contour errors of the trajectory 

tracking task resulting from different controller schemes are shown in Fig. 6 (b). In addition, performance indices in terms of 

root mean square of contour error (RMS), average of integral of absolute contour error (AIAE), and maximum contour error 

(MAX) are listed in TABLE 3. The results shown in Fig. 6 and TABLE 3 indicate that the PI+Friction+Proposed approach 

yield the best performance among all the tested control schemes. We have also come up with several interesting observations 

from Fig. 6. Although PI+Friction can reduce the protrusion error occurring in a reverse motion, its ability in contour error 

reduction is not so impressive. One of the major reasons is that the LuGre model based friction compensation is mainly used 

 𝝈𝟎(Nm/rad) 𝝈𝟏(Nm/rad/s) 𝝈𝟐(Nm/rad/s) 𝑭𝒄(Nm) 𝑭𝒔(Nm) α 

Joint1 0.18535 0.011494 0.00070987 0.044398 0.05078 0.11953 

Joint2 0.11208 0.020577 0.00089763 0.022801 0.04575 0.05971 
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to cope with the friction force rather than disturbance suppression, and the modeling uncertainty of the LuGre friction model 

is inherently existed in the identification process and the model parameter variations are frequently occurred in practice. In 

contrast, using the proposed approach combined with PI+Friction can significantly improve the contour error by reducing the 

adverse effects of the LuGre friction model inaccuracy.  

TABLE 3 

PERFORMANCE EVALUATION OF THE CIRCLE-SHAPED TRAJECTORY TRACKING TASK 

Definitions 
Performance index of contour error 

AIAE (m) RMS (m) MAX (m) 

PI 80.18 103.63 340.01 

PI+Friction 57.67 74.23 265.69 

PI+Friction+proposed approach 44.29 57.23 225.32 

 

V. CONCLUSION 

The proposed approach of this study is based on the open-loop disturbance observer adopts the projection type adaptive law to 

adjust the observer gain. The error between the output of the actual plant and the output of the nominal plant converges to zero 

asymptotically. Moreover, the robust design utilizes the backstepping algorithms to enhance the performance of disturbance 

compensation. Additionally, the simulation example of the velocity control on a motor is used to describe the performance of 

the proposed approach compared with the conventional DOB, and the experiment of the trajectory tracking task has been 

conducted to verify the abilities of the proposed approach. The results of the simulation and experiment show the satisfactory 

performance. 
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