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Abstract— In this paper, a kinematic surface using equiform motion of an astroid curve in Euclidean 3-space E
3
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generated. The main results given in this paper: the surface foliated by equiform motion of astroid curve has a constant 
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I. INTRODUCTION 

The kinematic geometry is dedicated to the study of geometrical and temporal characteristics of movement procedures, 

mechanical aspects such as masses, forces, and so on remain unconsidered. With additionally neglect of the temporal aspect, 

one can speak more exactly of kinematic geometry. Regarding the relations to the mechanics and to technical applications in 

mechanical engineering, the kinetics were turned originally to the movements of rigid systems in the Euclidean plane and the 

three-dimensional Euclidean space and arrived here in the second half of the 19 Century and at the beginning of the last 

century too more largely. 

In recent years interesting applications of kinematics have, for example, been made in areas as diverse as: animal locomotion, 

biomechanics, geology, robots and manipulators, space mechanics, structural, chemistry and surgery [1]. 

In [2] R. Lopez proved that cyclic surfaces in Euclidean three-dimensional space with nonzero constant Gaussian curvature 

are surfaces of revolution. In the case that the Gaussian curvature vanishes on the surface, then the planes containing the 

circles must be parallel. In [3] Fathi M. Hamdoon studied the corresponding kinematic three-dimensional surface under the 

hypothesis that its scalar curvature K is constant. In the eighteenth century, Euler proved that the catenoid is the only 

minimal surface of revolution. In 1860, Riemann found a family of embedded minimal surfaces foliated by circles in 

parallel planes. Each one of such surfaces is invariant by a group of translations and presents planar ends in a discrete set of 

heights [4]. At the same time, Enneper proved that in a minimal cyclic surface, the foliating planes must be parallel [5]. As a 

consequence of Euler, Riemann and Enneper’s works, we have that the catenoid and Riemann minimal examples are the only 

minimal cyclic surfaces in Euclidean space. A century later, Nitsche [6] studied, in 1989, cyclic surfaces with nonzero 

constant mean curvature and he proved that the only such surfaces are the surfaces of revolution discovered by Delaunay in 

1841 [7].Several special motions in equiform planar kinematics have been investigated by [8, 9] and [10]. For more 

treatment of cyclic surfaces see [11, 12] and [13]. 

An equiform transformation in the 3-dimensional Euclidean space E
3

 is an affine transformation whose linear part is 

composed of an orthogonal transformation and a homothetical transformation. This motion can be represented by a 

translation vector d and a rotation matrix A as the following.  

 ,dAxx    (1) 

where 
3,.2,== ExxcmIAAAA tt   and   is the scaling factor [3, 14]. An equiform motion is defined if the 

parameters of (1)- including   - are given as functions of a time parameter t. Then a smooth one-parameter equiform 

motion moves a point x via )()()()(=)( tdtxtAttx  . The kinematic corresponding to this transformation group is 

called an equiform kinematic. 
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The purpose of this paper is to describe the kinematic surface obtained by the motion of an astroid curve whose Gaussian and 

mean curvatures K and H are constant, respectively. As a consequence of our result, we prove: 

A kinematic 2 -dimensional surface obtained by the equiform motion of an astroid curve has a zero Gaussian and mean 

curvatures if a motion of astroids is in parallel planes. Moreover, using the motion of such surface, the kinematic geometry of 

geodesic lines is determined. Special Weingarten kinematic surface is studied. Finally, some examples are provided. 

II. BASIC CONCEPTS 

Here, and in the sequel, we assume that the indices },{ ji  run over the ranges {1,2}. The Einstein summation convention 

will be used, that is, repeated indices, with one upper index and and one lower index, denoted summation over its range. 

Consider M a surface in E
3

 parameterized by 

 ),,(=)(= vuXuXX i
 (2) 

and let N denote the unit normal vector field on M given by  

 ,=,=,
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=
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where   stands of the cross product of E
3

. The metric  ,   in each tangent plane is determined by the first fundamental 

form  

 ,= ji

ij dudugI  (4) 

with differentiable coefficients  

 .,=  jiij XXg  (5) 

The shape operator of the immersion is represented by the second fundamental form  

 ,=,= ji

ij duduhdXdNII   (6) 

with differentiable coefficients  

 .,=  ijij XNh  (7) 

With the parametrization of the surface (2), the Gaussian and mean curvatures are given by  

 ),()/(= ijij gDethDetK  (8) 

and  

 ),(
2

1
= ij

ijhgtrH  (9) 

respectively, where, )( ijg  is the associated contravariant metric tensor field of the covariant metric tenser field )( ijg , i.e., 

.= i

jij

ij gg   

The surface M generated by an astroid curve is represented by  

 )),()(cos)(()(=),(: 33 unvsinutvurucvuXM   (10) 

where )(ur  and )(uc  denote the radius and centre of each u-astroid of the foliation, ][0,2v . Let )(= u  be an 

orthogonal smooth curve to each u-plane of the foliation and represented by its arc length u. We assume that the planes of the 
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foliation are not parallel. Let t, n and b be unit tangent, normal and binormal vectors, respectively, to  . Then, Frenet 

equations of the curve   are  

 ,=',
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 (11) 

where k and   are the curvature and torsion of )(u , respectively. Observe that 0k  because )(u  is not a straight-

line. Also, putting  

 ,= bntc'    (12) 

where  ,,  are smooth functions in u [2].  

III. CONSTANT GAUSSIAN CURVATURE OF M 

In this section we will study the constancy of Gaussian curvature K of the surface generated by equiform motion which is 

locally parameterized by the equation(10). 

Putting in (2.8) )(= ijgDetW , we have  

 ,= 1

2 KKW  (13) 

where  

 .],,[],,][,,[= 2

1221222111211 XXXXXXXXXK   (14) 

Consider now that the surface M is a surface with constant Gauss curvature. After a homothety, it may be assumed, without 

loss of generality, that the Gaussian curvature is Â0,=K 1  or 1 . 

3.1 Case K=0 

 Using equation (13) we can express 1K  by trigonometric polynomial on nvcos  and nvsin . Exactly, there exists smooth 

functions on u, namely nA  and nB  such that (8) writes as  

 ).sincos(==0
16

1=

01

2 ivBivAAKKW nn

i

   (15) 

 Since this is an expression on the independent trigonometric terms nvcos  and nvsin , all coefficients nA  , nB  vanish 

identically. 

After some computations, the coefficients of equation (15) are  

 ,
32768

)()(27
=

46

16

uur
A


 

0.=== 151516 BAB  

This leads to 0.=)(u  

Now, the coefficients  

 0,==== 991616 BABA   
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 )),()()()()()()()(4()(
128

27
=   23

8 uruuuruurukuurA ''''    

 ))),()()()()(()()()()(2()(
64

27
=         3

8 uukukuururuukuurB    

 )).()()()()()()()(()(
64

27
= 3

8 uuuuuuukuurB    

The above coefficients equal to zero in the following two cases 

(i) 0,=)(u  therefore, we have  

 0,===== 01155 ABABA   

(ii)  

 0,=)()()()()()()(4 2 uruuuruuruk ''''    

 0,=))()()()()(()()()(2 uukukuururuuk    

 0,=)()()()()()()( uuuuuuuk    

This system of nonlinear ODEs is of second order. Thus, their general solution is much more complicated and can only be 

solved in special cases. Thus, their solution is also 0.=)(u  

Therefore, one can see all coefficients are vanished. Thus we have the proof of the following theorem:  

Theorem 3.1 The surface foliated by equiform motion of astroid curve has a zero Gaussian curvature if a motion of astroid 

is in parallel planes.  

3.2 Case K=1 

 From (13) similarly as in above case, we have  

 ).(==0
20

1=

01

2 ivsinBivcosAAKKW nn

i

   (16) 

 A routine computation of the coefficients yields  

,
524288

)()(81
=

48

20

uur
A


 

0.=== 191920 BAB  

By solving the coefficient 20A , we have 0=)(u . Now, the coefficients  

0==== 19192020 BABA  

),)()()()(24)()((16
32768

)(81
= 422244

4

16 urururukuruk
ur

A ''   

).)()()()()()((4
4096

81
= 3573

16 ururukururukB   

By solving system 16A , 16B , we have 0=)(uk , )(=)( constantrur . Now, the coefficients  
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0,===...== 13131616 BABA  

),)()()(6)((
2048

81
= 42244

12 uuuurA    

).)()()(()(
512

81
= 224

12 uuuurB    

This gives  

0.=)(=)( uu   

Thus we have  

0,===...== 991212 BABA  

,
128

)()(81
=

44

8

uur
A


  

which leads to  

 0.=)(u  

then, one can see all coefficients are vanished. Thus, the conclusion of the above case is: if 1=K  or 1  then rur =)(  

and 0.=)(=)(=)(=)(=)( uuuuku   This implies that c is a point 0c 
3R .  

IV. CONSTANT MEAN CURVATURE OF M 

In this section, we will study the constancy of the mean curvature H of the surface generated by equiform motion which is 

locally parameterized by equation(9). 

By a manner similar to the previous section 3, we put  

 ,
),(4

),(
=

3

2

12

ivsinivcosW

ivsinnvcosH
H  (17) 

 where  

 ].,,[],,[2],,[= 2221111221121121221 XXXgXXXgXXXgH   (18) 

 According to (17), we discuss two cases. 

4.1 Case H=0 

 Thus one can get  

 ).sincos(=
13

0=

2

1 ivBivAH nn

i

  (19) 

Since this is an expression of the independent trigonometric terms nvcos  and nvsin , all coefficients nA , nB  must vanish 

identically. 

Here, after some computations, the coefficients of the equation (19) are  

 0,=13A  
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In view of the expression of 13B , there is one possibility  

 0,=)(u  

which leads to the following  

0,===== 991313 BABA   

))),()()()(()()()(()(
128

27
= 22

8 urururuuurururA    

)).()()()(()(
64

2
= 4

8 uukukuurB    

By solving 8A  of )(u , we discuss two cases: 

(I)  0.=)(u  This leads to all coefficients are vanished. 

(II)  0
)(

)(
=)( 1 



ur

urC
u  

 0,=8A  

 ))).()()()()(()()(()(
64

2
= 24

8 urukurukururukurB   

By solving 8B  , we have two cases: 

(1)  0=)(ur , this is contradiction. 

(2)   
)(

)(
=)( 2

ur

urC
uk


, then, we have  

0,=8B  

 ))).()(3)()(())()(3)()()(()((
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9
= 2

217 urururuuururuCururCA    

By solving 7A  , we have two cases: 

(a)  0=1C , this is contradiction. 

(b)  ))).()(3)()(()()()((3
)(

1
=)( 2

2

2

urururuuurur
urC

u 


   

Then,  

 0,=7A  
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0,== 66 BA  

)).()()()(()(
8

27
= 2

15 uruuururCA    

By solving 5A , we have )(=)( 3 urCu  , 

this leads to  

 .)()()(1
64

9
= 3

3

2

2

2

1
7 ururCC

C

C
B   

From 7B  we discuss one possibilities, 0=3C , then,  

0,===== 55667 BABAB  

,)())()(1(
)(8

9
= 322

2

2

1
1

4 ururCC
ur

C
A   

this leads to 0=)(ur , this is contradiction. 

From the previous results, we have the proof of the following theorem:  

Theorem 4.1 The surface foliated by equiform motion of astroid curve is a minimal surface if motions of astroid are in 

parallel planes.  

4.2 Case H
2
=1 

 Thus one can get  

 ).sincos(=4=0
30

1=

0

2

1

32 ivBivAAHWH nn

i

   (20) 

 After some computations, we have  

 .)()(
134217728

729
= 612

30 uurA   

 0=30B  

In view of the expression for 30A , there is one possibility  

 0.=)(u  

Thus, we obtain  

 0,===== 25253030 BABA   

))(3)()()(40)()()(48()(
524288

729
=

),)()()()(60)()()(240)()((64)(
2097152

729
=

4222447

24

6422244666

24

urururukurukururB

urururukururukurukurA





.   By solving 

system 2424 , BA , This implies that 0,=)(uk ,=)( rur  which leads to the following  

 0,===== 19192424 BABA   
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 ),)()()(15)()(15)(()(
32768

729
= 6422466

18 uuuuuuurA    

In view of the expression of 18A , there are six possibilities 

)(=)( uu   , )(3)(2=)( uuu    

(a)  ).(3)(2=)( uuu    Thus we have  

 ,)()()315(26
512

729
= 66

18 uurB   

Therefore, 0,=)(u  

 0,===== 13131718 BAAB   

 ,)()(
512

729
= 66

12 uurA   

Solving 12A  implies that 0.=)(u  

As a consequence, we have the coefficients  

 0.====== 0111212 ABABA   

By direct computation, one can see that all remaining possibilities of )(u  conclude the same results. 

Remark 4.2 The surface foliated by equiform motion of astroid curve has nonzero constant mean curvature 1=H  or 1  if 

rur =)(  and 0=)(=)(=)(=)(=)( uuuuku   which implies that c is a point 0c 
3R .  

V. GEODESIC CURVES ON M 

In this section, we construct and obtain the necessary and sufficient conditions for a curve on the kinematic surface to be a 

geodesic 0).=( gK  For this purpose, we recall the following definition:  

Definition 5.1 A curve )(= u  on 
3RM   is a geodesic of M provided its acceleration    is always normal to M [15].  

Making use of the equation (10), the curve )(u  can be expressed in the form  

 ).(=.)),(,(=)( ufvufuXu  (21) 

Since the curve )(u  is a regular curve on the surface M in 
3E , not necessary parameterized by arc length, N is the unit 

normal vector field of the M, the geodesic curvature gk  is given by [16] 

 .
|)(|

)](),(,[
=

3u

uuN
kg



 
 (22) 

 The above equation can be written in the following form  

 ,=|)(| 3 Qukg   (23) 

 where )](),(,[= uuNQ   , then  
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 ).sincos(=|)(|=0
12

1=

0

3 ivBivAAQuk nn

i

g    (24) 

 Hence, after some computations, the coefficients of the equation (24) are given as  

 0,=12A  

 0,=)()(
2048

3
= 44

12 uurB   

which implies 0.=)(u  

Consequently,  

0,====== 9910101111 BABABA  

))))()()()()()()(()()(2)()()(3(

)()()()(2)()()(7)()()(4)((

))()(4)()(11()()()()()()((
128

9
=

232

3223

2223

8

urufufururukururufufurur

urururururufurukufuruk

ufururufurukururukurA







 

))),()()()(2)()(

)()()(3()())()()(2)()(()(

))()(2)()()(()()()()(3)()(()(
64

9
=

32222

23242

8

urufufururuk

ufururukurururufuruk

urufukururufufurukurukurB







 

This system of nonlinear ODEs is of the second order. Since the cases where this system can be explicitly integrated are rare, 

a numerical solution of the system is in general the only way to compute points on a geodesic. Thus, for simplicity, we 

consider the two cases 

(I)  Case rur =)( (constant) : We have  

0,=)]()()()()[(
32

9
= 4

8 ufukukufukrA   

0.=))(3)()()()(3)()((
64

9
= 32234

8 ufufukufukukukrB   

 This implies )(= ufk   or )(3= ufk  . Therefore, we consider the following cases  

(a) )(3= ufk   : Then we have  

 0,====== 667788 BABABA  

0=)]()()()()()()[(7(
8

27
= 23

5 ufuuufufuufrA   , 

0=)]()()()()()()[7(
8

27
= 23

5 ufuuufufuufrB   , 

0=))]()()()()((2

)()()()()()()()()()([
8

9
= 222

4

ufuuufu

ufuufuuufuuufurA








. 
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Similarly as solving 8A  and 8B  we consider cuf =)(  where c is constant. Thus we have  

0,=))()((7
8

27
= 32

5 uucrcA    

0.=))()((7
8

27
= 32

5 uucrcB    

Thus we obtain  

),(7sin)(7cos=)( 21 cuccucu   

),(7sin)(7cos=)( 12 cuccucu   

where 1c  , 2c  are constants. 

From this we obtain  

0,=)()(9/4= 2

4 uucrA    

0.=))(9(9= 2222

2

2

1

22

4 urcccrcA   

This implies . 9=)(=)( 2

2

2

1

22 ccrcconstantu   Therefore, we obtain  

))).((2sin)))((7sin))((7cos)(9((12= 12

222

2

2

10 ufufcucufcucrccccrA   

 This leads to 
c

cc
r

3
=

2

2

2

1 
, i.e., 0.=  Then  

 0.======== 01122334 ABABABAB  

(b) )(= ufk  , gives the same result as in case (a). 

(II)  Case kuk =)( (constant): The same results as in (I) are obtained. 

Now, we give the following theorem 

Theorem 5.2 The geodesic curves on the surface M have the following representations 

))(,(=)( ufuXu , 

M: ))()(cos)(()(=),( 33 unvsinutvurucvuX  , 

)}()({=)( 21 unutuc   , 

where hcuufv =)(= , 



,)(7189)(79

)(49)()(7)21(19)()49(1
)491(27

1
=

42

2222

231

cusinaccusinac

usinecusinecucosbccucosfc
cc







 

),
)491(9

)(790)(49)()(790)()491(
(=

22

3232

2
cc

cusinbcusinfcusinfcucosacucosec




  
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),0},(3),(3{=)( cuCoscuSinut   

),0},(3),(3{=)( cuSincuCosun   

a, b, c, f and h are constants.  

VI. SW-SURFACE 

In this section, we construct and obtain the necessary and sufficient conditions for a surface M to be a special Weingarten 

surface. For this purpose, we recall the following definition:  

Definition 6.1 A surface M in Euclidean 3-space 
3R  is called a special Weingarten surface if there is relation between its 

Gaussian and mean curvatures such that 0=),( HKU , and we abbreviate it by SW-surface [17].  

 We can express this as the following condition:  

 ,= cbKaH   (25) 

 where a, b and c are constants and 022  ba . We can rewrite The Gaussian and mean curvatures of a surface M as the 

following forms By using the equations (13) and (17),without loss of generality we can take 1=a , the condition (25), can 

be written in the following form  

 ,=
2 2

1

3/2

1 c
W

K
b

W

H
  (26) 

 or, equivalently  

 ).2(= 1

21/2

1 bKcWWH   (27) 

 Squaring both sides, we have  

 0.=)4( 2

1

22

1 bKcWWH   (28) 

6.1 Case c=2 

  In this case, we discuss the equation (28) at 0=c , thus it become as a form  

 0=)4( 2

1

2

1 bKWH   (29) 

 By using equation (14), (18) and a manner similar to the previous sections, we can express (29) as the form  

 0.=))(sin)(cos(
36

0=

ivBivA nn

i

  (30) 

 After some computations, the coefficients of equation (30) are 

 ,
2147483648

)()(729
=

8142

36

uura
A


  

 0.=== 353536 BAB  

This gives us one possibility, 0.=)(u  Then  

 0,=...== 253636 BBA  
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))).)()()()()()(6)()((6)())()(

)()(3()()()(2)()()()()((4)()(4

)))()()()(()())()()()(()()()(2 

)()()()()(4()()))()()()((2)()()(3( 

)()()()()(8)()()(16)()()()()(32()(
8388608

6561
=

22222

24222422

222

4222422

3264636
2

24

uruuruuruuurururu

uururuururuukuururuk

uruuurururuuururuur

uruukuurururururuuurur

urukuurukuurukuukuurukur
a

A





















 

Here, we discuss two possibilities 

(i)   0=)(u . Then, one can see that all coefficients are vanished. 

(ii)   0
)(

)()()()(4)()(4
=)(

222

1 


ur

urururukurukC
u , then, we have 

 ,
)))()()()(4)()((1048576(4

)))()()()()(()()(())()()((4)(6561
=

222

22222262

1

2

24
urururukuruk

urukurukururukururukurCa
B




 

also, this gives us two possibilities 

(a)   0=))()()((4 222 ururuk  , i.e. 0,=)(  0,=)( uruk   

this implies 0=)(u , this is contradiction. 

(b)   0.=))()()()()(()()( 2 urukurukururuk   

By solving above deferential equation we get 
)(

)(
=)( 2

ur

urC
uk


, then 

)))).())(4)()41)(((3))()4(3 

)(()()(()(3))()(3)()2))((1()(6)()((2)(2(2

))()()49(1)()()(6)()243((1)())()( 

)49(1)()]()(6)()43((1)())())()41(  

)(4)((3))()()4(3()()(()()(6))()24(1

)()(8)()41(()()((9)()(
2097152

)441(729
=

2

2

2

2

22

222

2

2

222

2

2442

2

222

2

2

244

2

2

2

22

2

2

2

22

222

2

22

2

2224
2

22

2

1

2

22

uruCuCuruCC

uururururururCurururuCu

ururCururururCCuurur

CururururCCuuruC

uCuruuCCururuuruC

uuCuCurururur
CCCa

A




























 

The solution of this deferential equation is very difficult, thus 0=)441( 2

22 CC   i.e., 
2

1

2

1
=2 C  or 0=)(ur , 

in two cases 0=)(u , thus, this is contradiction. 

This leads to the following theorem:  

Theorem 6.2 The kinematic surface generated by an equiform motion of astroid curve is a special Weingarten surface with 

condition 0=bKH   if and only if motion of astroid is in parallel planes.  

6.2 Case c≠0 

By the same way in above subsection, we can express(28) as the following form  
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 0.=))(sin)(cos(
40

0=

ivBivA nn

i

  (31) 

After some computations, the coefficients of equation (31) are 

721374389534

)(6)(6561
=

812

40

uurc
A


  

 0.=== 393940 BAB  

This gives us one possibility 0=)(u  Then 

444266888
2

32 )()()(1120)()()(1792)()((256)(
536870912

6561
= ururukururukurukur

c
A   

),)()()()(112         8622 urururuk   

),)()()()(28)()()(112)()()(64()()(
33554432

6561
= 6422244669

2

32 urururukururukurukururuk
c

B   

By solving these two deferential equations, we obtained 0,=)(   ),(=)( ukconstantrur  

))()()(28)()(70)()(28)((
2097152

6561
= 862442688

2

24 uuuuuuuur
c

A   , 

))()()(7)()(7)()(()(
262144

6561
= 6422468

2

24 uuuuuuuur
c

B   . 

By solving these two equations, we obtained 0,=)(   0,=)( uu   then 

.
8192

))(6561
=

882

16

urc
A


  

Thus, 0=)(u , and therefore, one can see all coefficients are vanished.  

Remark 6.3 The kinematic surface generated by an equiform motion of astroid curve is a special Weingarten surface with 

condition cbKH =  if and only if it has nonzero constant Gaussian and mean curvatures.  

VII. EXAMPLES 

In this section to illustrate our investigation, we give two examples: 

Example 1  (zero Gaussian curvature) : Consider the circle   given by  

 ),0}.(),({=)( usinucosu  

Using (12), (10)and after some computations, we have  

 ),0}.(6),(6{=)( usinucosuc   

Therefore, the representation of the surface generated by the astroid curve is  

),)()()()(()(6{=),( 33 vsinusinvcosucosrucosvuX   

,0})()()(6)()(                    33 vsinucosrusinusinvcosr   

Thus, Fig. 1 displays the surface with zero Gaussian curvature. 
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For geodesic curves on a surface, we give the following example: 

Example 2 (zero geodesic curvature) : Consider the curve   given by  

 ),0}.(3sin),3(3cos{3=)( cuccucu  

 After some computations, we have the representation of the surface generated by the astroid curve as  

),0})(3sin3)(3cos))(3cos3)3(3cos(
4

9
(

27

1

),)(3cos3)(3sin))(3sin3)3(3sin(
4

9
(

27

1
{=),(

21

222

3

21

222

3





cuccuvcuvcubac
c

cuccuvcuvcubac
c

vuX





 

),0},)(3sin3)(3cos)))3((3cos)(4cos(3
4

9
(

27

1

),)(3cos3)(3sin)))3((3sin)(4sin(3
4

9
(

27

1
{=)(

21

222

3

21

222

3





cuccuhcucuhcubac
c

cuccuhcucuhcubac
c

u





 

 

  ,)(sin)(cos49)(sin49

)(7cos1219)(7sin9)(7sin189
149

1
=

22

2224

21

ueufcfuec

cuccbcuaccuac
c







 

  
149

)(sin)(sin49)(cos149)(7sin90)(7cos90
=

2

2233

2




c

ufufcueccubccuac
 . 

The geodesic curves are shown in Figs. 4)(2 . 

 

 

FIGURE  1: THE SURFACE M WITH ZERO GAUSSIAN 

CURVATURE AT 5=r . 

FIGURE  2: THE GEODESIC CURVE 
)(u

 ON THE 

SURFACE M AT 
1====== hfecba

. 

  

FIGURE  3: THE GEODESIC CURVE 
)(u

 ON THE 

SURFACE M AT 
0.1====== hfecba

. 

FIGURE  4: THE GEODESIC CURVE 
)(u

 ON THE 

SURFACE M AT 
0.1===== hfeba

, 0.135=c .  

VIII. CONCLUSION 

In this study, a kinematic surface generated by an equiform motion of astroid curve is considered. Constant Gaussian and 

mean curvatures of such surface are established. Therefore, the surface foliated by equiform motion of astroid curve has a 

constant Gaussian and mean curvatures if motion of astroid is in parallel planes. Moreover, the necessary and sufficient 
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conditions for a curve on the kinematic surface M to be a geodesic are given. Using a new technique which is different from 

that in our papers [18, 19, 20], for SW-surface and it is introduced from a different angle and aspect of [17]. Finally, some 

examples are given. The field is developing rapidly, and there are a lot of problems to be solved and more work is needed to 

establish different results of new kinematic surfaces. 

ACKNOWLEDGEMENTS 

We wish to express our profound thanks and appreciation to professor, Dr.Nassar H. Abdel All, Department of Mathematics, 

Assiut University, Egypt, for his strong support, continuous encouragement, revising this paper carefully and for his helpful 

suggestions. We would like also to thank Dr. Fathi M. Hamdoon, Department of Mathematics, Faculty of Science, Al-Azhar 

University, Assuit branch, Egypt, for his critical reading of this manuscript, helpful suggestions and making several useful 

remarks. 

REFERENCES 

[1] F. M. Hamdoon, Ph. D. Thesis, Math. Dept., Faculty Sci, Assiut University (2004). 

[2] R. L opez, Cyclic surfaces of constant Gauss curvature, Houston Journal of Math., Vol 1. 27, No. 4 (2001), 799-805. 

[3] F. M. Hamdoon, Ahmed T. Ali, Constant scalar curvature of the three dimensional surface obtained by the equiform motion of a 

sphere, International Electronic Jornal of Geometry, Vol 6, No 1, PP: 68-78 (2013). 

[4] B. Riemann, U ber die Fl a chen vom kleinsten Inhalt bei gegebener Begrenzung, Abh. K o nigl. Ges. d. Wissensch. G o ttingen, 

Mathema. Cl. 13, PP: 329-333 (1868). 

[5] A. Enneper, Die cyclischen Flächen,Z. Math.. Phys. 14 (1869), 393-421. 

[6] J.C.C. Nitsche, Cyclic surfaces of constant mean curvature, Nachr. Akad. Wiss. Gottingen Math. Phys, II 1 (1989), 51 . 

[7] C. Delaunay, Sur la surface de revolution dont la courbure moyenne est constant, J. Math. Pure Appl. 6, PP: 309-320, (1841). 

[8] A. Gfrerrer, J. Lang, Equiform bundle motions in E3 with spherical trajectories I, Contributions to Algebra and Geometry, Vol. 39  

No. 2, PP: 307-316, (1998).. 

[9] A. Gfrerrer, J. Lang, Equiform bundle motions in E3 with spherical trajectories II, Contributions to Algebra and Geometry, Vol. 39, 

No. 2, PP: 317-328, (1998). 

[10] A. Karger, Similarity motions in E3 with plane trajectories, Aplikace Math., 26, PP: 194-201, (1981).. 

[11] A. Caylay, On the cyclide, The collected mathematical papers of Arther Cayley, Vol. IX, Cambridge Univ. Press, Cambridge PP: 64-

78, (1896). 

[12] V. Chandru, D. Dutta and C. Hoffmann, On the geometry of Dupin cyclide, Visual Computer 5 PP: 277-290, (1989). 

[13] R. L opez, Cyclic hypersurfaces of constant curvature, Advanced Studies in Pure Mathematics, 34 PP: 185-199, (2002). 

[14] N. H. Abdel-All, Areej A Al-Moneef, Local study of singularities on an equiform motion, Studies in Mathematical Sciences, Vol. 5, 

No. 2 (2012), 26 36. 

[15] B. O  Neill, Elementary Differential Geometry, Academic Press Inc, New York (2006). 

[16] N. H. Abdel-All, Differential Geometry, El-Rushd Publishers, KSA (2008). 

[17] R. López, Special Weingarten surfaces foliated by circles, Monatsh Math 154, PP: 289-302, (2008). 

[18] R. A. Abdel-Baky, H. N. Abd-Ellah, Ruled W-surfaces in Minkowski 3-space R1
3 Arch. Math., Tomus 44 (2008), 251-263.  

[19] R. A. Abdel-Baky, H. N. Abd-Ellah, Tubular surfaces in Minkowski 3-space, J. Adv. Math. Stud. Vol. 7, No. 2 (2014), 1-7.  

[20] H. N. Abd-Ellah, Translation L/W-surfaces in Euclidean 3-space E3, In Press, J. Egyptian Math. Soc. (2015). 


