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Abstract— The presence of cracks on a beam causes changes in the physical properties which introduces flexibility, and 

reduce the natural frequency of the beam. The crack in a structural member always remains open during vibration. However, 

this assumption may not be valid when dynamic loadings are dominant. 

This study is an investigation of the effects of cracks on a cantilever composite beam, made of Aluminium- reinforced GFRP 

and Aluminium reinforced Nylon. . The mechanical properties of aluminum and fibers (Nylon and Glass fiber reinforcement 

polymer) are measured with universal testing machine. The beams are made of Aluminium and synthetic fibers of dimensions 

500x30x6 mm. The Cracks are provided on the cantilever beam which is varying from 10 to 90% of beam length, and we 

investigate the natural frequency of all five mode shapes with zero cracks to ninth cracks on the beam. The finite element 

model agrees well with the analytical values. 

. 
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I. INTRODUCTION 

Vision et al. (1975) have examined that the fibers composite orthotropic material properties exhibit to exemplify its 

suitability in high speed purposes of civil structures and mechanical engineering components [1]. Nikpur et al. (1988) have 

evaluated compliance matrix of composite cracked bodies [2]. Raciti and Kapania (1989) collected a report of developments 

in the vibration analysis of laminated composite beams. Classical laminate plate theory and first order shear deformation 

theory are used for analysis. The assumption of displacements as linear functions of the coordinate in the thickness direction 

has proved to be inadequate for predicting the response of thick laminates [3]. Yuan and Miller (1990) derived a new finite 

element model for laminated composite beams. The model includes sufficient degrees of freedom to allow the cross-sections 

of each lamina to deform into a shape which includes up through cubic terms in thickness co-ordinate. The element 

consequently admits shear deformation up through quadratic terms for each lamina but not interfacial slip or delamination 

[4]. Maiti & Sinha (1994) used higher order shear deformation theory for the analysis of composite beams. Nine noded iso 

parametric elements are used in the analysis. Natural frequencies of composite beam are compared for different stacking 

sequences, different (l/h) ratios and different boundary conditions. They had shown that natural frequency decreases with an 

increase in ply angle and a decrease in (l/h) ratio [5]. Teboub and Hajela (1995) approved the symbolic computation 

technique to analyze the free vibration of generally layered composite beam on the basis of a first-order shear deformation 

theory. The model used considering the effect of poisson effect, coupled extensional, bending and torsional deformations as 

well as rotary inertia [6]. Banerjee (1999) has investigated the free vibration of axially laminated composite Timoshenko 

beams using dynamic stiffness matrix method. This is accomplished by developing an exact dynamic stiffness matrix of a 

composite beam with the effects of axial force, shear deformation and rotatory inertia taken into account. The effects of axial 

force, shear deformation and rotator inertia on the natural frequencies are demonstrated. The theory developed has 

applications to composite wings and helicopter blades [7]. Bassiouni (1999) proposed a finite element model to investigate 

the natural frequencies and mode shapes of the laminated composite beams. The FE model needed all lamina had the same 

lateral displacement at a typical cross-section, but allowed each lamina to rotate to a different amount from the other. The 

transverse shear deformations were included [8]. Kisa (2003) the effects of the location and depth of the cracks, and the 

volume fraction and orientation of the fibers on the natural frequencies and mode shapes of the beam with transverse non-

propagating open cracks, were explored. The results of the study leaded to conclusions that, presented method was adequate 

for the vibration analysis of cracked cantilever composite beams, and by using the drop in the natural frequencies and the 

change in the mode shapes, the presence and nature of cracks in a structure can be detected [9]. Sreekanth et al (2004) have 

studied on composite structure taking into account various forms of transverse cracks like, fibers fracture, matrix cracking 

and surface-breaking cracks with by spectral finite element methods. They established FEM-2D model is more suitable for 

complex cracked beam to detect crack location and crack depth [10]. Jafari and Ahmadian (2007) had done free vibration 

analysis of a cross-ply laminated composite beam on Pasternak Foundation. The model is designed in such a way that it can 
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be used for single-stepped cross-section. For the first time to-date, the same analysis was conducted for a single-stepped LCB 

on Pasternak foundation. Stiffness and mass matrices of a cross-ply LCB on Pasternak foundation using the energy method 

are computed [11]. Ramanamurthy (2008) the cracks can be present in structures due to their limited fatigue strengths or due 

to the manufacturing processes. These cracks open for a part of the cycle and close when the vibration reverses its direction. 

These cracks will grow over time, as the load reversals continue, and may reach a point where they pose a threat to the 

integrity of the structure. As a result, all such structures must be carefully maintained and more generally, SHM denotes a 

reliable system with the ability to detect and interpret adverse “change” in a structure due to damage or normal operation. 

[12]. Lu and Law (2009) the finite beam element was formulated using the composite element method with a one-member–

one-element configuration with cracks where the interaction effect between cracks in the same element was automatically 

included. The accuracy and convergence speed of the proposed model in computation were compared with existing models 

and experimental results. [13]. Gaith (2011) the effects of crack depth and location, fiber orientation, and fiber volume 

fraction on the flexibility and consequently on natural frequency and mode shapes for cracked fiber-reinforced composite 

beams are investigated [14]. Erdelyi et al. (2012) have described mostly composites have different characteristics, such as 

high strength to weight ratio, good buckling resistance, and high stiffness [15]. Mehdi et al (2014) the natural frequency 

found higher in the fifth mode shape for all composite and pure materials [16]. 

Mehdi et al (2014) the maximum strength is found in composite GFRP instead of Aluminium and composite Nylon. 

Composite material has shown an improvement of mechanical properties when compared with individual materials [17] 

II. GOVERNING EQUATION 

The differential equation of the bending of a beam with a mid-plane symmetry (Bij = 0) so that there is no bending-stretching 

coupling and no transverse shear deformation (εxz=0) is given by 

IS11 (d
4
ω/dω

4
) = q (x)       (1) 

It can easily be shown that under these conditions if the beam involves only a one layer, isotropic material, then  

S11=EI=Ebh
3
/12 and for a beam of rectangular cross-section Poisson’s ratio effects are ignored in beam theory, which is in 

the line [18] 

 

In Equation 1, it is seen that the imposed static load is written as a force per unit length. For dynamic loading, if Alembert’s 

Principle are used then one can add a term to Equation.1 equal to the product mass and acceleration per unit length. In that 

case Equation.1 becomes 

IS11[d
4 4

= q(x,t) - 
2 2    

(2) 

where ω and q both become functions of time as well as space, and derivatives therefore become partial derivatives, ρ is the 

mass density of the beam material, and here F is the beam cross- sectional area. In the above, q(x, t) is now the spatially 

varying time-dependent forcing function causing the dynamic response, and could be anything from a harmonic oscillation to 

an intense one-time impact. 

For a composite beam in which different lamina have differing mass densities, then in the above equations use, for a beam of 

rectangular cross-section, 

ρF = ρbh = Σρb (hk – hk-1)       (3) 

However, natural frequencies for the beam occur as functions of the material properties and the geometry and hence are not 

affected by the forcing functions; therefore, for this study let q(x,t) be zero.Thus, the natural vibration equation of a mid-

plane symmetrical composite beam is given by 

IS11[d4
4
]+

2 2
]=0                     (4) 

It is handy to know the natural frequencies of beams for various practical boundary conditions 

in order to insure that no recurring forcing functions are close to any of the natural frequencies, because that would result 

almost certainly in a structural failure. In each case below, the natural frequency in radians /unit time is given as 

 

ωn= α
2
 (IS11 / ρFL

4
)

1/2       
(5) 

Where α
2
 is the co-efficient, which value is catalogued by Warburton, Young and Felgar and once ωn is known then the 

natural frequency in cycles per second (Hertz) is given by fn= ωn /2π, which is in the [21] 

In general, governing equation for free vibration of the beam can be expressed as 

[K]-
2
[M]{q}=0        (6) 
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Where, K = Stiffness matrix 

 M = Mass matrix   , and 

q = degrees of freedom. 

III. RESULT AND DISCUSSION 

The natural frequencies in both the cases either with or without the cracks are compared for the different materials and 

their composites and it had been found that the natural frequency of aluminium is minimum and that of GFRP is highest 

while the natural frequencies of nylon, GFRP composite and Nylon composite lie in between in all mode shapes.  

TABLE 1:- EFFECT ON NATURAL FREQUENCY WITH DIFFERENT CRACK FOR ALUMINIUM BEAM 

                                                                    Aluminium 

  

Cracks  

Natural Frequency 

First 

Mode 

Second 

Mode 

Third 

Mode 

Fourth 

Mode 

Fifth 

Mode 

Beam with 0 Crack 0.28664 1.4253 1.795 5.0215 8.3529 

Beam with 1 Crack 0.28542 1.4227 1.7942 5.028 8.3531 

Beam with 2 Cracks 0.28447 1.4197 1.7945 5.0237 8.335 

Beam with 3 Cracks 0.28148 1.414 1.7877 4.9919 8.2979 

Beam with 4 Cracks 0.28278 1.4156 1.7855 4.9955 8.3117 

Beam with 5 Cracks 0.281 1.413 1.7745 4.9826 8.2783 

Beam with 6 Cracks 0.28264 1.4155 1.7735 4.9899 8.3015 

Beam with 7 Cracks 0.28051 1.4122 1.7596 4.9383 8.2693 

Beam with 8 Cracks 0.2805 1.4126 1.7569 4.9178 8.2689 

Beam with 9 Cracks 0.2806 1.4132 1.7571 4.9152 8.2711 

 

TABLE 2:- EFFECT ON NATURAL FREQUENCY WITH DIFFERENT CRACK FOR GFRP BEAM 

                                                                           GFRP 

 

Cracks 

Natural Frequency 

First 

Mode 

Second 

Mode 

Third 

Mode 

Fourth 

Mode 

Fifth 

Mode 

Beam with 0 Crack 0.37805 1.8816 2.3675 6.6229 11.255 

Beam with 1 Crack 0.37439 1.8737 2.3592 6.6188 11.228 

Beam with 2 Cracks 0.37202 1.8684 2.3592 6.6078 11.203 

Beam with 3 Cracks 0.37112 1.8665 2.3578 6.583 11.18 

Beam with 4 Cracks 0.3702 1.8645 2.3497 6.5684 11.162 

Beam with 5 Cracks 0.37047 1.8651 2.3399 6.5706 11.154 

Beam with 6 Cracks 0.36943 1.863 2.3269 6.5503 11.143 

Beam with 7 Cracks 0.36981 1.8641 2.3197 6.5104 11.142 

Beam with 8 Cracks 0.36981 1.8645 2.3163 6.4834 11.141 

Beam with 9 Cracks 0.36993 1.8654 2.3165 6.4798 11.144 
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TABLE 3:- EFFECT ON NATURAL FREQUENCY WITH DIFFERENT CRACK FOR COMPOSITE GFRP BEAM 

                                                              Composite GFRP 

 Cracks  

Natural Frequency 

First 

Mode 

Second 

Mode 

Third 

Mode 

Fourth 

Mode 

Fifth 

Mode Beam with 0 Crack 0.30496 1.5524 1.9097 5.3429 8.9061 

Beam with 1 Crack 0.30213 1.5464 1.9033 5.3396 8.8858 

Beam with 2 Cracks 0.3003 1.5424 1.9033 5.3314 8.8659 

Beam with 3 Cracks 0.29956 1.5408 1.9023 5.3124 8.8488 

Beam with 4 Cracks 0.29885 1.5393 1.896 5.301 8.8345 

Beam with 5 Cracks 0.29906 1.5398 1.8886 5.3027 8.8287 

Beam with 6 Cracks 0.29827 1.5382 1.8785 5.2872 8.8208 

Beam with 7 Cracks 0.29857 1.5391 1.873 5.2567 8.8201 

Beam with 8 Cracks 0.29858 1.5396 1.8702 5.2353 8.8202 

Beam with 9 Cracks 0.29871 1.5404 1.8705 5.2326 8.8231 

 

TABLE 4:- EFFECT ON NATURAL FREQUENCY WITH DIFFERENT CRACK FOR NYLON BEAM 

                                                                    Nylon 

 Cracks  

Natural Frequency 

First 

Mode 

Second 

Mode 

Third 

Mode 

Fourth 

Mode 

Fifth 

Mode Beam with 0 Crack 0.34655 1.72 2.1701 6.0716 9.7726 

Beam with 1 Crack 0.34342 1.7132 2.1627 6.0672 9.7495 

Beam with 2 Cracks 0.3414 1.7087 2.1627 6.0584 9.7273 

Beam with 3 Cracks 0.34058 1.7069 2.1615 6.0373 9.7081 

Beam with 4 Cracks 0.33977 1.7051 2.1546 6.0243 9.6918 

Beam with 5 Cracks 0.34003 1.7058 2.1465 6.0265 9.6851 

Beam with 6 Cracks 0.33914 1.7039 2.1353 6.0092 9.6759 

Beam with 7 Cracks 0.33948 1.7049 2.1297 5.9765 9.6747 

Beam with 8 Cracks 0.33947 1.7053 2.1262 5.952 9.6742 

Beam with 9 Cracks 0.3396 1.7061 2.1265 5.949 9.6769 

 

TABLE 5:- EFFECT ON NATURAL FREQUENCY WITH DIFFERENT CRACK FOR COMPOSITE NYLON BEAM 

                                                           Composite Nylon 

Cracks 

Natural Frequency 

First 

Mode 

Second 

Mode 

Third 

Mode 

Fourth 

Mode 

Fifth 

Mode 

Beam with 0 Crack 0.31648 1.4824 1.9814 5.5406 9.0497 

Beam with 1 Crack 0.31324 1.475 1.974 5.537 9.0293 

Beam with 2 Cracks 0.31118 1.4702 1.974 5.5279 9.0077 

Beam with 3 Cracks 0.31043 1.4685 1.9729 5.5073 8.9889 

Beam with 4 Cracks 0.30964 1.4666 1.9661 5.4949 8.9733 

Beam with 5 Cracks 0.30992 1.4673 1.958 5.497 8.9674 

Beam with 6 Cracks 0.30898 1.4653 1.9466 5.4793 8.9587 

Beam with 7 Cracks 0.30934 1.4663 1.9407 5.4458 8.9583 

Beam with 8 Cracks 0.30936 1.4668 1.9375 5.4222 8.9583 

Beam with 9 Cracks 0.3095 1.4676 1.9378 5.4192 8.9615 
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(a)          (b) 

   

(c)        (d) 

 

(e) 

FIGURE 1:- VARIATION BETWEEN NATURAL FREQUENCY AND CRACK LOCATION (A) MODE-1, (B) MODE-2, (C) MODE-3, (D) MODE-4, (E) 

MODE-5 

Figure-1 Shows the variation of natural f req uency and  c rack loca t io n  of composite cantilever beam made of Al-
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GFRP-Al, Al-Nylon-Al, GFRP, Nylon, and Aluminum. In this figure it can be concluded that the natural 

frequency decreases when we increase the number of cracks. The main motive of this paper is to decrease 

the natural frequency of the beam. The natural frequency of Nylon and GFRP is high in all modes of 

vibration as shown in table 2 and 4, for decrease this natural frequency we made the composite beam with 

aluminum and found that the natural frequency with or without crack was decreases. The minimum 

natural frequency was found in Aluminum in mode-1 i.e 0.2806 Hz with 9 crack while maximum natural 

frequency was found in GFRP in mode-5 i.e.  11.255 Hz in No Crack 

IV. CONCLUSION 

 The Natural frequency of GFRP and Nylon is much higher, but when they are bonded with aluminium then their 

natural frequencies decrease in all modes of vibration. 

 The natural frequencies of GFRP and Nylon in first mode of vibrations with 9 cracks are 0.36993Hz and 0.3396 Hz 

and when they bonded with aluminium then their natural frequency decreases i.e. 0.2987 Hz, and 0.3095 Hz 

 It has been observed that when number of cracks increases the natural frequencies decreases. 
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