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Abstract— This paper deals with removal of haze using color attenuation prior. It will helps for dehazing single image. For 

dehazing linear model is used. It is based on atmospheric scattering model. In this technique saturation and brightness 

values of an image is considered. It is less time consuming algorithm and also it has greater dehazing effects. Also varying 

scattering coefficient is used for dehazing purpose. With the depth map of the hazy image, we can smoothly surmise the 

transmission and give back  the scene radiance via the atmospheric scattering model, and thus effectively remove the haze 

from a single image. It can implement very easily. 
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I. INTRODUCTION 

Outdoor images taken in bad weather (e.g., foggy or hazy) usually lose contrast and color fidelity, resulting from the fact that 

light is absorbed and scattered by the turbid medium such as particles and water droplets in the atmosphere during the 

process of propagation. Moreover, most automatic systems, which strongly depend on the definition of the input images, fail 

to work normally caused by the degraded images. Therefore, improving the technique of image haze removal will benefit 

many image understanding and computer vision applications such as aerial imagery, image classification, image/video 

retrieval, remote sensing and video analysis and recognition. Since concentration of the haze is different from place to place 

and it is hard to detect in a hazy image, image dehazing is thus a challenging task.  

In almost every practical scenario the light reflected from a surface is scattered in the atmosphere before it reaches the 

camera. This is due to the presence of aerosols such as dust, mist, and fumes which deflect light from its original course of 

propagation. In long distance photography or foggy scenes, this process has a substantial effect on the image in which 

contrasts are reduced and surface colors become faint. Such degraded photographs often lack visual vividness and appeal, 

and moreover, they offer a poor visibility of the scene contents. This effect may be an annoyance to amateur, commercial, 

and artistic photographers as well as undermine the quality of underwater and aerial photography. This may also be the case 

for satellite imaging which is used for many purposes including cartography and web mapping, land-use planning, 

archeology, and environmental studies. 

Early researchers use the traditional techniques of image processing to remove the haze from a single image (for instance, 

histogram-based dehazing methods ([4], [5]). However, the dehazing effect is limited, because a single hazy image can 

hardly provide much information. Later, researchers try to improve the dehazing performance with multiple images. In [4] 

and [7], polarization based methods are used for dehazing with multiple images which are taken with different degrees of 

polarization. It is based on the fact that usually airlight scattered by atmospheric particles is partially polarized. Polarization 

filtering alone cannot remove the haze effects, except in restricted situations. Our method, however, works under a wide 

range of atmospheric and viewing conditions. We analyze the image formation process, taking into account polarization 

effects of atmospheric scattering.  

In Chromatic Framework method [8], propose haze removal approaches with multiple images of the same scene under 

different weather conditions. In this develop a general chromatic framework for the analysis of images taken under poor 

weather conditions. The wide spectrum of atmospheric particles makes a general study of vision in bad weather hard. So, we 

limit ourselves to weather conditions that result from fog and haze. We begin by describing the key mechanisms of 

scattering. Next, we analyze the dichromatic model proposed, and experimentally verify it for fog and haze. Then, we derive 

several useful geometric constraints on scene color changes due to different but unknown atmospheric conditions.  

In Dark Channel Prior method [9], proposes a simple but effective image prior dark channel prior to remove haze from a 

single input image. The dark channel prior is a kind of statistics of outdoor haze-free images. It is based on a key observation 

most local patches in outdoor haze-free images contain some pixels whose intensity is very low in at least one color channel. 
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Using this prior with the haze imaging model, we can directly estimate the thickness of the haze and recover a high-quality 

haze-free image. Results on a variety of hazy images demonstrate the power of the proposed prior. Moreover, a high-quality 

depth map can also be obtained as a byproduct of haze removal. The dark channel prior is based on the statistics of outdoor 

haze-free images. 

In method proposed by T. Tan [10], It is automated method. This method is based on two basic observations: first, images 

with enhanced visibility (or clear-day images) have more contrast than images plagued by bad weather; second, airlight 

whose variation mainly depends on the distance of objects to the viewer tends to be smooth. Relying on these two 

observations, we develop a cost function in the framework of Markov random fields, which can be efficiently optimized by 

various techniques, such as graph-cuts or belief propagation.      

In this paper, we propose a novel color attenuation prior for single image dehazing. This simple and powerful prior can help 

to create a linear model for the scene depth of the hazy image. By learning the parameters of the linear model with a 

supervised learning method, the bridge between the hazy image and its corresponding depth map is built effectively. With the 

recovered depth information, we can easily remove the haze from a single hazy image. The efficiency of this dehazing 

method is dramatically high and the dehazing effectiveness is also superior to that of prevailing dehazing algorithms 

II. METHODOLOGY 

a. Atmospheric Scattering Model 

To describe the formation of a hazy image, the atmospheric scattering model, which is widely used in computer vision and 

image processing? The model can be expressed as follows: 

))(1()()()( xtxtxx  AJI          (2.1) 

     

)()( xdext             (2.2) 

        

Where x is the position of the pixel within the image, I is the hazy image, J is the scene radiance representing the haze-free 

image, A is the atmospheric light, t is the medium transmission, β is the scattering coefficient of the atmosphere and d is the 

depth of scene. I, J and A are all three-dimensional vectors in RGB space. Since I is known, the goal of dehazing is to 

estimate A and t, then restore J according to Equation 2.1. It is worth noting that the depth of the scene d is the most 

important information. Since the scattering coefficient β can be regarded as a constant in homogeneous atmosphere 

condition, the medium transmission t can be estimated easily according to Equation 3.2 if the depth of the scene is given. 

Moreover, in the ideal case, the range of d(x) is [0,+∞) as the scenery objects that appear in the image can be very far from 

the observer, and we have: 

AI )(x           )(xd          (2.3) 

b. Color Attenuation Prior 

To detect or remove the haze from a single image is a challenging task in computer vision, because little information about 

the scene structure is available. In spite of this, the human brain can quickly identify the hazy area from the natural scenery 

without any additional information. This inspired us to conduct a large number of experiments on various hazy images to 

find the statistics and seek a new prior for single image dehazing. Interestingly, we find that the brightness and the saturation 

of pixels in a hazy image vary sharply along with the change of the haze concentration. 

Fig. 2.1 gives an example with a natural scene to show how the brightness and the saturation of pixels vary within a hazy 

image. As illustrated in Fig. 2.1(d), in a haze-free region, the saturation of the scene is pretty high, the brightness is moderate 

and the difference between the brightness and the saturation is close to zero. But it is observed from Fig. 2.1(c) that the 

saturation of the patch decreases sharply while the color of the scene fades under the influence of the haze, and the brightness 

increases at the same time producing the high value of the difference. Furthermore, Fig. 2.1(b) shows that in a dense-haze 

region, it is more difficult for us to recognize the inherent color of the scene, and the difference is even higher than that in 

Fig. 2.1(c). It seems that the three properties (the brightness, the saturation and the difference) are prone to vary regularly in a 

single hazy image according to this observation. 
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FIGURE 2.1: THE CONCENTRATION OF THE HAZE IS POSITIVELY CORRELATED WITH THE DIFFERENCE 

BETWEEN THE BRIGHTNESS AND THE SATURATION. (A) A HAZY IMAGE. (B) THE CLOSE-UP PATCH OF A 

DENSE-HAZE REGION AND ITS HISTOGRAM. (C) THE CLOSE-UP PATCH OF A MODERATELY HAZY REGION 

AND ITS HISTOGRAM. (D) THE CLOSE-UP PATCH OF A HAZE-FREE REGION AND ITS HISTOGRAM. 

In the haze-free condition, the scene element reflects the energy that is from the illumination source (e.g., direct sunlight, 

diffuse skylight and light reflected by the ground), and little energy is lost when it reaches the imaging system. The imaging 

system collects the incoming energy reflected from the scene element and focuses it onto the image plane. Without the 

influence of the haze, outdoor images are usually with vivid color. In hazy weather, in contrast, the situation becomes more 

complex. There are two mechanisms (the direct attenuation and the airlight) in imaging under hazy weather.  

On one hand, the direct attenuation caused by the reduction in reflected energy leads to low intensity of the brightness. To 

understand this, we review the atmospheric scattering model. The term J(x)t(x) in Equation 2.1 is used for describing the 

direct attenuation. It reveals the fact that the intensity of the pixels within the image will decrease in a multiplicative manner. 

So it turns out that the brightness tends to decrease under the influence of the direct attenuation. On the other hand, the white 

or gray airlight, which is formed by the scattering of the environmental illumination, enhances the brightness and reduces the 

saturation. We can also explain this by the atmospheric scatter model. 

The rightmost term A(1 − t(x)) in Equation 3.1 represents the effect of the airlight. It can be deduced from this term that the 

effect of the white or gray airlight on the observed values is additive. Thus, caused by the airlight, the brightness is increased 

while the saturation is decreased. Since the airlight plays a more important role in most cases, hazy regions in the image are 

characterized by high brightness and low saturation. Whats more, the denser the haze is, the stronger the influence of the 

airlight would be. This allows us to utilize the difference between the brightness and the saturation to estimate the 

concentration of the haze. 

Since the concentration of the haze increases along with the change of the scene depth in general, we can make an 

assumption that the depth of the scene is positively correlated with the concentration of the haze and we have: 

)()()()( xsxvxcxd          (2.4) 

Where d is the scene depth, c is the concentration of the haze, v is the brightness of the scene and s is the saturation. We 

regard this statistics as color attenuation prior 
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FIGURE 2.2: FLOWCHART OF PROPOSED METHOD 

c. Scene Depth Restoration 

i. The Linear Model Definition 

As the difference between the brightness and the saturation can approximately represent the concentration of the haze, we 

can create a linear model, i.e., a more accurate expression, as follows: 

)()()()( 210 xxsxvxd           (2.5) 

Where x is the position within the image, d is the scene depth, v is the brightness component of the hazy image, s is the 

saturation component, θ0, θ1,θ2 are the unknown linear coefficients, ε(x) is a random variable representing the random error 

of the model, and ε can be regarded as a random image. Gaussian density for ε with zero mean and variable 2 . 

As for the linear coefficients θ0, θ1,θ2 we use the gradient descent algorithm to estimate their values. By taking the partial 

derivatives of ln L with respect to θ0, θ1,θ2 respectively, The expression for updating the linear coefficients are also given 

below: 
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There are many epochs are used in our case, and the best learning result is that θ0 = 0.121779, θ1 = 0.959710, θ2 = 0.780245, 

σ = 0.041337. Once the values of the coefficients have been determined, they can be used for any single hazy image. These 

parameters will be used for restoring the scene depths of the hazy images in this paper. 
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ii. Estimation of the Depth Information 

As the relationship among the scene depth d, the brightness v and the saturation s has been established and the coefficients 

have been estimated, we can restore the depth map of a given input hazy image according to Equation  2.5. However, this 

model may fail to work in some particular situations. For instance, the white objects in an image are usually with high values 

of the brightness and low values of the saturation. Therefore, the proposed model tends to consider the scene objects with 

white color as being distant. Unfortunately, this misclassification will result in inaccurate estimation of the depth in some 

cases. 

To overcome this problem, we need to consider each pixel in the neighbourhood. Based on the assumption that the scene 

depth is locally constant, we process the raw depth map by: 

)()( )( ydmedianxd xyr r          (2.10)                                                                          

Where Ω r (x) is an r× r neighbourhood cantered at x, and. dr is the depth map with scale r The new depth map d15 can well 

handle the geese regions. 

iii. Guided Image Filtering 

In some cases, the blocking artifacts appear in the image. To refine the depth map, we use the guided image filtering [2] to 

smooth the image. As can be seen, the blocking artifacts are suppressed effectively. haze-free images and their estimated 

depth maps. As can be seen, the restored depth maps have darker color in haze- free regions while having lighter color in 

dense-haze regions as expected. With the estimated depth map, the task of dehazing is no longer difficult. These filtering 

operations have good edge preserving property. The equation for the calculation of filtered output given as: 

iiii bIaq             (2.11) 

Where qi is filtered output, Ii is guidance image and ia  and ib  are linear coefficients. Linear coefficients values are 

calculated by using input image and guidance image by some sort of processing such as mean, variance, covariance values 

etc. 

d. Transmission Map Estimation 

Transmission Map (t) can be calculated by using the equation 3.2. In that equation β is atmospheric scattering coefficient 

value and d(x) is scene depth value after Guided Image Filtering. In the previous works constant β value is used. But in our 

method varying scattering coefficient matrix is used. It will create according to the haze concentration in the scene depth 

image. The transmission maps have effects on direct attenuation along with haze free image. The calculation of scattering 

coefficient matrix is given below. 

i. Scattering Coefficient Matrix Generation 

Scattering coefficient matrix is created according to the haze concentration in the image. For the visible light spectrum, the 

relationship between the scattering coefficient β, and the wavelength λ, is given by the inverse power law. β does not change 

appreciably with wavelength (analogous to Rayleighs law for small air particles)[5].Equation to calculate the scattering 

coefficient matrix is given below as: 




C

K
)(             }4,3,2,1,0{         (2.12)                                                           

γ value is chosen according to the haze concentration scene depth image. If the pixel intensity value is high in the scene depth 

image, then the value of γ should be zero. If the intensity value is low, then the γ value is four. K and C are fixed values. 

e. Estimation Of Atmospheric Light 

We have explained the main idea of estimating the atmospheric light in Section 2.1. In this section, we describe the method 

in more detail. As the depth map o the input hazy image has been recovered, the distribution of the scene depth is known. It 

shows the estimated depth map of a hazy image. Bright regions in the map stand for distant places. According to Equation 

given below as: 
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)()(|{),( xdydxxx  IA          (2.13)                                                               

From it, pick the top 0.1 percent brightest pixels in the depth map, and select the pixel with highest intensity in the 

corresponding hazy image I among these brightest pixels as the atmospheric light A.    

f. Scene Radiance Recovery       

Now that the depth of the scene d and the atmospheric light A are known, we can estimate the medium transmission t easily 

according to Equation 2.2 and recover the scene radiance J in Equation 2.1. For convenience, we rewrite Equation 2.1 as 

follows:         
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Where J is the haze-free image we want. For avoiding producing too much noise, we restrict the value of the transmission t 

(x) between 0.1 and 0.9. So the final function used for restoring the scene radiance J in the proposed method can be 

expressed by:     
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III. EXPERIMENTAL RESULTS 

This algorithm is mainly based on the concept of color attenuation prior; in this technique difference between saturation and 

brightness values of a given image is considered. According to the equation 3.1 haze removal is possible only when if we 

know the values I, A and t. Value of I is already given, it is hazy input image. Other parameters are calculated by using color 

attenuation prior technique. 

First of all we have to calculate the value of t according to the equation 3.2. In that equation scene depth d(x) is calculated by 

using color attenuation prior. β is scattering coefficient value which is constant for homogeneous condition. In order to 

calculate the value of d(x). 

Here considered a linear model given in the equation 3.5. Linear model calculates the scene depth image using the linear 

coefficients and random error. In linear model saturation and brightness values are considered. To obtain saturation and 

brightness values convert RGB hazy image into HSV color space. Then saturation and brightness values are obtained. Using 

this values scene depth is calculated using linear model. This model has some parameters, these values learned by using 

supervised learning method. For the calculation of linear model more than hundred images are considered. 

Depth obtained using linear model should be modified for further processing. Firstly, modify the raw depth image using 

median filtering operation to avoid misclassification results due to white objects. This resulted image further used for the 

calculation atmospheric light calculation. This same raw depth image then smoothened using Guided Image Filtering (GIM) 

[2]. This guided image filtering not only smoothens the raw depth image but also avoids blocking artifacts in image. Filtering 

output is linear transform of guidance image. For the calculation of guided image filtering two images are used one is input 

image and guidance image. Here input image is scene depth image and guidance image is another version of input image. 

That is input hazy image in this case is taken as guidance image. 

Next aim is to calculate the value of atmospheric light. For that considers modified raw depth image. In that, finds the 

location in modified raw depth image that have 0.1 percent brightest pixel values. Then finds corresponding locations in the 

input hazy RGB image. From these locations finds the brightest pixel values in each color channel. For doing this inbuilt 

function sort is used. Three values corresponding to each color channels. These three values is consider as the atmospheric 

light values. 

Now we have to calculate transmission map t by using the smoothened depth valued(x) and β value. Calculation of 

smoothened depth value is already discussed. scattering coefficient matrix is generated according to the concentration of haze 

in the scene depth image. Calculation of the scattering coefficient matrix is based on the equation 3.11. In that equation C 

=1.44 is the fixed value and the constant value is 1.2. Finally, scene radiance is recovered by using the values of I, A and t. 

These values are given to equation 3.13 to get haze free images. We can also use the equation 3.14. This equation more 

effectively remove noise from the image. 
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FIGURE 3.1: RESULTS OF WORK:(A)INPUT HAZY IMAGE (B)RAW DEPTH IMAGE (C)MODIFIED RAW DEPTH 

IMAGE (D)SMOOTHENED DEPTH IMAGE (E) TRANSMISSION MAP (F) HAZE-FREE IMAGE 

IV. PERFORMANCE EVALUATION 

In order to verify the effectiveness of the proposed dehazing method, we test it on various hazy images and compare with He 

et al.s [9], Tarel et al.s [19], Nishino et al.s [21] and quingsong [1] methods. All the algorithms are implemented in the 

MatlabR2013a environment on a I3 -3.30GHz PC with 4GB RAM. The parameters used in the proposed method are 

initialized as follows: r = 15, θ0 = 0.121779, θ1 = 0.959710, θ2 = -0.780245 and σ = 0.041337. 

In order to quantitatively assess and rate the algorithms, we calculate the mean squares error (MSE)[1], the structural 

similarity (SSIM) [20] and peak signal to noise ratio (PSNR) are considered. Let as consider each performance evaluation in 

detail. The MSE of each result can be calculated by the following equation: 

 
},,{

2

3

1

gbrc

cc

N
e GJ      (4.1) 

Where J is the dehazed image, G is the ground truth image, Jc represents a color channel of J, Gc represents a color channel 

of G, N is the number of pixels within the image G, and e is the MSE measuring the difference between the dehazed image J 

and the ground truth image G. Note that J and G have the same size since they are corresponding with the hazy image I. 

Given J and G, a low MSE represents that the dehazed result is satisfying while a high MSE means that the dehazing effect 

is not acceptable. 

The structural similarity (SSIM) image quality assessment index [] is introduced to evaluate the ability to preserve the 

structural information of the algorithms. A high SSIM represents high similarity between the dehazed image and the ground 

truth image, while a low SSIM conveys the opposite meaning. The luminance of the surface of an object being observed is 

the product of the illumination and the reflectance, but the structures of the objects in the scene are independent of the 

illumination. Consequently, to explore the structural information in an image, we wish to separate the influence of the 

illumination. We define the structural information in an image as those attributes that represent the structure of objects in the 

scene, independent of the average luminance and contrast. Since luminance and contrast can vary across a scene, we use the 

local luminance and contrast for our definition. 
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FIGURE 4.1: DIAGRAM OF THE STRUCTURAL SIMILARITY (SSIM) MEASUREMENT SYSTEM. 

The system diagram of the proposed quality assessment system is shown in Fig.4.1. Suppose and are two nonnegative image 

signals, which have been aligned with each other (e.g., spatial patches extracted from each image). The system separates the 

task of similarity measurement into three comparisons: luminance, contrast and structure. Here we calculate structural 

similarity between dehazed image and ground truth image. The equation for the calculation of SSIM is given here as: 
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If we consider one of the signals to have perfect quality, then the similarity measure can serve as a quantitative measurement 

of the quality of the second signal. In the above equation C1 and C2 are the constants. Its values are C
1
=(0.01* L)

2
 and 

C2=(0.03 * L)
2
 (default values), L is dynamic range and its value is 255 (for 8-bit grayscale image). 

The third quality assessment method is based on peak signal to noise ratio (PSNR). This value is calculated by using the 

results of MSE. If the PSNR value is high, then the dehazed image has close similarity with ground truth image. If its value is 

low, opposite effect is obtained. The equation for the calculation of PSNR value is given here as: 


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2

10

256
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FIGURE 4.2: MEAN SQUARED ERROR (MSE) OF DIFFERENT ALGORITHMS 

In the Fig. 4.2, we can see that a slight performance improvement in the cases of our method and previous method quingsong 

method. Both these method have MSE values less than one. Nishino et.al method have large MSE value, so it have less 

performance. He et.al method also have MSE value less one. It also shows better dehazing effects but its effect is less than 

our method according to MSE. 
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FIGURE 4.3: PEAK SIGNAL TO NOISE RATIO (PSNR) OF DIFFERENT ALGORITHMS 

The Fig. 4.3 shows the comparison of different algorithm with our method based on PSNR values. From the figure, we can 

analyze that the PSNR values of our method and quingsong method are greater than fifty. But by close analysis we can find 

that our method is slightly better than quingsong method. Remaining methods have PSNR value less than our method. 

 
FIGURE 4.4: STRUCTURAL SIMILARITY (SSIM) OF DIFFERENT ALGORITHMS 

The structural similarity also calculated for different algorithm with our algorithm in Fig. 4.4. By comparing the values three 

algorithms have SSIM values greater than 0.8. But our algorithm shows Structural Similarity values greater than 0.9. Nishino 

etal shows lower values for structural similarity. By comparing the values MSE, PSNR and SSIM values our algorithm 

shows better performance. In future, we can use this algorithm for removing haze from live video inputs. We can implement 

this algorithm in vehicles while travelling through the hazy hill stations. 

Now we are going to qualitative comparison of different algorithm with our algorithm. This qualitative comparison also done 

on the basis of ground truth image. Fig. 4.5 shows the qualitative comparison different algorithms. From this figure we can 

say that 4.5 (d), 4.5 (e) and 4.5 (f) shows better performance which is very close to ground truth values.   

 

 
FIGURE 4.5: QUALITATIVE COMPARISON: (a) Hazy images (b) Tarel et. al. s method. (c) Nishino et. al. s 

method. (d) He et al.s method. (e) qingsong method. (f) Proposed method. (g) Ground truth image. 



International Journal of Engineering Research & Science (IJOER)                       ISSN: [2395-6992]                   [Vol-3, Issue-6, June- 2017] 

Page | 42  

  

V. CONCLUSION 

In this paper, we have proposed a novel linear color attenuation prior, based on the difference between the brightness and the 

saturation of the pixels within the hazy image. By creating a linear model for the scene depth of the hazy image with this 

simple but powerful prior and learning the parameters of the model using a supervised learning method, the depth 

information can be well recovered. The scene radiance of the hazy image can be recovered easily. Very simple smoothing 

operations are required for getting modified scene depth image. Simple linear model equations are used for scene depth 

calculation and the required terms are recovered from the linear model and the scene recovery became easier. Equations for 

scene depth recovery are derived from the atmospheric scattering model. Instead of using fixed value scattering coefficient, a 

scattering coefficient matrix is generated. It can be used only for color images. Dense haze and fog cannot be removed by 

this method. This simple algorithm can implemented effectively for outdoor images. images used effectively. As a future 

work this algorithm can be extended to videos also and can also be used for vehicles travelling in foggy conditions. 
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