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Abstract— The paper extends study of dipole-exchange spin waves in a ferromagnetic nanotube with a circular cross-

section started by the author in the previous paper. The proposed model considers the magnetic dipole-dipole interaction, the 

exchange interaction, the anisotropy effects, the damping effects, the general boundary conditions and the existence of both 

volume and surface modes for the considered spin waves. Therefore, a new method of obtaining the values’ spectrum of the 

orthogonal (to the translation axis) wavenumbers for the investigated spin waves is proposed in addition to the previously 

obtained dispersion law. The method is based on the application of general boundary conditions for the magnetic field on a 

superposition of the above-mentioned modes. The obtained spectrum is shown to be a quasi-one-dimensional one – similar to 

that in a thin ferromagnetic field – for typical ferromagnetic nanotubes. Exploitation of the above-mentioned method 

essentially extends the area of application of the obtained results compared to the previous paper.  
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I. INTRODUCTION 

At the present time, a variety of actual and prospective technologies are based on the applications of spin waves in 

nanosystems. In particular, such waves are promising for application in information technologies – for creating new data 

storage [1], transfer [1,2] and processing [3] devices. One of the key problems for developing such technologies is theoretical 

modeling of spin-wave processes in these nanosystems. Such modeling is required not only for direct applications of spin 

waves, but also for synthesizing materials with preset magnetic properties because these properties are often influenced by 

spin-wave processes. This modeling, in turn, requires deeper understanding of the corresponding processes in magnetic 

nanosystems. In the proposed paper, one of the problems of the above-described type is solved. 

It has been shown by numerous studies that the properties of nanosystems – in particular, spin-wave properties – depend 

essentially on their size and shape. Unfortunately, a general theory of spin waves in magnetic nanosystems has not been 

created at the moment. Therefore, spin waves in nanosystems of different geometries are studied separately. Among the 

variety of magnetic nanosystems of different configurations, a special class is represented by shell-type ferromagnetic 

nanosystems (nanoshells, nanotubes and others). These nanosystems exhibit unique – not inherent to traditional continuous 

nanosystems – magnetic properties that are prospective for numerous technical applications. For instance, magnetic 

properties of such nanosystems can be regulated more flexibly than properties of corresponding continuous nanosystems. 

However, such nanosystems remain poorly researched at the moment. In particular, study of spin waves in synthesized 

recently magnetic nanotubes [4] represents an actual topic of research. 

The paper continues the study of dipole-exchange spin waves in a ferromagnetic nanotube with a circular cross-section 

started by the author in the papers [5,6]. In the study, the magnetic dipole-dipole interaction, the exchange interaction, the 

anisotropy effects and the damping effects are considered. In the previous papers of the author [5,6], a dispersion relation for 

the above-described spin waves has been obtained. However, for complete description of the considered waves, this relation 

should be complemented by either a relation between the wavenumber components or values’ spectrum of the orthogonal (to 

the tube axis) wavenumber component. For the most nanosystems, that represents more challenging task than just finding the 

dispersion relation. Moreover, for thin films and nanotubes one should consider existence of both volume and surface modes 

that are, generally speaking, hybridized in the considered cases. In the papers [5,6], only a volume spin wave mode has been 

considered and the above-mentioned spectrum has been obtained only for a very specific particular case (the material outside 

the nanotube has been assumed to be a high-conductivity metal) thus essentially limiting the area of application of the entire 

obtained result. The proposed paper overcomes this limitation by considering both modes’ types and applying a different – 

essentially more general – method of obtaining the above-mentioned spectrum. As a result, the obtained values’ spectrum of 

the orthogonal wavenumber component has an essentially wider range of applications. The obtained spectrum of 

wavenumbers is shown to have a quasi-one-dimensional form for the considered (thin) nanotubes. 
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II. PROBLEM STATEMENT. MODEL DESCRIPTION 

Let us consider a ferromagnetic nanotube – with a circular cross-section – composed of a uniaxial ferromagnet of the "easy 

axis" type. Let us denote the ferromagnet parameters as follows: the exchange constant , the uniaxial anisotropy parameter 

β, the gyromagnetic ratio γ, the ground state magnetization 
0M


 (is considered constant inside the tube), the dissipation 

parameter G (the Hilbert term is used for consideration of the dissipation), the external magnetic field )(

0

eH


 (is also 

considered constant). We assume that both the easy magnetization axis (with the direction unit vector n


) and the external 

magnetic field inside the tube are directed along the tube translation axis – the axis Oz. Therefore, the ground state 

magnetization is also directed along Oz. Let us denote the internal tube radius a and the external radius b (see Fig.1.). 

 
FIGURE 1. The nanotube that is studied in the paper. 

Let us consider a spin wave propagating in the above-described nanotube. The magnetization m


 and the magnetic field h


 of 

the wave are assumed to be small perturbations of the overall magnetization M


 and the magnetic field inside the 

ferromagnet 
 iH


, correspondingly (linear wave). Thus, the relations 

0Mm


 , )(

0

iHh


  fulfill, where )(

0

iH


 is the 

ground state internal magnetic field (so that mMM


 0
,     hHH ii


 0

). Let us consider the fact that for such spin 

waves, both volume and surface modes exist. The latter can make an essential contribution into spin-wave properties of the 

considered thin tube. Let us find the dispersion relation and the values’ spectrum of the orthogonal (to the Oz axis) 

wavenumber for such linear spin waves. 

For the investigated spin excitation, let us use the magnetostatic approximation, assuming that the magnetic potential Φ exists 

and, therefore, h


. After introducing amplitudes 
0m


, 

0h


 for the magnetization and the magnetic field perturbations, 

correspondingly (so that      tirmtrm exp, 0


 ,      tirhtrh exp, 0


 , where ω is the wave frequency), we can write 

down the following relations for the magnetic potential: 
00 h


,  tiexp0 . The outside material is considered 

non-magnetic so the relations 00 m


, ΔΦ0=0 fulfill outside the investigated ferromagnet. After combining the linearized 

Landau-Lishitz equation with the Maxwell equation   MdivHdiv i


4  the following starting system of equations can be 

written (see [5,6]): 
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here the cylindrical coordinates (,θ,z) are used. After considering the fact that for the considered nanosystem symmetry 
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   (here N̂  is the demagnetizing coefficients tensor) and eliminating the magnetization amplitude 

in (1), the following equation for the magnetic potential of the investigated waves can be obtained (see [5,6]): 
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The equation (2) should be complemented with the boundary conditions for the magnetic field. Analogously to the case of 

the ferromagnetic nanoshell (see the previous paper of the author [10]) let us assume that standard boundary conditions fulfill 

for the ground state magnetization and the magnetic field. Therefore, b1n=b2n, h1τ=h2τ on the boundary of the considered 

ferromagnet (here medium 1 is the ferromagnet, medium 2 is the external medium, n means normal and τ – tangential to the 

boundary vector component, b


 is the magnetic induction vector of the wave). For the vectors h


, m


 one can obtain 

h1n-h2n=4πmn, h1τ=h2τ (as the outside environment is non-magnetic). From these conditions and the condition of the potential 

continuity on the ferromagnet boundary, the following relations for the magnetic potential imply: 

2010  ,    
 2010  , 

nm
nn

0

2

0

1

0 4








.       (3) 

As the conditions (3) contain not only the magnetic potential, but also a normal component of the magnetization of the wave, 

boundary conditions for the magnetic potential should be implied in addition to (3). However, as it will be shown further, for 

the considered nanosystem the sought orthogonal wavenumber spectrum does not depend on these conditions. 

The system (2) together with the boundary conditions (3) will be used as starting relations during further investigation. 

III. SPECTRAL CHARACTERISTICS OF THE SPIN WAVES 

Similarly to [5,6] let us seek a the potential inside the ferromagnet in the form  

       zknikNAkJA nn | |210 exp           (4) 

that satisfies the Poisson equation ΔΦ0=k
2
Φ0. Here A1, A2 are constants, k and k|| are the orthogonal and longitudinal 

wavenumbers, correspondingly (they describe the wave propagation in the orthogonal to easy axis direction or along that 

direction, correspondingly), n is the mode number and Jn, Nn are the Bessel and Neumann functions of the order n, 

correspondingly.  
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Substitution of the solution (4) into the equation (3) leads to the dispersion equation that is of the 6
th

 order by k for the given 

k||, ω. (The wavenumber k has a discrete spectrum of values while k|| is varying approximately continuously because the 

nanotube length is much greater than its thickness. Therefore, the component k|| is chosen as the defining parameter.) Three 

roots (values of 2

k ) of this equation exists, one (with the real k for αG=0) corresponds to the volume modes and other two 

(with complex values of k that are complex-conjugate even for αG=0) correspond to surface modes that decay inside the tube 

from the internal (=a, Imk>0) and the external (=b, Imk<0) surfaces. Elementary spin excitation, therefore, should – in a 

general case – be a superposition of three excitations of the form (4), with three above-described values of k (for the given 

k||, ω), denoted further as  1

k  (volume mode) and    22

IR ikk    (surface modes). (Analogous effects for flat ferromagnetic films 

have been investigated, e.g., in [8]). In some cases this 3-modes elementary excitation can be separated into three individual 

modes that can exist independently. Therefore, the boundary conditions can be applied separately to the each mode. 

Substitution of the potential (4) (regardless of whether it is single mode (4) or the above-described superposition) leads to the 

following dispersion law [6]: 
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here 2242 2
~

 kkkK  , 22

| |

2

 kkk  is the total wavenumber. One can notice that spin waves can only be excited 

for small values αG≤0.1 and, therefore, in the dispersion law (4) the addend 2

G  can be neglected compared to 1. This allows 

rewriting the dispersion law (6) in the following simplified form: 
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Magnetic potential outside the tube e

0  should satisfy the Laplace equation ΔΦ0=0 and (together with its radial derivative) 

the continuity condition. Therefore, for a single mode (4) the outside potential has the following form: 
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with the constants        akNAakJAakIA nnn
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 21

1

| |2
. Here In, Kn are the 

modified Bessel functions of the first and the second kind, correspondingly, of the order n. 

In order to use the third boundary condition in (3), amplitude magnetization components m0ρ, m0θ should also be found (the 

component m0z=0 because 
0M


||Oz). These components should have the form     zknifm | |10 exp  

 , 

    zknifm | |20 exp  
. Therefore, the following system of equations for f1, f2 can be obtained from (1): 
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here R(ρ) is a radial part of the dependence (4). This function is a combination of expressions       kNAkJA nn 21
 with 

three above-described different values of k (one for the volume mode and two for the surface modes). The considered 

nanotube is thin (b-a<<a) and, therefore, inside the nanotube k~2 (b-a)
-1

>>1, [a,b] (for the complex values of k this 

relation fulfils with |k|). Then, the asymptotics of the Bessel and Neumann functions can be used in (4): 

     4/2/cos/2    nkkkJ n
,      4/2/sin/2    nkkkNn

. One can also note that 

for typical nanotubes their thickness is of the same order of magnitude as the exchange length (unities of nm for typical 

ferromagnets). Therefore, the factors that consider surface modes decay inside the nanotube can be considered approximately 

constant:      akk II

22 expexp    ,      bkk II

22 expexp   . Therefore, the function R can be rewritten as 
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where  1

1A ,  1

2A ,  2

1A ,  2

2A  are constants. After substituting the 3-modes combination (10) for the magnetic potential into 

the system of equations (9) and then – after taking corresponding derivatives – replacing ρ with its mean value ρ0=(a+b)/2 in 

all power factors, one can obtain f1 in the form 
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Here E11, E12, E21, E22 are constants. After substituting into the third boundary condition of system (3) the magnetic potential 

with the radial part in the form (10) (with replacement ρ→ρ0 in all power factors after taking radial derivatives) and the 

magnetization component m0ρ with the function f1 in the form (11), one can notice that in the resulting system of equations, 

the values       akIakIkk nn | || || | '/ 
,       bkKbkKkk nn | || || | '/ 

 for both  1

  kk ,  2

Rkk    can be neglected compared to 

unity when k||<<k. (Really, the quantities    akIakI nn | || |' ,    bkKbkK nn | || |'  are of the order of magnitude of   1

| |


ak , 

  1

| |


bk  correspondingly when k||a<<1 and of the order of magnitude of unity or less on the remaining part of k|| range. The 

quantity k – when it is nonzero so the orthogonal spin excitations are present – is of the same order of magnitude as 

  1
 ab  and the nanotube is thin so that b-a<<a. Therefore, the quantities       akIakIkk nn | || || | '/ 

, 
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      bkKbkKkk nn | || || | '/ 
 really are small compared to 1 regardless of the value of k||a as long as the relation k||<<k 

fulfils.) The quantity k|| is of the same order of magnitude as the reverse length of the nanotube which is much less than 

  1
 ab , so the relation k||<<k fulfils – and, therefore, the above-mentioned quantities can be neglected – on the most part 

of both quantities’ ranges. As a result, the above-mentioned boundary condition can be rewritten into the form
      0coscos 2

2

21

1

1    akGakG R
,       0coscos 2

2

21

1

1    bkGbkG R
. Here G1, G2, 1, 2 are 

constants, combinations of  1

1A ,  1

2A ,  2

1A ,  2

2A , E11, E12, E21, E22, 
 1

k and  2

Rk
. Therefore, regardless of the exact form of 

the boundary conditions for the magnetization, the orthogonal wavenumber has the quasi-one-dimensional form: k(b-a)=0 

for both values of k and, correspondingly, 

   absk  1

1  ,    absk R  2

2  .        (12) 

Here s1, s2 are non-negative integers (orthogonal modes’ numbers). Therefore, the dispersion law for the investigated spin 

waves is given by the relation (7) with the orthogonal wavenumbers given by (12). For the volume mode these two relations 

completely describe the spectral characteristics of the wave. 

IV. DISCUSSION 

Let us analyze the obtained dispersion relation for the volume spin wave mode.  

 
FIGURE 2. The dependence of Reω on k for β=1, =10

-12
 cm

-2
, γ=10

7
 Hz/Gs, M0=10

3
 Gs. The first two radial 

modes (s1=0, s1=1) are shown. 

As it can be seen from (7), the dependence of the imaginary part of the frequency (that describes to the spin wave decay) on 

the longitudinal wavenumber k|| in the investigated wavenumbers’ range k||<<k is close to the square law: Imω≈|γ|M0G((

22

| |  kk )+ 
~

+2). On the other hand, the dependence of the real part of the frequency on k|| is more complex but close to a 

constant if the orthogonal excitations are present (k≠0). The mode with s1=0, k=0 formally does not satisfy the relation 

k||<<k; however, such mode is known to exist and is the only possible mode when the nanotube thickness is less than the 

exchange length. The dependence of Reω on k for typical values on the nanotube parameters is depicted on the Fig. 2. The 

first two radial modes (s1=0, s1=1) are presented on the graph. 

The longitudinal wavenumber is restricted, on the one hand, by the nanotube length – unities of micrometers for typical 

nanotubes – and, on the other hand, by the interatomic distance d0 – several angstroms for typical materials. Therefore, the 

wavenumber lies in the interval 10
6
-10

9
 m

-1
. Substitution of the above-mentioned typical values of nanotube parameters (β=1, 

=10
-12

 cm
-2

, γ=10
7
 Hz/Gs, M0=10

3
 Gs) into the obtained dispersion law shows that the real part of the spin wave frequency 

lies in the interval 10
10

-10
12

 Hz. This, really, is a frequencies interval for typical observed spin waves.  

V. CONCLUSION 

Thus, dipole-exchange spin waves in a ferromagnetic nanotube (easy-axis ferromagnet) have been studied in the paper. The 
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magnetic dipole-dipole interaction, the exchange interaction, the anisotropy effects and the damping effects have been 

considered. It has been shown that – similarly to the known case of a thin ferromagnetic film – in the considered nanotube, 

both surface and volume spin wave modes can be observed as well as hybrid modes. The dispersion law for such waves – 

obtained in the previous paper of the author – has been complemented with the spectrum of orthogonal wavenumber values. 

Unlike the previous papers of the author [5,6], the above-mentioned spectrum have been obtained using general boundary 

conditions for the magnetic field. This essentially extends the area of application of the obtained results compared to the 

papers [5,6] in which the spectrum has been found for a very specific particular case. It has been shown that for both modes’ 

types the orthogonal wavenumber (for the surface modes – its real part) values’ spectrum is quasi-one-dimensional on the 

most part of orthogonal and longitudinal wavenumbers’ ranges. Therefore, the obtained results can be used for any round 

ferromagnetic nanotube of the studied configuration as long as the general model used in the paper (thin nanotube, linear 

waves, constant absolute value of the magnetization vector etc.) can be applied – and the mentioned model is applicable for 

typical round ferromagnetic nanotubes synthesized nowadays.  

A graphical representation of the resulting dispersion relation with account for the obtained orthogonal wavenumber values’ 

spectrum has been given. Numerical estimations of the spin waves’ frequency for typical nanoshell parameters have been 

performed. The estimations have shown that the resulting frequency, really, lies within the frequencies interval for typical 

observed spin waves. 

The method proposed in the paper can be applied to nanotubes of more complex configurations – in particular, to synthesized 

recently ferromagnetic nanotubes with an elliptic cross-section – as well as for more complex configurations of shell-type 

nanosystems in general. For some of them boundary conditions can be applied separately on volume and surface modes. 
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