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Abstract— This paper mainly modifies and further develops the comprehensive national strength model. By modifying the
basic comprehensive national strength model, it can more accurately illustrate the society phenomena with time delay. First,
we research the dynamics of the modified with time delay. By employing the normal form theory and center manifold method,
we obtain some testable results on these issues. The conclusion confirms that a Hopf bifurcation occurs due to the existence
of stability switches when the delay varies. Finally, some numerical simulations are given to illustrate the effectiveness of our
result.
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l. THE ESTABLISHMENT OF THE MODEL

Ordinary differential equation is used to study the comprehensive national strength of a country's overall situation, which is
gradually developed in recent years. This article brings in time delay in the comprehensive national strength model. Besides,
the comprehensive national strength model models are detailed analyzed. X = X(t) is hard power strength in t, which is a
composite indicator the level of the material civilization (resource, economy, military, science and technology, etc.) of a
country. As X(t) bigger, the material civilization more prosperous. Y(t) >0 is soft power strength in t, which is the
spiritual civilization of a country. Yy(t) >0 stand for social evils (decision-making errors, education failure, official
corruption people steal, etc.). At this time, soft power has obstacle to the social development. y(t) >0 mean soft power is
superior (wise decision-making, national quality, etc.), that has a promoting effect on social development. &, 5,7, m,M
is constant. So, in the literature [1] comprehensive national strength shown by the following differential equation:

>.<=ax(M —

X
)= By,
M (1.1)

y=—y+o(m—Xx)Xx.

As is known to all, some change of the soft power can be reflected on the hard power after a certain period of time, the
literature [2] has established the following delay model of the comprehensive national strength.

M=%y pyit-o),

;( = ax(
M 1.2)

y == +35(Mm=-x)X,

where is positive, and the other parameters are the same as of (1.1). While model of (1.2) had considered the time delay, in
the real world, hard power strength not only rely on hard power strength of soft power in the past, but also rely on soft power.
In order to make the model more accurate, we modify the system of (1.2) to the following form:

MZXy_ ky(t—1) +dy),

;( = ax(
M (1.3)

y=—p+o(m-x)X,
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where K +d =1. The organization of this paper is as follows: regarding 7 as bifurcation parameter, we study the stability
of the equilibrium point of the system (1.3) and Hopf bifurcation of the equilibrium depending on 7 . Then, based on the new
normal form of the differential-algebraic system introduced by Chen et al. [3] and the normal form approach theory and
center manifold theory introduced by Hassard et al. [4], we derive the formula for determining the properties of Hopf
bifurcation of the system in the third section. Numerical simulations aimed at justifying the theoretical analysis will be
reported in Section 4. Finally, this paper ends with a discussion.

1. STABILITY AND LOCAL HOPF BIFURCATION ANALYSIS

The stability and Hopf conclusions for the system of (1.1) can be obtained directly from the literature [5,6]. From system
(1.3), we can see that there exists equilibriums.

M (ay —mpBso) Mads(m—M)(ay —mpo)
ay—Mpgs ' (ay —MpBS)?

Eo = (X, Yo) =( ),E, =(0,0).

According to the practical significance of the model, here we only discuss the problems of the hopf bifurcation and stability
for the sole positive equilibrium point E, .

Set u, (t) = x(t) — X, ,u, (t) = y(t) —Y,. The system (1.3) becomes

U, () = L+ P, = U~ Ak (-7) + du,),

(2.1)
uz(t) =-M+ s(m+ Mp)ul _5"112-
Where p = M.And, the linearization of system (2.1) at E, is
—ay+Mpo
u,(t) = a(@+ p)u, — B(ku,(t—7) +du,), 22)
U, (t) = -, +5(m+ Mp)u,.
The characteristic equation of system (2.2) is as follows.
A —cAi-ge " +f=0, (2.3)

where C=a(l+ p)+o(m+Mp), f =ad(l+ p)(m+Mp)—dyB,g=y0K. To study the stability of the
equilibrium point E; and bifurcation system, we only need to discuss the distribution of the roots for characteristic Eq. (2.3).
If the all roots of equation (2.3) have negative real part, the equilibrium point E, is steady. If the equation has a root that
contains positive real part, the equilibrium point E, is not stable. In order to study the distribution of the roots for Eq. (2.3).

Considering 7 = O in first, characteristic equation (2.3) is
A —cA+q=0. (2.4)
Where g =ado(@+ p)(m+ Mp)—y5.

(H,)c<0,9>0.
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Obviously, all roots of equation of (2.3) has negative real part if (Hl) is satisfied. So the system in equilibrium E, is

locally asymptotically stable for 7 = 0. Now, we investigate the local stability around the positive equilibrium point for the
system (1.3) and the existence of Hopf bifurcations occurring at the equilibrium point E;, when 7, > 0.

Lemma 2.1 For the system (1.3), Eq.(2.2) has a part of purely imaginary roots for 7, >0 when (Hl) is satisfied.
Proof. If A =Iw is a solution of the characteristic equation (2.2), when and only when @ meet
—w* —coi — g(coswr —isinwr) + f =0.

The separation of the real and imaginary parts yields.

{—aﬂ + f =gcoswr,
: (2.5)
Cw=gSsinor,
which lead to
Vi (c?-2f)v+f?-g? =0, (2.6)

where V = @*. We assume that the coefficients satisfies the following conditions.
(H,)c* -2 <0,4(f*-g*) <(c®*-2f)*,(H,,)c*-2f >0,4(f*-g*)<0.

If the condition (H,,) or (H,,) is satisfied, then Eq. (2.6) has positive roots. Therefore, Eq. (2.2) have purely imaginary
roots. From (2.6) we obtain

2f —c%+4/(c2—21)2—4(f2 - g?)
Wy = >

. 2
T, = i(arccos(f%) +2j7),j=012,--.

2

As aresult, when 7 = T, the characteristic equation have a pair of purely imaginary root. The proof is completed.

da ,_
Lemma 2.2 The transversality conditions Re(d—) ' >0 or (H,,) is satisfied.
To

Proof. By differentiating both sides of Eq. (2.3) with regard to 7 and solving /f(z') . We have

d_/l B _ g/lefﬂ.r
dr 21-c+gre ™’
then
dAd 4 i 2A—C+0e " | it
Re(=2)™ = = Re( 9%y ppien
dr ! —gle :
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_ —2m,C0S®,7; +CSINW,T;

- g,

_C2—2f +2w*
=

g

dAa
We can get ¢* —2f +2@° >0 by condition (H,,) or (H,,), thus Re(d—)_1 > 0. The proof is completed.
o

Lemma 2.3 For Eq. (2.3), if 7 €[0,7,), all of his roots have negative real part. Positive equilibrium is asymptotically

stable, and the positive equilibrium produces Hopf bifurcation in 7 = 7.

1. THE DIRECTION OF THE HOPF BIFURCATION AND THE STABILITY OF PERIODIC SOLUTIONS

In 82, we obtain the conditions of Hopf bifurcation. In this section, we discuss the direction of Hopf bifurcation and the
stability of the bifurcating periodic solutions based on the normal form introduced by Chen et al. [3] and the center manifold
theory introduced by Hassard et al. [4].

In the following part, we assume that the system (1.3) undergoes Hopf bifurcation at the equilibrium E, for 7 = 7, and we
let i@, is the corresponding purely imaginary root of the characteristic equation at the equilibrium E;. Set
T=1,+u, 1R, clearly, 12=0is the Hopf bifurcation value of system (3.2). Set t =S, Ui t)=u,(tr),i=12, for
convenience, we continue to use U (t) said ai(t) .Then the system (1.3) is equivalent to the following Functional
Differential Equation (FDE) system in C € C([-1,0], R?),

ut)=L,+F(uu,). (3.1)

where u(t) = (u,(t),u, (t))", L,:C—>R,F:RxC —R are given, respectively, by

-2 42(0)
L,(#) = (7o + 1)BO) + (ro + 1)B,d(-1), F(rs,4) = (o +p) M ‘7 |
- 5¢(0)

where L, ¢ = (4,9,)" €C([-10],R?).

g _[2@+P) -/ g [0
-y Ssm+Mp)) 2 (o 0 )

By the Riesz representation theorem, there exists a matrix function whose components are bounded variation function
n(6, 1) :[-1,0] = R*? such that

L= dn(,1)p(6).¢ <C. (32)
In fact, we take
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(0, 1)=B,5(0) + B,5(0+1). 3.3)
5(9) is a Delta function. For ¢ € C ([-1,0], R?), we define operator Aand R as follows.

d(¢(60)) 0e[-10)

Awg(0)=1 90 e
[ d@@.mue). o=o.

0, 0 <[-1,0),
R(ﬂ)¢(9)={F(ﬂ o oo @9)

Then the system (2.1) can be written as the following form:

u, = A(e)u, + Ry, (3.6)

setting @ € C ([0,1], (R?)"), the adjoint operator A" of A is defined as

_dy(s) s (04]

T , 3.7)
[ ae €ow(-1).s=0,

and a bilinear inner product is given by
<0().9(6) >= p(O)p0) - [ [ p(&~6)dn(@)p(&)de. (38)

From the discussions in Section 2, we know that iz'ja)o are eigenvalues of A . Thus, they are also eigenvalues of A". Next

we calculate the eigenvector ¢(¢) of A belonging to i7;@, and eigenvector q°(s) of A" belonging to the eigenvalue

da()

—i7,, . By the definition of A, we have A(0)q(0) = and q(6) = q(0)e' ™’ . In addition,

[ dn(6)a(6) = B.a(0) + B,a(-1) = A©)(0) = i,(0), (39

Let q(0) = (L, d,)" . Eq.(3.9) becomes

(05(1+ 0) —A(d+ kem"”)j( 1 J i ( 1}
—}/ 5(m+|\/|p) q2 0 q2 ’
al+p)-iw,
BAd +ke™ ™)

where Q, =

By the definition of A", we have A"(0)q"(s) = —% and q"(s) = q*(0)e'™™° . Then,
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[ o' -dn(®) =Blq"(0)+BJq’(-1) = A'G"(0) =—imq"(0). (3.10)

Let q"(0)=D(Lq;)", Eq.(3.10) becomes

a(l+ p) -y 1 i 1
~pd ke ™) smemp)\a;) L)

all+p)+iw,
—7 :

where , =
<q'(9).9(0)> =0 0O - [ [_a'(-0)dn@)aE)ds.

— —s 0 —x  iiwo 1
Dl g, - [ L ane dn(e)[q J]

2
(1
=D[1+0q,q, +7;¢ '(1q,)B, q ]

2

= 6[1"‘ QZEZ - ﬂkrjqze_i%rj 1.

where {q"(s),q(0)) =1, soD = [1+ Qza; —,Bkrjqze_iw"rj 1.

Next, we study the specific parameters of the direction and size for bifurcated periodic solutions. Using the same notations as
in Hassard et al. [4], we first compute the coordinates to describe the center manifold C, at £ = 0. Define

z(t) =< g*,u, >W(t,0) =u,(8) —2Re{z(t)q(O)}. (3.11)
On the center manifold C,,we have
W (t, ) =W (z(t), z(t), 6) (3.12)
2 —2

Where W(z,2,6) =w20(9)%+vv11(49)z2 +w02(<9)%+-...

In fact, Z and z are local coordinates for center manifold C, in the direction of g and . Note that W is real if U, is

real. We consider only real solutions. For the solution of Eq.(3.6) in center manifold C,, we have
2(t) = (0" (5), ) = (0*(6), (AO) + R(O)) )
=(A'q(9), )+ 0 (RO~ [ [ a"(E-0)dn(O) AO)R(0) 1 (£)d

=(i7,0,0"(s), ) +4 (O)F (0, 1, () (3.13)
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Let

where

from (3.13) and (3.15), we have

By (3.11), we have

where

Then

Z(t)=im,z+9(z,2),

- z? - 7
g(z,z) = gzo?"‘gnzz"‘goz?"'“"

9(272)=a*(0)Fo(Z,E)=T,-\7[al*](:§1j=Tj\7(F1+aZF2).

2 2

U, (0) = (U, (t+6),u,(t +6)) =W (t, 0) + z(t)a(8) + 2(1)q(6)

U (t+0) =W O (t,0) + 2(t)q® (0) + 2(t)q" (6)

u, (t+0) =W @ (t,0)+ 2()g?(0) + 2()q" (6) .

- Y A —2a —x o A N
9(z,2) =7, D[(V—éqzqé)zz+(T—25q2q2q§)zz+(V—5q2q2)z +

- 1 1 — —
[ (20 (0)+ SWE (0) + W (0)) - 5T, (W (0), + W (0)3, )]z 2+

Comparing the coefficients with (3.16), it follows that

— — 1 1 —x —
9, =27 D[_a (2w, (0) + _Wz(é) 0)+ _W2(02) (0))-9q, (2w, (0)q, +W2(02) (0)a,)].
M 2 2

— o
920 =27J.D(V—5q2q§),
911:71D(V_2§Q2q2q22),

— —aq  —+—2
Qo2 = 27] D(V_aqzqz),

By Eq.(3.15), (3.16) and definition (3.11) of W (t, ) , we have

(3.14)

(3.15)

(3.16)

(3.17)
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=— | AQQW —2Req (0)F,(z(t), 2(t))q(®), 0 e[-10),

W=u-2q-2q= - -
A(O)W —2Req (0)F,(z(t), z(t))q(0) + F,,

A —
=AW +H(z,2,0)

Let W = AQQW + H (2, 2,6) . Where

2 —2

H(z,2.0) = HZO(Q)%+ H,(0)zz + Hoz(e)%+.--
From the definition (3.11) of W (t, 8) , we have

W =W, 2+W. z
By (3.18), (3.19) and (3.20), we have

H 0 (0) = 2i 7,00, (0) — A(0)Wo, (6),
Hll (9) = _A(Q)Wn (0)

For € €[-1,0], by (3.14), (3.18) and (3.19), we get

H(z,2,0) =-2Re[q (0)F,q(0)]

2 22 2

z - z 22°
= _(gzo ? +011ZZ+ 0y, ? +0y 7)(1(9)

2 22 2

2
- 25 - - - 1 — I1°.-
— —+0,22+0,—+9,,—)q(@
(920 2+ 9022+ 80— +02,—-)A(0)
Comparing the coefficients with (3.19), we gives that

H.0(0) = —0,,0(0) - 90,4(0),
H..(0) =-9,0(0) - 9,,q(0).

It follows from (3.21) that
W 20(6) = 2i 07 W, (8) — A0)5,0(6) + 9 ,,a(6),
W11(6) = 9,,9(8) + 9,,4(6).

Solving for W,,(6) and W,,(6) , we obtain

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

Page | 81



International Journal of Engineering Research & Science (I[JOER) ISSN: [2395-6992] [Vol-2, Issue-3 March- 2016]

Wy (6) = |Tg_2.) q(0)e'*”’ + f&a(wew +Ee¥7?,

) o (3.25)
W,,(6) = —2—1;)q(0)e‘”’°9 + 'T?—;a(O)eWoe +E,.
By (3.4) and (3.21), we get
[ ©.d7(OWo (6) = 2i 7,050 (0) — H, (0),
[ *.dn(OW,(6) = —H,, 0) (3.26)
From (3.17) and (3.18), we get
H20(6) = =02,0(0)— 9, A(0) + 27, (Eyy, Eyy, Epa)',
H.1(6) = —0,40(0)— 91,4(0) + 7, (Ey, By, Ep) (3.27)
According to Eq.(3.25), (3.26) and (3.27), we get
(27,0 - [ "7 dn(0))E, = 27, (Ey1, Epp Ep)', (328)

Then

diw,—a(l+p) Ad+ke?y ) [ =%
Elzz( 0 p j M

y 2im, —o(Mm+ Mp) — &
. _ (a(1+p) -p ] el
2 =7 2 :
7 oMM _2s,q,

According to the above Proposition and [7,11], we can compute the following parameters:

i 1
C,(0) = ﬂ(gzogn - 2|911| _§|902|2) +%,
__Re{C,(0)}

“ T TRl (r)Y
5, =2Re{C,(0)},
_Im{C,(0)}+ s, (Im{Z (z))}) _

5 =

COOTJ-

AV NUMERICAL SIMULATION

Numerical simulation shows from stable to unstable complex transformation process the system (1.3). We give a concrete
example to show the dynamic  behavior of comprehensive  national  strength  model. We

takeax =0.L,M =10,=0.3k=0.8,d=0.2,y=16=2,m=9 in the system (1.3). So we can obtain
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equilibrium E, = (11.8,12.93).. Through calculating of the Mathematical software, we obtain @, = 2.62,7, ~ 0.88. By
lemma 2.2 and above conclusion, we can obtain that equilibrium E; is stable if 7 =0.7 < 7,, (see Figure 1). By contrast,
the equilibrium E, is unstable if 7=1.1>7,, (see Figure 2). Besides, when7, =0.886, the periodic solutions occur

from the equilibrium E, (see Figure 3-4). However our analysis indicates that the dynamics of the comprehensive national

strength model with time delay can be much more complicated than we may have expected. It is still interesting and inspiring
to research.

yltl yltL
30t 20t
20 |
15 |
10
5
T ‘ ‘ ‘ il
5 10 15 20 25
FIGURE 1 THE EQUILIBRIUM E, FIGURE 2 THE EQUILIBRIUM E,
OF SYSTEM (1.3) ISSTABLEWITH 7 =0.7 <7, OF SYSTEM (1.3) ISSTABLEWITH T =1.1> 7,
yltl
25 |
20 |
15 |
10

FIGURE 3 SYSTEM (1.3) PRODUCE THE PERIODIC SOLUTIONS WITH 7, =0.886
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FIGURE 4 TIME SEQUENCE DIAGRAM OF FIGURE 3

V. CONCLUSION

These papers apply delay in the comprehensive national strength model, which show rich dynamics behavior. Different from
previous studies, we added the influence of time delay feedback in the system (1.3). Dynamic behavior of comprehensive
national strength model with time delay is analyzed by using the method of quantitative. When delay $\tau$ across a series of
critical value, nonlinear dynamic system generate the Hopf bifurcation. In addition, by employing the normal form theory
and center manifold method, we obtain some testable results on these issues. We use normative theory and center of popular
theorem obtained the calculating method of the direction of Hopf bifurcation and stability of periodic solutions. Finally, the
above theoretical analysis is verified by numerical simulation. The dynamic behavior of the comprehensive national strength
model is rich. Many aspects is not mining, yet to be. References
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