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Abstract— This report proposes a design methodology for cascaded model-free fuzzy control systems. The ordinary 

Mamdani approach is modified in order to use expert knowledge for variable set-point control without any need of the 

system model. The methodology is successfully tested in a sub-actuated, naturally delayed setup, known as the coupled tanks 

system, where the water level is maintained at different set points, both in simulation and in real time. 
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I. INTRODUCTION 

From a control point of view, cascade systems are challenging, since (a) they are sub-actuated, (b) they naturally incorporate 

delays in the control action, and (c) they usually pursue several set points. Since the common approach within the control 

community is to consider the mathematical model of the system, obtained from first principles, in order to design an 

appropriate control law which stabilizes around the origin, very simple systems such as the coupled tanks may be hard to 

control due to the changing reference level. The usual solution is to adjust the controller, most commonly a PID, to different 

set points, as has been done with aircraft altitude control [1]. This, of course, requires a proper tuning which is indeed more 

complex for cascade systems. 

Within model-based methodologies, cascade systems have been widely studied through input-output stability methods [2], 

input-to-state approaches [3, 4], gain scheduling [5], passivity stabilization [6, 7], sliding mode control [8, 9], 

backstepping[10], and synchronization [11]. Model-free methodologies, relying on expert knowledge and artificial 

intelligence, have also proposed a variety of solutions to the problem of analyzing and controlling cascade systems: via 

nonlinear scheduling [12], fuzzy exact representations [13], fuzzy sliding control [14], genetic algorithms [15], and 

evolutionary laws [16]. 

This work proposes a design methodology based on model-free fuzzy control, i.e., a Mamdani representation of expert 

knowledge about the plant for control purposes. In contrast with the ordinary approach which mixes all the controlled 

variables in a single fuzzy system to calculate the appropriate control law, it is shown that a cascade system is better (and 

simpler) dealt with if the fuzzy controller “decouples” the cascaded variables as to allow them to vary according to the 

desired set points. 

The following sections are organized as follows: Section II presents the required preliminaries on model-free fuzzy control 

and cascade systems this work is concerned about; Section III introduces the novel methodology and explains the heuristic as 

well as numerical advantages of the proposal; Section IV introduces a typical cascade system: the coupled tanks, which is 

employed in Section V to illustrate how the proposed technique can be successfully implemented for level control of coupled 

tanks, both in simulation as well as in real-time, with clear advantages over the PID-based controller of the provider and the 

traditional fuzzy control; Section VI closes the paper by providing some conclusions. 

II. PRELIMINARIES 

Typically, expert knowledge for fuzzy control is collected in a series of r IF-THEN rules of the form. 

 1 1IF IS AND AND IS THEN IS ,l l l

n nx A x A u B  (1) 

with 1 2, , ,l l l

nA A A , lB , 1, 2, ,l r  ,representing possibly redundant fuzzy sets, each of them characterized by a 

membership function (MF)  l
i

iA
x  or  lB

u , holding the property  0 1l
i

iA
x  ,   0 1lB

u   [17]. 
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This linguistic structure is then translated into a specific calculation of the controller output  u x which is the control input 

of the system; should the latter be multi-input, a series of blockswith the form(1) should be proposed. Calculating  u x from 

a rule base (1) requires choosing a lot of parameters whose effect cannot be easily cast: number of fuzzy sets, shape, height, 

and support of each MF, fuzzifier, defuzzifier, fuzzy inference engine, choice of t-norm, s-norm, and fuzzy implication, etc. 

[18]. Ordinarily, due to computational simplicity, MFs are chosen as triangular or trapezoidal, regularly distributed on the 

space of interest (i.e., the values of the states and control input the system is supposed to work at) while theMamdani fuzzy 

inference engine is fed with a singleton fuzzifier and its output post-processed via a center averagedefuzzifier. 

Mathematically, this is equivalent to the following expression: 
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 (2) 

where ly are the centers (along the values of u ) of the fuzzy sets whose membership functions are given by  lB
u . 

While certain applications benefit from the fuzzy control structure (2), which mixes in a single control law all the states 

under consideration (see, for instance, the twin rotor MIMO system in [19]), some others may be hard to control without a 

proper decoupling (for example, the underactuated PENDUBOT system [20]): the latter is the case even when slow 

dynamics such as those in the coupled tanks system are involved. 

Usually, decoupling is based on the fact that, disregarding certain nonlinear terms, the system dynamics can be split into 

several parts which are normally easier to tackle than the whole coupled nonlinear plant [21]. This sort of approach, though 

very popular, might still be not enough to deal with cascade systems. 

2.1 Problem statement 

Provide a model-free fuzzy control methodology for cascade systems, based on an adaptation of the decoupling technique 

(separate fuzzy control structures) while taking into account the cascade properties of the system. 

III. CASCADE FUZZY CONTROL 

The sort of cascade system under consideration is that of a series of n  systems, where the output of the i -th system is the 

control input of the  1i  -th block (see Figure 1). Clearly, the traditional fuzzy control approach described above fails to 

correctly perform under such a situation due to the following reasons: 

1) A single control signal  u x as in (2) is going to be determined for the whole system, which means that the way an 

output of a block acts as the control input of the next one is ignored. 

2) Most of the cascade control systems require variable set points, which obliges the structure in (2) to depend on the 

error signal  rx x t , where rx  is a given set point. Since the output of the i -th block is the control input of the 

next one, this means that a variable set point should be arranged for the  1i  -th block too: this contrasts with the 

usual fixed fuzzy structure in (2) where the fuzzy sets are predefined in shape and location in a compact set of the 

state space under consideration. 

3) The naturally induced time delay of the cascade system will be thoroughly ignored if (2)is employed. 

4) If a set point is fixed for a given state ix  within a certain block, it might constrain the set points of the following 

blocks, a condition that will be dismissed if a vector set point rx is used for the whole state vector, as traditional 

fuzzy control demands. 

5) The equilibria in cascade systems is usually different from the origin and may require a feed forward control action 

[22]. 
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FIGURE 1. CASCADE SYSTEM 

Thus, taking into account the aforementioned drawbacks of the ordinary fuzzy control methodology, our proposal is as 

follows: 

1) Define the error we are interested at as the final block in the cascade system, where 
rnx  is the desired set point: 

    n rn ne t x x t  .  (3) 

2) Define fuzzy sets for  ne t based on the allowed ranges of the state  nx t and the expert knowledge about the plant. 

3) Define fuzzy sets for the control input u at the beginning of the block series and proceed to construct a fuzzy 

controller of the form (2) which depends exclusively on  ne t , i.e,    nu x u x . 

4) Define the error of the i -th block as    i ir ie t x x t  , where 
1rx is defined according to the  1i  -th block, for 

1, , n 1i   , except for the first block where irx is generated by the operations performed at the n -th block. 

5) Define fuzzy sets for  ie t based on the allowed ranges of the state  ix t , 1, 2, , 1i n  ; they will help defining 

the reference of the next block. 

Clearly, the steps above “propagate” the error at the final block to the first one and from there to the others as to define the 

set points and fuzzy sets accordingly. Formally, this decouples the system dynamics in blocks while preserving its 

connectivity through the next set point value. 

IV. THE COUPLED TANKS SYSTEM 

The coupled tanks system model is given by [22]: 
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 (4) 

where 1x  is the water level of the first tank, 2x  is the water level of the second tank,  u t  is the control input corresponding 

to the pump voltage, pK  is the gain coupling the pump voltage with the volumetric inflow rate to tank 1 , 1tA  is the cross 

area of tank 1 , 1oA  is the cross-section area of tank 1  outlet, 2tA  is the cross area of tank 2 , and 2oA  is the cross-section 

area of tank 2  outlet, and 
29.81 /g m s  corresponds to gravity. A schematic of the plant setup is shown in Figure 2. 

Our objective is to find a fuzzy controller that performs variable set point control through the model-free fuzzy methodology 

proposed above; then, compare it with two other methodologies: (a) a traditional fuzzy controller implemented with fixed 

fuzzy sets via the Fuzzy Toolbox MATLAB [23], and (b) a PID controller proposed in [22]. 

The fuzzy controller is based on the system errors, though –as explained in the previous section– the first one is not a 

difference between the desired level and the actual level measure. Indeed, we have 

 1 1 1 2 2 2,r re x x e x x    , 
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with
2rx  as the desired level of the second tank and 

1r rx L , where 
rL  comes from the second tank as explained later. 

The corresponding ranges for the first and the second errors are chosen as 

    1 21,1 , 1,1e e    ,  

whereas for the pump voltage and the reference generated by the second controller the following ranges are specified: 

    0,22 , 0,22p rV L  .  

Identical three fuzzy sets are defined for both errors; they have the following membership functions and linguistic meanings 

(seeFigure 3): 

      

1, 1 0, 1 0, 0

Negative: , 1 0, Zero: 1, 1 0, Positive: , 0 1.

0, 0 1, 0 1 1, 1

i i i

n i i i c i i i p i i i

i i i i

e e e

e e e e e e e e e

e e e e

  

     
  

              
        

 

According to the proposed methodology, the membership functions of the pump voltage are variable: they depend on the 

desired set point  which is given by [22]: 

 
1 2o r

p

A gL

K
  , (5) 

Thus, the corresponding variable-shape membership functions of the fuzzy sets associated with the pump voltage are shown 

in Figure 4. Note that the main values of the negative and center fuzzy sets are variable. 

As for the second controller, a variable reference  is used (see Figure 5); it comes simply from the first reference: 

 1rx         (6) 

 
 

FIGURE 2. THE COUPLED TANKS SYSTEM  FIGURE 3. MEMBERSHIP FUNCTIONS FOR 1e  AND 2e  
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FIGURE 4. MEMBERSHIP FUNCTIONS OF THE PUMP 

VOLTAGE 

FIGURE 5. MEMBERSHIP FUNCTIONS OF THE 

GENERATED REFERENCE
rL  

 

In contrast with ordinary fuzzy methodologies which use a single fuzzy rule base which is fed with n -uples of the states in 

order to determine the control input  u x , our proposal splits the fuzzy controllers in n fuzzy rule bases. Since 2n  in the 

coupled tanks system, we have a fuzzy rule base for 1e and a second one for 2e : they are given in Table 1 and Table 2, 

respectively, where the antecedents are fuzzy sets ne (negative), ce (around zero), and pe (positive). The rule consequents for 

1e are aL (high level in tank 1), L (around the reference rL ), and bL (low level in tank 1 around half of the reference rL ). The 

rule consequents for 2e are aV corresponding to high values of the pump voltage, V about the average value, and bV about a 

fourth of the average value V . No time derivatives (level rate of change) are taken into account due to the lack of proper 

sensors: results show this decision does not affect the control effectiveness. 

TABLE 1 

FUZZY RULE BASE FOR 
1e
 

IF 2pV e  IS THEN 1V  IS 

ne  aV  

ce  V  

pe  bV  

 

TABLE 2 

FUZZY RULE BASE FOR 
2e  

IF 2pV e  IS THEN 1V  IS 

ne  aV  

ce  V  

pe  bV  
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V. SIMULATION AND REAL-TIME RESULTS 

As stated before, one of the approaches employed to contrast our proposal is that of traditional fuzzy control based on fixed 

membership functions, more specifically implemented via MATLAB Tool box fuzzy [23]. As expected, such a rigid 

structure does not allow variable set point references to be properly followed as shown for simulation in Figure 6, where a 

steady state error of approximately 0.13 cm appears independently of the reference 2r refx x . Due to this unacceptable 

steady-state error, the fuzzy controller thus designed was not implemented in real time. 

The other trajectory shown in Figure 6 is the one generated by a PID controller, which comes along with the coupled tanks 

system by Quanser [22]: it has obviously been tuned as to reach the variable set point references in minimum time while 

keeping an overshoot below the 15 per cent. 

We now turn our attention to the cascade model-free fuzzy control we are proposing. Its variable membership shapes as 

shown in Figure 4 and Figure 5, allow variable set point tracking as shown in the simulation results of Figure 7. No further 

adaptation is required as these fuzzy sets (and consequently, their corresponding controllers) are automatically adjusted. For 

the sake of comparison, the simulation corresponding to the PID controller of the Quanser provider is also included: our 

approach clearly achieves the same tracking quality as the PID without the overshooting of the latter. 

The real time implementation of the proposed controller produces the results shown in Figure 8: though small, a steady-state 

error is still observed, an error that is not present in simulation (included in the same figure for comparison). The real time 

shortcoming is due to the time delay characteristics of the coupled tanks system. This time delay can be noticed in the control 

action plotted in Figure 9: recall that the water pumped up has to reach the first tank as its outflow has to control the second 

tank level, which is the one we are interested at. 

Time delays can be formally analyzed via Lyapunov functionals [24]. Nevertheless, in the spirit of the proposed approach, 

the steady-state error can be driven to zero by simply using the same variable membership functions in wider ranges: when 

 3,3  is used instead of  1,1 , we obtain the tracking in Figure 10: it obviously has improved over the first approach. 

  

FIGURE 6. SIMULATION RESULTS: 

“TOOLBOXFUZZY” VS PID 

FIGURE 7. SIMULATION RESULTS: CASCADED FUZZY 

CONTROLLER VS PID 
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FIGURE 8. REAL TIME RESULTS: FIRST ATTEMPT FIGURE 9. CONTROL SIGNAL FOR THE FIRST CASE 

 

FIGURE 10. REAL TIME RESULTS: SECOND ATTEMPT 

VI. CONCLUSION 

A novel cascaded model-free fuzzy control has been presented: it allows dealing with cascaded systems by introducing 

adaptable shape membership functions in order to deal with variable set point goals. By subsequently transmitting the 

reference from one block to next one, the cascaded fuzzy methodology is able to pick the right shape and “center” for the 

fuzzy sets as to track the desired set point at the last block. The methodology has been successfully implemented in the 

coupled tanks system, where it has performed better than the provider PID control and the traditional fuzzy control structure. 

Time delays have also been appropriately dealt with by simply expanding the error intervals. 
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