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Abstract— In this paper, we propose a nonparametric CUSUM control chart for detecting a range of shifts in the location 

parameters based on previous research. This control chart is dynamically adaptive, ranks method-based nonparametric and 

self-starting; it can monitor various sizes of shifts in difference distributions simultaneously; and it can be used to monitor 

processes at the start-up stages. This control chart is designed with variable sampling interval technology, which makes it 

more intelligent and sensitive. Simulation study of reference parameters values and performance comparisons are introduced 

in detail, so as to conveniently apply this chart to practical production process monitoring. An illustrative chemical example 

is also present to demonstrate the well implementation of this chart. 
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I. INTRODUCTION 

Statistical process control (SPC) is an important quality control tool that uses statistical methods to monitor and control 

processes. One major concern of SPC is to analyze the stability of a production process, and to give a warning signal when 

the process has some changes, that is, the process has shifts happened. The control performances of a control chart are 

generally evaluated with the average run length (ARL), which denotes the average number of observations from the process 

beginning to giving a warning signal. A control chart with a smaller ARL when the process has a shift is better, under the 

condition of a same ARL when the process is steady. This technology has currently been adopted in many fields, such as 

health care, finance, biotechnology and chemical engineering. More introductions about SPC technology and its applications 

can be found in, for example, Lucas and Saccucci (1990) [1], Thomas and William (1991) [2], Woodall (2000) [3], 

Montgomery (2009) [4], Zou et al. (2009) [5], Shardt et al. (2012) [6]. 

CUSUM (Page 1954) [7] is an effective control chart for detecting small and moderate shifts; it is proposed based on the 

sequential probability ratio test. The conventional CUSUM control chart is generally designed by assuming known the size 

of shifts. However, to predetermine the exact size of shifts is a difficult thing in most practical process settings. In order to 

detect both small and large shifts, Lucas (1982) [8] proposed a combined Shewhart-CUSUM chart which is designed by way 

of adding the Shewhart control limit to a conventional CUSUM control chart. Where after, the emergence of the adaptive 

control chart resolves this problem significantly. The main design idea of adaptive charts is that the parameters value setting 

is decided by sample observations, so that the chart can dynamically monitor various sizes of shifts. Sparks (2000) [9] 

proposed an adaptive CUSUM chart by an one-step-ahead formula to dynamically forecast the parameters values of the 

CUSUM chart. Shu and Jiang (2006) [10] calculated the chart ARLs of Sparks (2000) by Markov-chain. With that Shu et al. 

(2008) [11] proposed another adaptive CUSUM chart by improving the dynamically forecasting tool that Sparks (2000) used. 

Other adaptive charts are discussed by Wu et al. (2009) [12], Li and Wang (2010) [13], Capizzi and Masarotto (2012) [14], 

among others. 

However, these control charts mentioned above often assume that sample observations follow a known parametric 

distribution, most commonly follow normal distribution. But in most practical processes, the distribution form of sample 

observations is unknown or not normal. Through the literature we known some nonparametric CUSUM control charts can 

monitor processes with unknown sample distribution form. For example, Bakir and Reynolds (1979) [15] proposed a 

nonparametric CUSUM chart based on the Wilcoxon signed-ranks statistic. McDonald (1990) [16] proposed another 

nonparametric CUSUM chart based on sequential ranks of observations. Qiu and Hawkins (2001) [17] discussed a 

multivariate nonparametric CUSUM chart based on the sequential ranks method that McDonald used. More recently, based 

on ranks, Liu et al. (2014) [18] proposed an adaptive nonparametric CUSUM (ANC) chart for detecting variables which shift 

size and distribution form are both unknown. 

Variable sampling interval (VSI) control charts can intelligently change sampling intervals according to sampling results, so 

as to improve the efficiency of process monitoring. There are also some examples of CUSUM control charts with VSI 
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technology. Luo et al. (2009) [19] proposed an adaptive CUSUM chart with VSI technology. Li and Qiu (2014) [20] take a 

brief overview about a p-value CUSUM control charts with VSI features. Other charts with VSI features can be found in 

Reynolds et al. (1988) [21], Prabhu et al. (1993) [22], Zhou et al. (2012) [23], Liu et al. (2015) [24], among others. In 

general, a chart with VSI feature detects process shifts faster than fixed sampling interval (FSI) charts. However, the VSI 

technology is rarely used in nonparametric control charts. Control chart with VSI technology is a challenge when the size of 

shifts and the underlying distribution form are both unknown. To increase the detecting efficiency of shifts from 

conventional CUSUM control charts, we will discuss an adaptive nonparametric procedure with a VSI technology based on 

the conventional two-side CUSUM control chart. 

The remainder of this article is organized as follows. In Section 2, we provide a brief introduction to some basic methods and 

the VSI-ANC chart. In Section 3, we discuss some properties of the VSI-ANC chart and give a performance comparison. An 

example to demonstrate well implementation with a real dataset of a chemical process is presented in Section 4. In the last 

Section, we provide several concluding remarks. 

II. METHODS FOR VSI-ANC CHART 

In this section, we provide a brief introduction to some basic methods and the VSI-ANC chart. 

2.1 Conventional Two-sided CUSUM Statistic 

The CUSUM control chart, which is derived by Page (1954) [7], is based on the sequential probability ratio test, and it is 

efficient in detecting small and moderate shifts. Suppose that tX
is the observation of the t

th
 sample. Let the the probability 

density function of tX
 be denoted by 

 ;tXf
, where   denotes the interesting process parameter. To detect a change in 

 , let 0  and 1  represent the in-control(IC) and out-of-control(OC) parameters, respectively. The CUSUM chart is defined 

as follows: 

 ,Z+C0,max=C t1-tt         (1) 

in which the initial value is 
0C

, where 


 is the mean value of observation tX
, typically set as 0, and tZ

is the log-

likelihood ratio statistic. 

);f(X

);f(X
log=Z
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,                              (2) 

When the process observation tX
is assumed to be independent identically distributed (i.i.d.) random samples and follows a 

normal distribution which mean and variance are 0 and  respectively, the two-side CUSUM statistic is: 

|)S|,max(S=S
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with the initial value 
0=S=S -

00



. According to a specified IC ARL, we select a suitable control limit h, and then give a 

warning signal when 
h>St . It has been demonstrated is that a conventional CUSUM statistic with 2

=k


is optimal to 

detect a process which shift size is equal to  . 

2.2 The Adaptive Method and Nonparametric Ranks-based Method 

We assume that the processes are expected to detect mean shifts. The CUSUM statistic can only be optimized if we can 

predetermine the exact sizes of the shift. Sparks (2000) [9] suggested an one-step-ahead formula as a forecasting tool to 

estimate the shift   at each time t, which can be expressed as: 
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, X +ˆ)-(1=ˆ
t1  tt          (4) 

where 10    is a smoothing parameter. The advantage of this formula is dynamically evaluating the shifts size step-by-

step, so as to make the CUSUM chart obtain the optimal performance. 

When the specific distribution form of sample observation 
1,2,3= t, X t is unknown, the ranks-based method is good 

for addressing these online nonparametric problems. Suppose that observations 
1,2,3= t, X t  are i.i.d..We rank the 

sample observations by size from small to large. Then, we denote tR
as the sequential rank of tX

, which can be expressed 

as follows: 

. } xI{x=R
t

1=i

itt  

       (5) 

It is clear that the distribution of tR
, which varies as t increases, is always a uniform distribution. Consequently, regardless 

of the distribution that tX
follows, we can monitor the process by tR

, which is the substitute for tX
. 

Standardizing the sequential rank tR
: 

, 2  t, 
RVar 

R E-R
=R

t

tt*

t 

                                           (6) 

where
  21+t=R E t and 

   121-t1+t=RVar t , it can be easily confirmed in the IC situation. So, we can use the 

distribution is always uniformed standardized sequential ranks 
*

tR
 in place of unknown distributions sample observations 

tX
. 

2.3 Variable Sampling Interval Method 

The design concept of VSI method, which is proposed by Reynolds et al.(1988) [21], is that the sampling intervals between 

current and next sample should be set to short if the samples exhibit some sign of a change and should be set to long if there 

is no sign of changes. In other words, when the (t-1)
th

 statistic 1tS
 is close to but in fact not out-of the control limit, we 

should sample the t
th

 sample as soon as possible, that is, shorten the sampling interval and determine whether the production 

process is normal. When the(t-1)
th

 statistic 1tS
 is close to the target value, we have a reason to wait for a long period of time 

to sample the next sample, that is, increase the sampling interval to avoid unnecessary waste. Therefore, we choose a warning 

limit   to segment the control area, and the sampling interval tT
 is assumed to be: 






 


,<S        ,   d

h, S    ,   d
T

1-t2

1-t1

t 





      (7) 

where h is the control limit and   is a warning limit. We select the shorter sampling interval 1d
 when the control chart 

statistics are above the warning limit and below the control limit, whereas we use the longer sampling interval 2d
when the 

control chart statistics are below the warning limit. 

The time to give a warning signal of the VSI charts is related to sampling intervals, which is no longer a constant number, so 

we cannot simply use VSI charts compare with FSI charts by ARL. Here, we use ATS and AATS to evaluate the 
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performance of the VSI control chart. ATS denotes the average run time from the process starting to giving a warning signal, 

when the process is IC. AATS denotes the average run time from shifts occurring to giving a warning signal. 

To obtain the possibility of comparing our VSI-ANC chart with other FSI charts, we record the average sampling interval 

from the process starting to give a warning signal as: 

      ,d |S|P+d h|S<|P=TE 21-t11-tt  
     (8) 

Without loss of generality, we can choose a pair of suitable  and h to obtain 
  1=TE t when the process is IC, the ATS of 

a VSI chart can be defined as: 

    (9) 

Similarly, when the process is OC, we record the average sampling interval from shifts occurring to giving a warning signal 

as 
 tTE

; simultaneously, we select suitable h,  , 1d
, and 2d

 to obtain 
  1=TE t . Then, the AATS can be defined as: 

    (10) 

Consequently, we do not distinguish between ATS and IC ARL as well as AATS and OC ARL in this paper. This mean that, 

for all the control charts, a chart with smaller AATS is performance better than the others in the same ATS. 

2.4 The VSI-ANC Chart 

The VSI-ANC chart combined with adaptive, nonparametric and VSI features can efficiently detect various sizes of shifts in 

different distributions. Inspired by Liu et al. (2014) [18], we set our statistics as follows: 
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    (11) 

where
*

tR
 is the standardized sequential rank of observation tX

, which is i.i.d. but the distribution form is 

unknown.


tt  ,
are the upward and downward evaluated value of shifts size respectively, which can be defined as follows: 

)ˆ,min(-=ˆ

)ˆ,max(=ˆ

t0t

t0t









         (12) 

Here, we are not interested in too small shifts, so we add a threshold
00 

 to improve the ability of the chart to detect 

0 
and 0 

. t̂  should be a small value when the process is IC or when a tiny shift occurs, and should increase 

rapidly when there are some large shifts occur, and it should be an one-step-ahead estimate of 
*R


 (

*R


 is related to X , 

but not a linear relationship with X ). Therefore, we choose the moving average of recent m 
*

tR
 as the expression of t̂ , 

.mR=ˆ
m

1=i

*

1+i-tt 
        (13) 
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Obtained by simulation, we also suggest setting m=2 and 0.7=0  to get the best performance for both small and large shifts 

in IC ARL=400. 

 h
 is an operating function which denotes the control limit. In the adaptive procedure, the control limit h changes with the 

evaluated values of shifts under fixed IC ARL. So the statistical equation should be divided by control limit function 
 h

 in 

both sides. Liu et al. (2014) [18] used a polynomial model of order 8 to acquire the control limit function 
 h

 with fixed IC 

ARL, their results are presents in Table 1. When we design this chart, we can select the appropriate control limit function in 

the light of the IC ARL in column 1 of Table 1. 

TABLE 1 

POLYNOMIAL MODELS

   



8

0i

1- h i

i

i
kak

 FOR CONVENTIONAL TWO-SIDED NONPARAMETRIC CUSUM 

CHART 

 

Here, the sampling interval of tX
 should be as in (7), which is determined by the previous control chart statistic. If 

h S 1-t 
we should select the shorter sampling interval 1d

; If 
<S 1-t ,we should use the longer sampling interval 

2d
; If 

h1-tS 
, a warning signal is given and the process should be stopped. 

III. THE DESIGN DETAILS OF THE VSI-ANC CHART 

The monitoring efficiency of a control chart with VSI technology is considerably faster than the conventional control chart 

with FSI. But there are many difficulties in selecting VSI chart parameters; we discuss some properties of the VSI-ANC 

chart to select parameters in this section. Some simulation results and performance comparisons are also given in this section. 

3.1 Selecting the Sampling Intervals 1d
and 2d

 

Using the VSI-ANC chart to monitor processes, we need to select a set of sampling intervals 1d
and 2d

. There is no doubt 

that a smaller 1d
 spends less time for the VSI-ANC chart on detecting various shifts when the sampling interval 2d

 is fixed. 

Stoumbos et al. (2000) [25] investigated VSI-CUSUM charts with various sampling 1d
 and 2d

;their results show that a 

chart with small values of 2d
 is more efficient for large shifts in   and large values of 2d

 makes it more efficient for small 

shifts in  . From the above, we can find that the length of short sample interval 1d
 should be as short as possible, and the 

long sample interval 2d
 should depends on both and 1d

. Thus, we choose 0.1=d1  and 1.6=d2 , 1.9, 2.2,2.5, 2.8, 3, 4, 5, 

15, 25, 30 to monitor, and the performances of our chart with diverse sampling intervals are presebted in Table 2. We set 

50= , ATS=400, and assume that the IC underlying distribution is the standard normal N(0,1) while OC shift range is 

(0.25~4), and those simulation results are estimated by 50,000 times. 
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TABLE 2 

THE AATS VALUES OF THE VSI-ANC CHART ACCORDING TO VARIOUS 1d
 AND 2d

 UNDER N(0,1) 

WHEN 50= , ATS=400 AND 
0.1=d1 . 

 

Note that because of the independent observation tX
 is nonparametric in our chart, we should use the standardized 

sequential rank 
*

tR
to address this case. 

*

tR
is distributed as a uniform random variable, and it can be confirmed that for any 

time t the scope of
*

tR
 can be expressed as follows: 

       ]1+t1-t3 ,1+t1-t3[-
      (14) 

Therefore, when t , the asymptotic distribution of 
*

tR
 is 

)3  ,3U(-
. In other words, regardless of how large the 

shifts size of tX
 is, the largest shift size of

*

tR
 is equal to 3  at most. It is a relatively small shift, and thus, a larger 2d

 is 

better. This conclusion can also be drawn from Table 2: the AATS always decreases with the increase of 2d
when 

0.1=d1 . 

However, note that when the value of 2d
 is too large, it may cause the value of statistics beyond the control limit without 

providing an OC signal, because the waiting time for the next sample is too long. Simultaneously, when the value of 2d
 is 

too large, to obtain 
  1=TE t , the value of the warning limit   will decrease continuously, and it decreased to0.02 when 

30=d2 . An infinitesimally small value of   will result in the statistics falling in the area between   and h before the 

shifts occur, which requires the chart to use the shorter sampling interval 1d
 and makes the number of sampling times 

excessive. In conclusion, we should choose a moderate value of 2d
. 

The simulation results of the chart with various sampling intervals 1d
and 2d

 are close. To comprehensively evaluate the 

performances of our chart with diverse sampling intervals, we introduce an evaluation criterion known as relative mean index 

(RMI), which is defined by Han and Tsung (2006) [26] as: 

,
AATS

AATS-AATS

N

1
=RMI

N

1l
min

min

l

ll
 



       (15) 



International Journal of Engineering Research & Science (IJOER)                      ISSN: [2395-6992]                    [Vol-2, Issue-5 May- 2016] 

Page | 56  

  

where N is the total number of shifts monitored, l
AATS  is the AATS of the given chart when sample shift is l , 

and

min

l
AATS   is the minimum value among all AATS values when sample shift is l . A chart with a smaller RMI value 

means that the chart performance better overall. 

From Table 2, the monitoring efficiency of the VSI-ANC chart increases very slowly with the increase of 2d
when 

5.22 d
. To make the results more visual, we define the increment of RMI (IRMI) as follows: 

.
1}-{td-{t}d

RMI{t}-1}-RMI{t
={t} IRMI

22       (16) 

We can see from Table 2 that the maximum IRMI appears when
2.5~2.2=d2 , and the IRMI are becoming smaller when 

5.22 d
. Thus, considering the IRMI and the number of sampling times, were commend selecting 

0.1=d1  and 

2.5=d2  for the VSI-ANC chart when the size of shifts is not clear. 

3.2 Selecting the 'Warning Limit'   

We record the average sampling interval from the process starting to giving a warning signal as (8), and we confirmed that 

ATS is equivalent to IC ARL when 
  1=TE t . According to (8), we know that the warning limit  actually depends on 1d

, 

2d
 and 

 tTE
. Some values of the control limit h (h is decided by zero-state ATS) and warning limit  with various 1d

, 

2d
 are presented in Table 3. These simulation values are obtained in the IC process where underlying distribution is assumed 

to be N(0,1). Note that the VSI-ANC chart is distribution-free. From Chakraborti et al. (2001) [27] we known that 

distribution-free charts with other underlying distributions have the same results. 

TABLE 3 

THE VALUES OF H AND   ACCORDING TO VARIOUS 1d , 2d  AND ZERO-STATE ATS UNDER N(0,1). 

 

 

3.3 The steps for designing a VSI-ANC chart 

To design the VSI-ANC chart, we can follow these steps. 

1) Specify the value of ATS (or IC ARL) according to the actual requirements. 

2) Select an appropriate control limit function h(k) in accordance with the ATS in column 1 of Table 1. 

3) Calculate 



t̂ and 



t̂ . Set 
  2RR=ˆ *

1-t

*

tt 
 and 

0.7=0  as the evaluated size of shifts; meanwhile, for the initial 

observation, let 
0=R=R *

1

*

0 . 

4) Find the control limit h in accordance with the selected ATS. Some reference values are available in Table 3. 

5) Select the sampling intervals values of 1d
and 2d

. In the situation that scant knowledge about the size of mean shifts, we 

always set 
1.01 d

and 
5.22 d

. 
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6) Find the warning limit   in accordance with 1d
 and 2d

and control limit h. Table 3 also provides some reference values. 

7) For the subsequent observations, calculate tS
. If 

htS 
, a warning signal is given and the process should be stopped. 

If 
h S t 

, monitoring the (t+1)
th

 observation with the smaller interval 1d
 sequentially; otherwise, monitoring the 

(t+1)
th

 observation with the larger interval 2d
. 

3.4 Performance comparisons 

We compare the performance of the VSI-ANC chart with the ANC chart in this subsection. The ANC chart is performance 

better than other nonparametric charts, see Liu et al. (2014) [18] for details. Let 400=ARL(ANC) ICANC)-ATS(VSI  , the 

ANC chart is equivalent to the VSI-ANC chart with 1=d=d 21 . Set the change point   as 50, 100 and 300, where the 

change point   represents the shifts occur point. We choose N(0,1), t(4), 
 42

 and 
 3,1

 for representative 

illustrations, in which are two symmetrical distributions and two asymmetrical distributions. To investigate the overall 

performance of the two chart across a series of shifts, we also compute their RMI values of AATS. 

The performances of the two charts with different distributions and different shifts are shown in Table 4. Up to time   the 

underlying distributions are assumed to be the N(0,1), t(4), 
 42

 and 
 3,1

 distributions, and after time   are 

,1)N( X , 
 X+t(4)

, 
   X

2 +4
 and 

    X+3,1
. Where   is the respective standard deviation of each 

distribution. 

As shown in table 4, both the ANC chart and the VSI-ANC chart become more sensitive to change as   increases. 

Moreover, at the same  , the value of AATS decreases as X  increases. This table also shows that the RMI of the VSI-

ANC chart is almost equal to zero, which indicates that the VSI-ANC chart performs better than the ANC chart regardless of 

whether the shift is small or large and regardless of distributions. 

TABLE 4 

THE AATS VALUES OF THE VSI-ANC AND ANC CHARTS UNDER VARIOUS DISTRIBUTIONS. 
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IV. CHEMICAL DATA EXAMPLE 

In this section, the use of our proposed VSI-ANC chart can be demonstrated by applying it to a chemical dataset. There are 

149 readings of the triglyceride concentrations in this dataset. The triglyceride concentrations of a chemical products should 

be set in a certain range. More detailed introduction can be found in Chapter 3 of Hawkins and Olwell (1998) [28]. 

According to Hawkins and Olwell (1998) [28], the 149 observations are mutually independent and stabilized, and the shift 

sizes is unknown. Li et al. (2014) [18] also used this chemical dataset in their article and demonstrated it is significantly 

different from a normal distribution. Similarly, we use the R function shapiro.test to inspect the first 75 observations, which 

provides the statistics W = 0.96548 and p-value = 0.03852. The inspection result shows that the dataset distribution is clearly 

different from a normal distribution; it can be identified as nonparametric. Therefore, our VSI-ANC chart can address these 

issues with ease. 

 
FIG. 1 THE STATISTICS OF THE VSI-ANC CHART ALONG WITH THE WARNING LIMIT AND CONTROL LIMIT 

FOR MONITORING THE TRIGLYCERIDE CHEMICAL PROCESS. 

TABLE 5 

THE VSI-ANC AND ANC CHART APPLIED TO THE TRIGLYCERIDE DATASET. 
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We use the VSI-ANC chart and ANC chart for comparing analysis and monitor the 76th to 149th observations as same as Li 

et al. (2014) [18]. We set the zero-state ATS as 400,
  2RR=ˆ *

1-t

*

tt 
 , 

0.7=0 , 
1.01 d

 and 
5.22 d

. 

Consequently, the control limit h=1.266, and the warning limit 0.196= . Meanwhile, we set the FSI of the ANC chart as 

1=d . Table 5 presents the statistics values of the ANC chart and the VSI-ANC chart from the 76th observation on and 

calculates their AATS. Fig. 1 shows the results of our chart along with its warning limit and control limit. From Fig. 1 and 

Table 5, we can see that the two charts will present a warning signal after reading the 124th observation. The ANC chart 

requires 48 units of time to provide the warning signal, and the VSI-ANC chart requires only 16.8 units of time. 

V. CONCLUSION 

In this paper, we propose a CUSUM chart with VSI technology, which is based on the adaptive and nonparametric methods. 

This chart is distribution free, performs well for both small and large shifts and is not too computationally demanding. 

Moreover, our chart detects the process shift faster than other charts in standard with ATS; the supporting example is the 

triglyceride chemical process. 
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