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Abstract— In this paper, the gap function for set-valued variational inequalities is introduced and the finiteness of the gap 

function is discussed. Furthermore, under µ-strongly monotone condition, we obtain error bounds for set-valued variational 

inequalities, i.e. upper estimates forthe distance to the solution set of the variational inequalities. 
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I. INTRODUCTION 

A vector variational inequality (for short,VVI) in a finite-dimensional Euclidean space was introduced first by Giannessi [1] 

in 1980.In the recent years, variational inequalities have become a very popular field of research in optimization theory. 

From the computational point of view, one important research direction in variational inequalities is the study of gap 

functions. One advantage of the introduction of gap functions in variational inequality is that variational inequalities can be 

transformed into optimization problem. Thus, powerful optimization solution methods and algorithms can be applied to find 

solutions of variational inequalities. Meanwhile, the gap functions can be used to devise error bounds for variational 

inequalities. There have been many results regarding gap functions and error bounds for classical variational inequalities 

see[2-5]. 

In this paper, we are interested in studying variational inequalities with set-valued maps. The solution of the variational 

inequalities with set-valued maps is a natural extension of the classic generalized variational inequalities studied in[6,7]. 

These kind of variational inequalities arise as generalization of optimality conditions for a constrained optimization problem 

with non-smooth objective function. See for example[8], where some equivalence of some particular set-valued VVI and a 

nondifferentiable and nonconvex vector optimization problem is established. Our aim in this article is to construct gap 

functions which can be used to devise error bounds for variational inequalities with set-valued maps. 

Given a set-valued map : n nT R R and a nonempty and convex subset C of
nR , then ( , )VI T C consists in finding 

x C and ( )t T x  such that 

, 0,t y x y C      .                              (1.1) 

This problem is also referred to as Stampacchiavariational inequality defined by T and C .on the vector y C , this leads us 

to define what is called the weak Stampacchiavariational inequality, 

denoted by ( , )wVI T C  which consists in finding x C  such that, , ( ) ( )y C t y T x    satisfying 

( ), 0,t y y x y C                                 (1.2) 

We shall denote by ( , )S T C the solution set of the ( , )VI T C , that is 

*( , ) ( )x S T C x T x     such that 
*, 0, ,x y x y C     

 

while ( , )wS T C stands for the solution set of the ( , )wVI T C : 

*( , ) , ( )w yx S T C y C x T x      such that 
*, 0.yx y x     

Clearly one alwayshas ( , ) ( , )wS T C S T C . 
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II. GAP FUNCTIONS 

In this section,we introduce the concept of gap functions for ( , )VI T C and ( , )wVI T C . 

Definition 2.1. : nh C R R  is said to be a gap functions of the ( , )VI T C or the 

( , )wVI T C  if 

(ⅰ) ( ) 0,h x x C   ; 

(ⅱ) 0 ( )h x  if and only if x  is a solution of the ( , )VI T C or the ( , )wVI T C . 

Given a set-valued map : ,n nT R R for any 0   the normalized operator T defined by:
 

 

* *

*

0 0 ( )

1
: ( ) ,

if T x

T
x x T x otherwise

x







   

 
  

 

In [9], Yang and Yao introduced the gap function and established necessary and sufficient conditions for the existence of a 

solution for variational inequalities with set-valued maps. In [10], D.Aussel. J.Dutta first introduced a simple gap function. 

*

*

( )
( ) : sup inf ,

x T xy C

g x x x y





     

In order to prove error bounds, it is important to know whether the gap function is finite or not. If C is bounded, the gap 

functions is finite. In order to overcome this boundedness 

Assumption about C , D.Aussel. J.Dutta again introduced a class of gap functions. 

*

2*

( , )
( )

1
( ) : sup[ inf , ]

2x T xy C

g x x x y x y


 


       

for any 0  and 0  . 

Inspired and motivated by the above research work, in this paper ,the new gap functions for ( , )VI T C and ( , )wVI T C  are 

introduced. 

Definition 2.2. An operator : n nT R R is   strongly monotone, if there exists 0  such that, for any , nx y R and 

any 
* *( ), ( )x T x y T y  ,one has 

2* *,y x y x y x      .            (2.1) 

Proposition 2.1. If : n nT R R is   strongly monotone with 0   and C is a nonempty convex set, then the 

( , )VI T C and the ( , )wVI T C  have at most one solution. 

Proof. If x  and x̂  all is solution of ( , )VI T C , then ( ), ( )t T x t T x  
 

 such that 

, 0,t y x y C       and , 0, .t y x y C     
 

 

There is a y x


 such that , 0t x x   


 and a y x  such that , 0t x x   
 

.Combining above two inequalities, we 

have 
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, 0t t x x    
 

. 

Since : n nT R R is   strongly monotone with 0  , it follows that, 

2
, 0t t x x x x      
  

, 

and consequently, x x


.With the same proof as above one can obtain same consequence about ( , )wVI T C . 

 Let : n nR R R   be a real-valued function. We make the following hypothesis. 

Assumption 2.1. 

(ⅰ) ( , )x y is continuously differentiable in the second argument; 

(ⅱ) ( , ) 0, ( , ) n nx y x y R R     ; 

(ⅲ) for all , ( , )nx R x y is uniformly strong convex in the second argument with respect to constant 0  ; i.e., 

0  ,for all 
nx R  

2

2

1 2 2 1 2 1 2 1 2( , ) ( , ) ( , ), , , nx y x y x y y y y y y y R            ; 

(ⅳ) ( , ) 0x y   if and only if x y ; 

(ⅴ) 2 ( , )x y is Lipschitz in the second argument with Lipschitz constant L ; i.e., 

2 1 2 2 1 2 1 2( , ) ( , ) , , .x y x y L y y y y C      
 

The following examples show that Assumption 2.1 is satisfied by some functions. 

Example 2.1.
2

( , ) ( 0).x y k x y k     

Example 2.2. ( , ) , ( )( ) ,x y x y B x x y       

Where ( )B x is positive definite symmetric matrices and ( )B x is uniformly continuous differentiable. 

Lemma 2.1. ([11]) Let Assumption 2.1 (ⅰ) - (ⅳ) hold, then 2 ( , ) 0x y  if and only if x y . 

Proposition 2.2. Let Assumption 2.1 hold, then, 

2 2
( , ) ( ) , , .x y x y L x y x y C          

Proof. In Assumption 2.1 (ⅲ), let 1 2,y y y x   and hence, 

2

2( , ) ( , ) ( , ), .x y x x x x y x y x         
 

By Assumption 2.1(ⅳ), ( , ) 0x x   and by Lemma 2.1 , 2 ( , ) 0x x  .Hence, 

2
( , ), , .x y x y x y C      

In Assumption 2.1 (ⅲ),  let 1 2,y x y y   and hence, 

2

2( , ) ( , ) ( , ), .x x x y x y x y x y           



International Journal of Engineering Research & Science (IJOER)                      ISSN: [2395-6992]                    [Vol-2, Issue-5 May- 2016] 

Page | 63  

  

By Assumption 2.1(ⅴ) and Lemma 2.1 , we have that 

2

2

2

2 2

2

2 2

2 2 2

( , ) ( , ),

( , ) ( , ),

( , ) ( , ) .

( )

x y x y x y x y

x y x x x y x y

x y x x x y x y

L x y x y L x y 

  

  

  

 

      

      

      

       

 

Definition 2.3.  A set-valued map : n nT R R is said to be directionally closed if and only if there 0   such that for 

any , ( )nx R T x is closed. 

Consider ( , )VI T C and ( , )wVI T C . We define the following function: 

*

*

( , )
( )

( ) : sup[ inf , ( , )]
x T xy C

G x x x y x y


  


      

for any 0  and 0  . 

Proposition 2.3.  Let the set-valued map : n nT R R  be directionally closed with nonempty values and let C be a closed 

convex subset. Then for any 0  and 0  , the function 
( , ) ( )G x   is a finite-valued function on

nR . 

Proof.  Let
*

*

( )
( , ) inf ,

x T x
x y x x y






    and we immediately obtain 

( , ) ( ) sup[ ( , ) ( , )].
y C

G x x y x y   


 

 

While x  being fixed, the function ( , )y x y  is concave and further T has non-empty closed values when T is 

directionally closed with nonempty values. By T definition, we have that T is bounded, thus T is compact-valued. Hence 

the function ( , )y x y  is finite.  

Moreover the function ( , ) ( , )y x y x y    is uniformly strong convex and thus it attains a unique minimum over 

C  when C  is closed. 

Remark 2.1. For any 
nx R , any 0   and any 0   let us denote by 

( , ) ( )y x   the unique global minimum of the 

function ( , ) ( , )y x y x y    on the closed constraint set C . 

Lemma 2.2. ([10]) Let T be any set-valued map from 
nR  to 

nR  and C  is a nonempty subset of
nR . Then the following 

assertions are equivalent: 

(ⅰ) ( , )x S T C ; 

(ⅱ) there exists 0  , such that ( , )x S T C ; 

(ⅲ) for any 0  , ( , )x S T C . 

Theorem 2.1. Let the set-valued map : n nT R R be directionally closed with nonempty values and let C be a closed 

convex subset. Then the function 
( , ) ( )G x   is a gap function for the ( , ).wVI T C  

Proof.  It is simple to observe that 
( , ) ( ) 0G x    for all x C just by setting x y .  
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Let us now assume that
( , ) ( ) 0G x   , there x C . i.e., 

*

*

( , )
( )

( ) sup[ inf , ( , )] 0.
x T xy C

G x x x y x y


  


       

Thus, 

*

*

( )
inf , ( , ) 0, .

x T x
x x y x y y C






        

By Proposition 2.2, we have  

2
( , ) ( ) , .x y L x y y C     

 

Hence 

*

2*

( )
inf , ( , ) ( ) , .

x T x
x x y x y L x y y C



  


        
 

Let us consider a fixed but arbitrary point 0x C . Consider the sequence of vector  ky given as 

0

1
( ), .ky x x x k N

k
     

Since C is convex it is clear that ky C  for each k N . Therefore , for any k , 

*

2*

( )
inf , ( , ) ( ) .k k k

x T x
x x y x y L x y



  


        

Combining above two inequalities, we have 

*

2*

0 0
( )

1
inf , ( ) .

x T x
x x x L x x

k

 


       

As k we have 

*

*

0
( )

inf , 0.
x T x

x x x


     

Since T is compact-valued, there exists 
*

0 ( )x T x such that 

*

* *

0 0 0
( )

, inf , 0.
x T x

x x x x x x


         

Hence  

*

0 0, 0.x x x     

Since 0x C is arbitrary, it is clear that ( , )wx S T C . 

Conversely, let us now assume ( , )wx S T C . By Lemma 2.2, we obtain ( , )wx S T C , that is, for 

*, ( )yy C x T x     such that 

*, 0.yx y x     

This immediately implies that 
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( , ) ( ) 0.G x  
 

This completes the proof. 

Theorem 2.2.Let the set-valued map :
nnT R R  be directionally closed with nonempty values and let C be a closed 

convex subset. Then ( , )wx S T C if and only if 
( , ) ( )x y x   for any 0   and 0  .  

Proof.  From the definition of 
( , ) ( )y x 

, if 
( , ) ( )x y x  , we immediately obtain 

( , ) ( ) sup[ ( , ) ( , )] ( , ) ( , ) 0.
y C

G x x y x y x x x x      


    

 

By Theorem 2.1 , we have ( , )wx S T C .Now let us suppose, for a contradiction, that  ( , )wx S T C  and that 

( , ) ( )x y x  .By ( , )wx S T C , for each y C ,there exists
* ( )yx T x  such that

*, 0.yx y x    Hence, for each 

y C , ( , ) 0x y  . By Assumption 2.1(ⅳ), while 
( , ) ( )x y x   we have 

( , )( , ( ) 0x y x   . Since 

( , ) ( , ) ( , )( ) ( , ( )) ( , ( )),G x x y x x y x        
 

thus we have 
( , ) ( ) 0G x   , which is a contradiction with Theorem 2.1. 

Remark 2.2.Theorem 2.2 provide an interesting fixed point characterization of the solutions of ( , )wVI T C . 

3.Error Bounds 

Theorem 3.1.  Suppose that : n nT R R is   strongly monotone with 0   and let x C be the unique minimum of 

( , )wVI T C .Then, for any 0   and 0  , such that ( ) 0L     , one has for any x C , 

( , )

1
( )

( )
x x G x

L
 

  
 

 
. 

Proof. By ( , )wx S T C , for each y C ,there exists 
* ( )yx T x  such that 

*, 0.yx y x     

Thus, for 
* ( )x T x  , we have 

2* * *, , .yx x x x x x x x x         
 

By Proposition 2.2, we have  

2
( , ) ( ) , .x y L x y y C       

Hence, 

*

*

*

( , )
( )

*

( )

2 2 2

( ) sup[ inf , ( , )]

inf , ( , )

( ) [ ( )]

x T xy C

x T x

G x x x y x y

x x x x x

x x L x x L x x





 

 





     





    

    

        

. 

Therefore, we have  
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( , )

1
( )

( )
x x G x

L
 

  
 

 
. 
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