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Abstract— Stochastic advection diffusion equation (SADE) with multiplicative stochastic input is a practical mathematical 

model for different physical phenomena. In this paper, SADE will be studied using two spectral stochastic techniques. The 

first is the Wiener chaos expansion (WCE) technique and the second is the Wiener-Hermite expansion with perturbation 

(WHEP) technique. These techniques convert the SADE into a system of deterministic partial differential equation (DPDE) 

that can be solved using a deterministic numerical method which is suitable for the periodic boundary conditions. 

Convergence analysis is discussed and some of the second order moments are compared. The numerical results demonstrate 

the efficiency of both techniques. The WCE technique is more accuracy than the WHEP technique. The diffusion and 

advection coefficient and the intensity of Gaussian white noise play important roles in the SADE solution. The study shows 

that the WCE technique is more practical to get the closed form mean solution while the WHEP technique gets the mean 

solution in the form of an infinite series. 

Keywords— Advection diffusion equation, Multiplicative random input, Wiener-Hermite expansion, Wiener-Chaos 
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I. INTRODUCTION 

Numerical models have received a great attention in sciences and engineering in the recent years for modeling the differential 

equations. These models work on reducing the cost and time of computation especially for the physical phenomena that 

contain uncertain input. This phenomena can be studied by converting it into mathematical models of stochastic differential 

equations (SDE) and we can use the numerical methods [1,2] for overcoming these problems. 

Numerical methods have been developed for simulating SDE such as moment equations, probability density method [3], etc. 

These methods are complicated in solving the nonlinear SDEs so the spectral decomposition techniques have received much 

attention in the recent years. The spectral decomposition technique was first suggested by the great mathematician Norbert 

Wiener [4]. Wiener constructed an orthonormal random basis for expanding homogeneous chaos depending on white noise, 

and used it to study problems in statistical mechanics [5]. The Hermite polynomial has been used to obtain the solution of 

SDE. Mecham et al. [6] suggested the Wiener-Hermite expansion to study turbulence solution of Burger equation. In 

nonlinear stochastic differential equations, there exist always difficulties of solving the resultant set of deterministic integro-

differential equations. The deterministic integro-differential equations got from the applications of a set of comprehensive 

averages on the stochastic integro-differential equation obtained after the direct application of WHE. Many authors 

introduced different methods to face these obstacles. Among them, the WHEP technique [7] was introduced using the 

perturbation technique to solve perturbed nonlinear problems. M. El-Tawil and his co-workers [7-11] used the WHE together 

with the perturbation theory (WHEP technique) to solve a perturbed nonlinear stochastic differential equation. The WHEP 

technique is generalized to handle n
th

 order polynomial nonlinearities, general order of WHE and general number of 

corrections [8].  

Cameron and martin [12] was developed a more explicit and intuitive formulation for the Hermite polynomial, which was 

called the Wiener-Chaos expansion. Their development is based on an explicit discretization of the white noise process 

through its Fourier expansion. This approach is much easier to understand and more convenient to use, and hence replaced 

Wiener’s original formulation. Fourier chaos expansion has become a useful tool in stochastic analysis involving Brownian 

motion [13]. Rozovskii et al. [14-16] derived Wiener chaos propagator equations for several important the stochastic partial 

differential equations (SPDEs) driven by Brownian motion forcing. Lototsky et al. [17, 18] proposed a new numerical 

method for solving the Zakai equation based on its Wiener chaos expansion. Using Fourier-Hermite expansion for modeling 

non-Gaussian processes is also investigated [19, 20]. Babuska et al. [21], Schwab et al. [22] and Keese el al. [23] developed 
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and generalized Ghanem's approach for solving stochastic elliptic equations. Xiu and Karniadakis [24] generalized the 

Hermite polynomial expansion and used it to study flow-structure interactions. Zhang et al. [25] combined moment 

perturbation method with polynomial chaos expansion, and used it to study the saturation flows in heterogeneous porous 

media. 

The main goal of this paper is to use two stochastic spectral techniques, WCE and WHEP for solving the stochastic advection 

diffusion equation with multiplicative white noise and periodic boundary conditions. The two techniques convert SPDE into 

a system of DPDE. The DPDE can be solved using a proposed Eigen function expansion in both cases of WCE and WHEP 

techniques. The results will be studied through the mean and variance solutions. 

This paper is organized as follows: 

The formulation of the SADE is outlined in section 2. The WCE technique is explained in section 3. In section 4, the 

algorithm of WHEP technique is introduced. In section 5 and 6, we apply the WCE and WHEP techniques respectively; the 

convergence analysis of the WCE is studied. The proposed method for solving the resulting DPDEs; the numerical solutions 

of the WCE and WHEP techniques are introduced in section 7. The comparison and discussion of the results of the two 

techniques are in section 8. Finally, the conclusions are given in Section 9. 

II. STOCHASTIC ADVECTION DIFFUSION EQUATION 

SADE represents the transporting that occurs in fluids through the combination of advection process and diffusion process 

.Consider the SADE in Stratonovich sense with multiplicative stochastic force described by white noise and periodic 

boundary conditions as [27]: 

         

2
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                                                                                  (2.1) 

which can be written in the Ito sense as: 
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where ( , )u x t  represents the concentration of mass transfer; 0 
 

represents the diffusion coefficient; 0  , 

2

2


    and tW is the one dimensional Brownian motion. 

This model has exact solution [27] as: 

                                                     ( , ) sin( ( )).
t

u x t e x W t



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                                                                                  (2.3) 

The first order moment [ ( , )]E u x t  and the second order moment 
2[ ( , )]E u x t  are: 

                                                   [ ( , )] sin( ),tE u x t e x   

                                                  

2
2 2 21 1

cos(2 )
2 2

[ ( , )] t t
e e xE u x t   

 
 
 
 

,                                                           (2.4) 

So the solution admits the Wiener chaos expansion because of finite second moment.  

III. WIENER CHAOS EXPANSION TECHNIQUE 

For SPDE with random force in form of Brownian motion (BM) and for fixed time 0T  , we consider an orthnormal basis 

in Hilbert space 
2 ([0, ])L T to be the trigonometric functions [16]:   
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Also define the standard Gaussian random variables i  (GRVs) and the Brownian motion ( )tW W t  as follows:

 

                    
10 0
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The convergence in mean square sense [26] in the interval [0, ]T  is: 

                                 
2
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According to [12], the solution function ( , )u x t can be expanded as follows: 

                                   ( , ) ( , ) ( ), [ ( )] [ ( )],u Tu x t x t u E uT E uT t
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where the multi-indices 
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 where ( )
n

H x

is the normalized 
thn order Hermite polynomial and T are called Wick polynomials of order  . Also ( )T t is the Wick 

polynomials filtered by the σ-algebra 
W

tF , Recall that ( )T t is a martingale and satisfies the differential equation [26]: 
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where multi-index 
1

, ,
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Wick polynomials form a complete orthonormal basis in the Hilbet space. The expectation of two wich polynomials ,T T   

is 
,

[ ]E T T
   

 .  

Truncating the expansion (3.2) up to polynomial of order N and using only K GRVs retains 
 

( )!

! !

K N

N K


coefficients [26]. 

The truncated multi-indices will be 
1,

1
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i
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Then the truncated 

WCE can be denoted as: 

                                                 

,

, ( , ) ( , ) ( ).
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K N u Tu x t x t
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The mean and variance of the truncate solution function , ( , )K Nu x t are computed as: 
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IV. WIENER HERMITE EXPANSION 

As a consequence of the completeness of the Wiener-Hermite set [28] any arbitrary stochastic process can be expanded in 

terms of the Wiener-Hermite polynomial set ( )

1( ,..., )n

nH t t . This expansion converges to the original stochastic process with 

probability one. 

The stochastic solution process ( , ; )u x t w can be expanded as, [7]: 

                         (0) ( ) ( )

1 1
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where 1 2....k kd dt dt dt  and 
kR

  is a k-dimensional integral over the disposable variables 1 2, ,..., kt t t . The functional 
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 order Wiener-Hermite time independent functional and ( )

1 2( , ; , ,... ); 0i
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deterministic kernel of the WHE.  

The Wiener-Hermite functionals 
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(1) ( )
dW
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
 
is the white noise. The 

( )nH

functions are statistically orthnormal, i.e.   
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The solution will be practically truncated with ( 1)m  terms and the expectation and variance of the truncated solution will 

be: 
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    In the nonlinear SPDE or the multiplicative SPDE, it is difficult to solve the deterministic differential-integral equation 

system of the kernels results from the application of the WHE. This difficulty is due to the resulting system is a coupled 

differential-integral system and we can overcome this by using the perturbation technique. 

    In the perturbation technique the solution is a power series of small parameter  . Set of simple equations are expanded as 

[29]: 
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where NC is the number of corrections. For m order WHE, the statistical properties of the relatively solution will be 

calculated as:                                                           
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V. APPLICATION OF WCE 

To get the WCE of SADE (2.2); consider the differential form: 
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using equations (2.2) and (3.3) to get: 
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Taking the expectation for both sides of (5.1), the terms involving Ito integrals will disappear since they are mean zero. 

Then we will get, 
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with the initial condition sin( ), 0,
0, 0.( ,0)

x
u x
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 . 

Theorem: 

The SADE (2.1) which has exact solution ( , )u x t and the truncated solution 
, ( , )K Nu x t ; the estimated error will take the 

form: 
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Truncating the solution with respect to order N and K  GRVs to get: 
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This means that, the error between the approximate solution and the exact solution decays by increasing the number K of 

GRVs, the order of polynomial chaos N and diffusion coefficient  . Also decreasing the advection coefficient  and the 

time interval T increases the convergence between the exact and the WCE approximation.
 

VI. APPLICATION OF WHE 

The first two terms in expansion (4.1) are the Gaussian part of the solution. This part is not sufficient for the accurate 

solution of SADE. The second order WHE is applied to the SADE (2.2) to get: 
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Multiplying both sides of (6.1) with 
(0) (1)

1
, ( )H H t and 

(2)

1 2
( , )H t t respectively and taking the expectation to get: 
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   
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   
                      (6.4)   

The deterministic systems appear when applying WCE and WHE are coupled integro-differential system of equations that 

are not easy to solve. In the following section, we will suggest a numerical technique to solve the deterministic systems (5.2) 

and (6.2-6.4) with periodic boundary conditions. 

VII. THE NUMERICAL TECHNIQUE USING THE PRINCIPAL OF EIGEN FUNCTION EXPANSION 

We introduce a numerical technique for solving the DPDE resulting from the application of the WCE and WHEP techniques. 

Here we implement the usual Eigen function [30] to be suitable for solving the resulting system of differential equations with 

periodic boundary conditions. The solution ( , )u x t can be written as an Eigen function expansion as: 
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   
  

             (7.1) 

where, 

 

1

0

0

1

0

2

0

1
( ) ,

2
( )cos( ) ,

2
( )sin( ) ,

L

L

n

L

n

C f x dx
L

C f x nx dx
L

C f x nx dx
L













        ,                

1

0

0

1

0

2

0

1
( , ) ,

2
( , ) cos( ) ,

2
( , )sin( ) .

L

L

n

L

n

F F x t dx
L

F F x t nx dx
L

F F x t nx dx
L













                                              (7.2) 

The proof of formulae (7.1) is explained in Appendix A. 

The system of propagators (5.2) can be re-written using the Eigen function expansion (7.1) as: 

  
2 2 2 21 ( ) 1 2 ( ) 2

0 10 0

( , ) ( ) cos( ) ( ) sin( ).

t t

an t an t s an t an t s

n n n n

n n

u x t C e e F s ds nx C e e F s ds nx

 
     

 

   
      

   
    

                                                                                                                                                                                      (7.3) 

For 0  we get: 

 

2

02
( , ) ( , ), ( , 0) sin( ),u x t u x t u x x

t x


 
 

   

which results in:       

                   sin( ).( , ) te xu x t 


                                                                                                                              (7.4) 

For 
1

1, 1, 0
i

     we get:  

2

1 02
( , ) ( , ) ( ) ( , ), ( ,0) 0,u x t u x t m t u x t u x

t x x


 


  
  

  
   

which results in:       

                  

cos( ).( , ) t x
t

u x t
T

e
                                                                                                                      (7.5)                                                                                                                                                

For 
1

1, 1, 0, 1i i      we get: 

 

2

02
( , ) ( , ) ( ) ( , ), ( , 0) 0,

i
u x t u x t m t u x t u x

t x x


 


  
  

    

which results in:       

                   

( ),
2

sin( )cos( , ) ( 1) / .t
xe k t

k T
u x t k i T








                                                                    (7.6)                                                                                 
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For 
1

2, 2, 0, 1
i

i      we get:  

1

2

1 1, 12
( , ) ( , ) ( ) ( , ), ( ,0) 0,u x t u x t m t u x t u x

t x x
 

 
 

  
  

  
        

which results in:  

                   

2 2

( , ) sin( ).
2

tt
u x t e x

T





 
                                                                                                                  (7.7) 

For 
1

2, 0, 2, 1
i

i       we get:  

2

1, 12
( , ) ( , ) 2 ( ) ( , ), ( , 0) 0,

i
i

u x t u x t m t u x t u x
t x x

 
 

 

  
  

    

which results in:       

                  

2
2

2 2

2
( , ) sin ( )sin( ).tu x t e k t x

T k











                                                                                             (7.8) 

For 
1

2, 1, 1, 1
i

i      we get:  

1

2

1 1, 1 1, 12
( , ) ( , ) ( ) ( , ) ( ) ( , ), ( , 0) 0,

i
i

u x t u x t m t u x t m t u x t u x
t x x x

   
  

   

   
   

        

which results in:       

                

22
( , ) sin( ) sin( ).tt

u x t e k t x
T k











                                                                                             (7.9) 

For 2, 1, 1, , 1
i l

i l      we get:  

2

1, 1 1, 12
( , ) ( , ) ( ) ( , ) ( ) ( , ), ( , 0) 0; , 1, ,

i
i j

u x t u x t m t u x t m t u x t u x i j i j
t x x x

j
   

  
   

   
     

   

   which results in:

 

 

     

                       

2

2 22

2

2
( , ) sin( )sin( )sin( ), 1/ .tu x t e k t k s x k j T

T k k






 




                                    (7.10)   

Then we have: 

0

1

2 2
2

22 2 2 2

2

2

,

sin( ),

2
cos( ) sin( )

2 2 2
sin( ) sin( ) sin( )sin( ) sin ( ) ,

2

, 1/ .

( 1) / ,

t

t

t

u e x

u x t k t
k

t t
u e x k t k t k t k t

T k k k k

k j T

k i T
T

e









 



   

  















 
  

 

 
    

 

 

 

             

The WHE differential equations (6.2), (6.3) and (6.4) can be solved using perturbation technique [7]. We can use the 

perturbation technique about advection coefficient   combining with the Eigen function expansion (7.1) to calculate the 

first, second, third and fourth corrections.  
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Compare the coefficients of 
0 : 

2
0 0 0

0 0 02
( , ) ( , ) 0, ( ,0) sin( ),u x t u x t u x x

t x


 
  

 

      

 

 to get
0

0 ( , ) sin( ),tu x t e x                                                                                                                                 (7.11) 

2
1 1 1

0 1 0 1 0 12
( , ; ) ( , ; ) 0, ( ,0; ) 0,u x t t u x t t u x t

t x


 
  

   

to get   
1

0 1( , ; ) 0,u x t t                                                                                                                                                (7.12) 

2
2 2 2

0 1 2 0 1 2 0 1 22
( , ; , ) ( , ; , ) 0, ( ,0; , ) 0,u x t t t u x t t t u x t t

t x


 
  

   

  to get   
2

0 1 2( , ; , ) 0.u x t t t                                                                                                                                          (7.13)                                                                                                                                                                                             

Compare the coefficients of 
1 :  

2
0 0 1 0

1 1 0 12
( , ) ( , ) ( , ; ), ( ,0) 0,u x t u x t u x t t u x

t x x


  
  

      

to get
0

1 ( , ) 0,u x t                                                                                                                                                        (7.14)                                                                                                                                               

2
1 1 0 2 1

1 1 1 1 1 0 0 1 1 12
( , ; ) ( , ; ) ( ) ( , ) 2 ( , ; , ), ( ,0; ) 0,u x t t u x t t t t u x t u x t t t u x t

t x x x
 

   
    

   
 

to get 
1

1 1( , ; ) cos( ),tu x t t e x                                                                                                                              (7.15) 

2
2 2 1 1

1 1 2 1 1 2 2 0 1 1 0 22

2

1 1 2

1 1
( , ; , ) ( , ; , ) ( ) ( , ; ) ( ) ( , ; ),

2 2

( ,0; , ) 0,

u x t t t u x t t t t t u x t t t t u x t t
t x x x

u x t t

  
   

    
   


 

to get 
2

1 1 2( , ; , ) 0.u x t t t                                                                                                                                       (7.16) 

Compare the coefficients of 
2 :  

2 2
0 0 0 1 0

2 2 0 1 22 2

1
( , ) ( , ) ( , ) ( , ; ), ( ,0) 0,

2
u x t u x t u x t u x t t u x

t x x x


   
   

   

 

to get 
0

2

3
( , ) sin( ),

2

tu x t t e x
                                                                                                                           (7.17) 

2 2
1 1 1 0 2

2 1 2 1 0 1 1 1 1 12 2

1

2 1

1
( , ; ) ( , ; ) ( , ; ) ( ) ( , ) 2 ( , ; , ),

2

( ,0; ) 0,

u x t t u x t t u x t t t t u x t u x t t t
t x x x x

u x t

 
    

    
    



 

to get 
1

2 1( , ; ) 0,u x t t                                                                                                                                                 (7.18) 
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2 2
2 2 2 1

2 1 2 2 1 2 0 1 2 2 1 12 2

1 2

1 1 2 2 1 2

1 1
( , ; , ) ( , ; , ) ( , ; , ) ( ) ( , ; )

2 2

1
( ) ( , ; ), ( ,0; , ) 0,

2

u x t t t u x t t t u x t t t t t u x t t
t x x x

t t u x t t u x t t
x

 



   
   

   


  

           

to get 
2

2 1 2( , ; , ) sin( ).tu x t t t e x                                                                                                                          (7.19)             

Compare the coefficients of 
3 :  

2 2
0 0 0 1 0

3 3 1 2 32 2

1
( , ) ( , ) ( , ) ( , ; ), ( ,0) 0,

2
u x t u x t u x t u x t t u x

t x x x


   
   

                         

to get 
0

3 ( , ) 0,u x t                                                                                                                                                     (7.20) 

2 2
1 1 1 0 2 1

3 1 3 1 1 1 1 2 2 1 3 12 2

1
( , ; ) ( , ; ) ( , ; ) ( ) ( , ) 2 ( , ; , ), ( ,0; ) 0,

2
u x t t u x t t u x t t t t u x t u x t t t u x t

t x x x x
 

    
     

    
 

to get 
1

3 1 1

5 3
( , ; ) cos( ) cos( ),

2 2

t tu x t t t e x t e x                                                                                            (7.21) 

2 2
2 2 2 1

3 1 2 3 1 2 1 1 2 2 2 12 2

1 2

1 2 2 3 1 2

1 1
( , ; , ) ( , ; , ) ( , ; , ) ( ) ( , ; ),

2 2

1
( ) ( , ; ), ( ,0; , ) 0,

2

u x t t t u x t t t u x t t t t t u x t t
t x x x

t t u x t t u x t t
x

 



   
   

   


  

  

to get 
2

3 1 2( , ; , ) 0.u x t t t                                                                                                                                            (7.22) 

Compare the coefficients of 
4 :

 

2 2
0 0 0 1 0

4 4 2 3 42 2

1
( , ) ( , ) ( , ) ( , ; ), ( ,0) 0,

2
u x t u x t u x t u x t t u x

t x x x


   
   

   

 

to get 
0 2

4

19
( , ) sin( ),

8

tu x t t e x                                                                                                                          (7.23) 

2 2
1 1 1 0 2

4 1 4 1 2 1 1 3 3 12 2

1
( , ; ) ( , ; ) ( , ; ) ( ) ( , ) 2 ( , ; , ),

2
u x t t u x t t u x t t t t u x t u x t t t

t x x x x
 

    
    

    
 

to get 
1 1

4 1 4 1( ,0; ) 0, ( , ; ) 0,u x t u x t t                                                                                                                 (7.24) 

2 2
2 2 2 1

4 1 2 4 1 2 2 1 2 2 3 12 2

1 2

1 3 2 4 1 2

1 1
( , ; , ) ( , ; , ) ( , ; , ) ( ) ( , ; )

2 2

1
( ) ( , ; ), ( ,0; , ) 0,

2

u x t t t u x t t t u x t t t t t u x t t
t x x x

t t u x t t u x t t
x

 



   
   

   


  

    

to get 
2

4 1 2 2 1

1
( , ; , ) sin( ) 2 sin( ) 2 sin( ).

2

t t tu x t t t te x t e x t e x                                                                   (7.25)     

Then we have  
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  

(0) 2 4 2

(1) 2

1

2 2

1

(2)

2

3 19
( , ) sin( )(1 )

5 3
cos( ) 1 ( ) ,

,
2

2 5

si

8

( ,

n( ) 1 0.5 4 4

)

( ) .,

t

t

t

u x t e x t t

x tu x t e

u x t

t

x t t te







 



 









 
  

 

   

  





                                                                             (7.26) 

Then the mean and the variance are: 

(0)

(1) 2 (2) 2

1 1 1 2 1 2

0 0 0

2 4 2

2
2 2 2 2 2 4 3 4 2 2 2 3 4 4

[ ( , )] ( , )

var( ( , )) [ ( , ; )] 2 [ ( , ; , )]

3 19
sin( )(1 ),

2 8

,

13 43 5 83
cos ( ) 2 sin ( ) .

2 4 2 2 24

t t t

t

t t

E u x t u x t

u x t u x t t dt u x t t t dt dt

e x t t

t
e x t t t e x t t



 

 

     



 

 

 

 

  
       

   

              (7.27)     

The WHEP technique gives the mean and the variance of the solution in the form of an infinite series in  . Since 
represents the perturbation parameter in the WHEP technique, decreasing this parameter gives a good convergence.                                                           

VIII. NUMERICAL RESULTS 

In order to examine the efficiency of the proposed methods, comparisons between the approximate solutions and the exact 

solution of the SADE are simulated through the following figures. We also introduce some discussion about the effect of the 

diffusion coefficient and advection coefficient.   

We take 5T  and 50 Gaussian random variable. As shown in Figs (1-22), we can note, the approximate solution of the two 

methods and the exact solution are in satisfactory agreement with each other under some convergence conditions. The 

convergence of the WCE is enhanced by increasing the number of Gaussian random variables K .  The convergence of the 

WHEP is enhanced by decreasing the perturbation parameter  which represents the advection and also white noise 

coefficient. 

  
FIG 1. The exact mean at / 3x   for different 

values of  . 

FIG 2. The exact variance at / 3x  for different 

values of  . 

  

FIG 3. The exact mean at 0.5t   for different values 

of  . 

FIG 4. The exact variance at 0.5t  for different 

values of  . 
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FIG 5. The exact mean at / 3x   for different 

values of . 

FIG 6. The exact variance at / 3x  for different 

values of . 

 

First, we examine the effect of the diffusion coefficient   and the advection coefficient  on the exact solution with respect 

to the convergence rate (5.3) in Figs (1 - 6). Studying those figures, we can note that, for fixed point x , the decaying 

exponential function 
te 
affects the solution. The mean solution and the variance solution decay faster with time at large 

values of diffusion coefficient  . The larger the diffusion, the vanished faster the variance over time is. For fixed point t , 

the effect of the sinusoidal function appears on the behavior of the solution. As the diffusion coefficient  increases, the 

variance decreases with time. 

We investigate the effect of the advection coefficient   on the solution of the mass transfer in Figs (5, 6). Examining those 

figures we found that, as the coefficient  increases, the solution decreases and vanishes with the time. As the coefficient 

decreases, the variance also decreases. So choosing large value of  and small value of  is appropriate for good 

convergence of the approximate solution. 

  
FIG 7. Second order means response for the exact, 

WCE and WHEP. Comparison between the three 

means at / 3x   . 

FIG 8. First order response variances for the exact, 

WCE and WHEP. Comparison between the three 

variances at / 3x  . 

  
FIG 9. Second order means response for the exact, 

WCE and WHEP. Comparison between the three 

means at 0.5t   . 

FIG 10. First order response variances for the exact, 

WCE and WHEP. Comparison between the three 

variances at 0.5t   . 
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FIG 11. Second order response variances for the 

exact, WCE and WHEP. Comparison between the 

three variances at / 3x   . 

FIG 12. Second order response variances for the 

exact, WCE and WHEP. Comparison between the 

three variances at 0.5t   . 

 

The comparison between the exact solution and both approximate solutions of the WCE and WHEP techniques are shown in 

Figs (7-11). Examining those figures elucidate a satisfactory agreement between the exact solution and the approximate 

solutions either in mean or variance. 

The effect of increasing the magnitude of the advection term xu is examined in Figs (13-16). We can note that increasing 

 makes a deviation between the exact solution and the approximate solutions especially in the case of using the WHEP 

technique. This deviation is a result of using the WHEP technique which gives a mean solution and variance in the form of 

an infinite series in  and t . 

  

FIG 13. Second order means response for the 

exact, WCE and WHEP. Comparison between the 

three means at / 3, 1x     . 

FIG 14. Second order response variances for the 

exact, WCE and WHEP. Comparison between the 

three variances at / 3, 1x     . 

  

FIG 15. Second order means response for the 

exact, WCE and WHEP. Comparison between the 

three means at 0.5, 1t    . 

FIG 16. Second order response variances for the 

exact, WCE and WHEP. Comparison between the 

three variances at 0.5, 1t    . 

 

From Figs (17, 18) we found that decreasing the number of GRVs leads to a deviation of the approximate solution of WCE. 

The larger the number of GRVs, the better convergence is. 
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FIG 17. Second order means response for the exact, 

WCE and WHEP. Comparison between the three 

means at / 3x   and 20GRV  . 

FIG 18. Second order response variances for the 

exact, WCE and WHEP. Comparison between the 

three variances at / 3x  and 20GRV  . 

 

Finally, we show the errors between the exact solution and the approximate solutions of both WCE and WHEP techniques. 

We investigate the effects of the coefficients of SADE on the error. In Fig 19 we found that, the error between the exact 

solution and the WCE approximate solution is decreased by increasing order solution of WCE. In Fig 20 we found that, as 

the diffusion coefficient  increases, the error of second order approximate solution decreases. 

 
 

FIG 19. Error of variance response for 1st and 

2nd order approximation of WCE. Comparison 

between the errors at / 2x  . 

FIG 20. Error of second order approximation variance 

of WCE. Comparison between the errors for different 

value of  at / 2x  . 

 

In Fig (21-22) we found that, the error of WCE approximate solution is less than the error of the WHEP approximate 

solution. We can obtain the following conclusion:  the WCE technique is better than the WHEP technique. 

  
FIG 21. Second order response variance for the 

WCE and WHE. Comparison between the errors 

of variance at / 2x  and 0.5  . 

FIG 22. Second order response variance for the WCE 

and WHE. Comparison between the errors of 

variance at / 2x  and 2  . 

IX. CONCLUSION 

In this paper, the solution of the SADE with multiplicative white noise using WCE and WHEP techniques is introduced. The 

numerical results show that the WCE technique gives the closed form mean solution while the WHEP technique gives the 

mean solution in the form of an infinite series. Both techniques give the variance of the solution process in the form of 

infinite series. 

The numerical results not only demonstrate the accuracy of the two techniques, but also show that the WCE technique is 

more efficient than the WHEP technique. The diffusion and advection coefficient and the intensity of Gaussian white noise 

play important roles in the SADE solution.  
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The convergence of the WCE depends on increasing the number of Gaussian random variables. The convergence of the 

WHEP technique depends on decreasing the perturbation parameter . The larger the diffusion coefficient, the more 

convergence the approximate solution is. The effect of advection coefficient is contrary to that of diffusion coefficient, i.e., 

the smaller the advection coefficient, the more convergence the approximate solution. 

APPENDIX A 

To prove the formula (7.1), let we have the general form of equation (2.2) with initial condition and a periodic boundary 

condition on x  not for L x L    but for 0 2x   , 

( , ) ( , ) ( , ), ( ,0) ( ),

(0, ) (2 , )
(0, ) (2 , ), ,

t xxu x t au x t F x t u x f x

du t du t
u t u t

dx dx




  

 
                                                               (10.1) 

for the homogenous case of equation (10.1), the solution will be in the form ( , ) ( ) ( )n n

n

u x t T t Q x , then we have  

2

2
, 0,

dT d Q
a T Q

dt dx
                                                                       (10.2) 

there are three cases for  . For 0  the solution will be ( ) cos( ) sin( )Q x A x B x   , the second case for

0   the solution will be ( )Q x A Bx   and the third case is 0   and the solution will be

( ) cosh( ) sinh( )Q x A x B x     , after the application of boundary conditions for the three cases we will have 

the general Fourier series of a function with 2 period as 

1 2

0 1 ,

( ) cos( ) sin( ) ( ),j j

n n n n

n n n j

X x X nx X nx X Q x
 

 

                                                                    (10.3) 

with the Fourier coefficients 

2

0

0

2

1

0

2

2

0

1
( ) ,

2

1
( )cos( ) ,

1
( )sin( ) .

n

n

X X x dx

X X x nx dx

X X x nx dx

























                                                                                       (10.4) 

Let 
,

( , ) ( ) ( )j j

n n

n j

u x t u t Q x in equation (10.1) we get:

, , ,

( ) ( ) ( ) ( ) ( ) ( ),j j j j j j

n n n n n n

n j n j n j

d
u t Q x a u t Q x F t Q x

dt
     

,

( ) ( ) ( ) ( ) 0,j j j j

n n n n n

n j

d
u t a u t F t Q x

dt


 
   

 
                                                                             (10.5) 

and for the initial condition, 

,

, , ,

( ) ( ),

( ,0) (0) ( ) ( ) (0) ( ) 0,

j j

n n

n j

j j j j j j j

n n n n n n n

n j n j n j

f x C Q x

u x u Q x C Q x u C Q x



      



  
                                                    (10.6) 
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2( ) ( ) ( ) 0, (0) 0, ,j j j j j

n n n n n n n

d
u t a u t F t u C n

dt
                                                                            (10.7) 

multipling both sides by na t
e


and integrates then multiply by its orthognality then in the end we will get  

2 2 2 21 ( ) 1 2 ( ) 2

0 10 0

( , ) ( ) cos( ) ( ) sin( ).

t t

an t an t s an t an t s

n n n n

n n

u x t C e e F s ds nx C e e F s ds nx
 

     

 

   
      

   
    
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