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I. INTRODUCTION 

State feedback control system design is often related to reconstruction of the state vector by measurements of the output 

variable and the input signal of the open loop system. 

The reconstruction of the state vector is only possible by implication of state observer and the adaptive observation problem 

is related to observer synthesis with parameter estimator [6,7]. The matrices 𝑨 and 𝒃 or 𝒄 (depending on the canonical form 

chosen for state space representation) are considered unknown. 

The parameters are being estimated and the unknown matrices are determined during the observation process and the state 

vector is reconstructed. 

The present paper investigates a non-recurrent algorithm for adaptive observation of single input single output (SISO) linear 

time invariant (LTI) discrete systems developed on the basis of the instrumental variables (IV) method [2]. 

The parameters estimator built-in in the adaptive observer is based on a simplified calculation procedure which also includes 

inversion of the informative matrix [5]. 

II. PROBLEM FORMULATION 

The system investigated is presented in the state space with the following systems of equations: 

x k + 1 = Ax k + bu k ,              x 0 = x0

y k = cTx k + f k                         k = 0,1,2, …
       (1) 

where: 

𝑨 =  
𝟎 ⋮ 𝑰𝒏−𝟏

⋯ ⋯ ⋯
𝒂𝑻

        (2) 

𝒂 =  

𝑎𝟏

𝑎𝟐

⋮
𝑎𝒏

 ;  𝒃 =  

𝑏𝟏

𝑏𝟐

⋮
𝑏𝒏

 ;  𝒄 =  

1
0
⋮
0

        (3) 

The system order n is a-priori known, 𝒙 𝑘 ∈ 𝑅𝑛  is the unknown current state vector, 𝒙 0 ∈ 𝑅𝑛  is the unknown initial state 

vector, 𝑢 𝑘 ∈ 𝑅𝑙  is a scalar input signal, 𝑦 𝑘 ∈ 𝑅𝑙  is a scalar output signal, 𝑓 𝑘  is an additive noise signal, 𝒂 and 𝒃 are 

unknown vector parameters. 

The following discrete transfer function corresponds to (1): 

𝑊 𝑧 =  
𝑕1𝑧

𝑛−1+𝑕2𝑧
𝑛−2+⋯+𝑕𝑛−1𝑧+𝑕𝑛

𝑧𝑛−𝑎𝑛 𝑧𝑛−1−⋯−𝑎2𝑧−𝑎1
       (4) 
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The conformity between the elements 𝑏𝑖  of vector 𝒃 in relation to the chosen phase canonical form for representation and the 

coefficients 𝑕𝑖of the polynomial in the numerator of the discrete transfer function (4) are defined by the following 

expression[4]: 

𝑻𝒃 =  𝒉       (5) 

where: 

 𝒉𝑇 =  𝑕1 𝑕1 ⋯ 𝑕𝑛   

 𝑻 =

 
 
 
 
 

1 0 ⋯ 0 0
−𝑎𝑛 1 ⋯ 0 0

−𝑎𝑛−1 −𝑎𝑛 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

−𝑎2 −𝑎3 ⋯ −𝑎𝑛 1 
 
 
 
 

 

The elements 𝑎𝑖  of vector 𝒂, in relation to the chosen phase coordinate canonical form for representation, are the coefficients 

of the polynomial in the denominator of the discrete transfer function (4) presented in reversed order and with an opposite 

sign. 

The problem to be solved is estimation of the unknown vector parameters 𝒂 and 𝒃, the initial state vector 𝒙 0  and the 

current state vector 𝒙 𝑘 , 𝑘 = 1,2, …. 

III. SOLUTION 

3.1 Algorithm for adaptive observation based on the instrumental variables (IV) method 

The developed algorithm is based on the below calculation procedure: 

Step 1.Form the input-output data massive [3,8]: 

𝒖1 =  𝑢 0 𝑢 1 ⋯ 𝑢 𝑁 − 2   

𝒚1 =  𝑦 0 𝑦 1 ⋯ 𝑦 𝑁 − 1   

𝒚2 =  𝑦 𝑛 𝑦 𝑛 + 1 ⋯ 𝑦  
𝑁 − 𝑛

2
+ 𝑛 − 1  

𝑇

 

𝒚3 =  𝑦  
𝑁 − 𝑛

2
+ 𝑛 𝑦  

𝑁 − 𝑛

2
+ 𝑛 + 1 ⋯ 𝑦 𝑁 − 1  

𝑇

 

𝒀11 =

 
 
 
 
 
 

−𝑦 𝑛 − 1 −𝑦 𝑛 − 2 ⋯ −𝑦 0 

−𝑦 𝑛 −𝑦 𝑛 − 1 ⋯ −𝑦 1 

−𝑦 𝑛 + 1 −𝑦 𝑛 ⋯ −𝑦 2 
⋮ ⋮ ⋱ ⋮

−𝑦  
𝑁 − 𝑛

2
+ 𝑛 − 2 −𝑦  

𝑁 − 𝑛

2
+ 𝑛 − 3 ⋯ −𝑦  

𝑁 − 𝑛

2
− 1  

 
 
 
 
 

 

𝒀21 =

 
 
 
 
 
 
 
 −𝑦  

𝑁 − 𝑛

2
+ 𝑛 − 1 −𝑦  

𝑁 − 𝑛

2
+ 𝑛 − 2 ⋯ −𝑦  

𝑁 − 𝑛

2
 

−𝑦  
𝑁 − 𝑛

2
+ 𝑛 −𝑦  

𝑁 − 𝑛

2
+ 𝑛 − 1 ⋯ −𝑦  

𝑁 − 𝑛

2
+ 1 

−𝑦  
𝑁 − 𝑛

2
+ 𝑛 + 1 −𝑦  

𝑁 − 𝑛

2
+ 𝑛 ⋯ −𝑦  

𝑁 − 𝑛

2
+ 2 

⋮ ⋮ ⋱ ⋮
−𝑦 𝑁 − 2 −𝑦 𝑁 − 3 ⋯ −𝑦 𝑁 − 𝑛 − 1  

 
 
 
 
 
 
 

 

𝑼12 =

 
 
 
 
 
 

𝑢 𝑛 − 1 𝑢 𝑛 − 2 ⋯ 𝑢 0 

𝑢 𝑛 𝑢 𝑛 − 1 ⋯ 𝑢 1 

𝑢 𝑛 + 1 𝑢 𝑛 ⋯ 𝑢 2 
⋮ ⋮ ⋱ ⋮

𝑢  
𝑁 − 𝑛

2
+ 𝑛 − 2 𝑢  

𝑁 − 𝑛

2
+ 𝑛 − 3 ⋯ 𝑢  

𝑁 − 𝑛

2
− 1  
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𝑼22 =

 
 
 
 
 
 
 
 𝑢  

𝑁 − 𝑛

2
+ 𝑛 − 1 𝑢  

𝑁 − 𝑛

2
+ 𝑛 − 2 ⋯ 𝑢  

𝑁 − 𝑛

2
 

𝑢  
𝑁 − 𝑛

2
+ 𝑛 𝑢  

𝑁 − 𝑛

2
+ 𝑛 − 1 ⋯ 𝑢  

𝑁 − 𝑛

2
+ 1 

𝑢  
𝑁 − 𝑛

2
+ 𝑛 + 1 𝑢  

𝑁 − 𝑛

2
+ 𝑛 ⋯ 𝑢  

𝑁 − 𝑛

2
+ 2 

⋮ ⋮ ⋱ ⋮
𝑢 𝑁 − 2 𝑢 𝑁 − 3 ⋯ 𝑢 𝑁 − 𝑛 − 1  

 
 
 
 
 
 
 

 

Where 𝒀11 , 𝒀21 , 𝑼12  and 𝑼22  are Toeplitz matricesand 𝑁 = 3𝑛 + 2𝑙, 𝑙 = 1,2,3, … 

Step 2.Calculate the sub-matrices 𝑮11 , 𝑮12 , 𝑮21 , 𝑮22: 

𝑮11 = 𝒀11
𝑇 𝒀11 + 𝒀21

𝑇 𝒀21; 𝑮12 = 𝒀11
𝑇 𝑼12 + 𝒀21

𝑇 𝑼22 ; 𝑮21 = 𝑼12
𝑇 𝒀11 + 𝑼22

𝑇 𝒀21 ; 𝑮22 = 𝑼12
𝑇 𝑼12 + 𝑼22

𝑇 𝑼22  

Step 3. Calculate the covariance matrix 𝑪: 

𝑪 =  
𝑴1 + 𝑴1𝑮12𝑴2𝑮21𝑴1 ⋮ −𝑴1𝑮12𝑴2

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ⋯ ⋯⋯⋯⋯⋯
−𝑴2𝑮21𝑴1 ⋮ 𝑴2

  

where: 

𝑴1 = 𝑮11
−1;𝑴2 =  𝑮22 − 𝑮21𝑴1𝑮12 

−1 

Step 4. Calculate the vectors 𝒉  and 𝒂  by using the following vector-matrix system and form the estimated system matrix 𝑨 : 

𝒑 = 𝑪  
𝒀11

𝑇 𝒚2 + 𝒀21
𝑇 𝒚3

𝑼12
𝑇 𝒚2 + 𝑼22

𝑇 𝒚3

  

𝒉 =  𝑕 1 𝑕 2 ⋯ 𝑕 𝑛 
𝑇 =  𝑝 𝑛+1 𝑝 𝑛+2 ⋯ 𝑝 2𝑛 

𝑇 ; 𝒂 =  𝑎 1 𝑎 2 ⋯ 𝑎 𝑛  
𝑇 =  −𝑝 𝑛 −𝑝 𝑛−1 ⋯ −𝑝 1 

𝑇 

𝑨 =  
𝟎 ⋮ 𝑰𝒏−𝟏

⋯ ⋯ ⋯
𝒂 𝑻

  

Step 5. Calculate vector 𝒃 estimation by implementing the following linear algebraic system of equations: 

 𝑻𝒃 = 𝒉  

where: 𝑻 =

 
 
 
 
 

1 0 0 ⋯ 0 0
−𝑎 𝑛 1 0 ⋯ 0 0

−𝑎 𝑛−1 −𝑎 𝑛 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

−𝑎 2 −𝑎 3 −𝑎 4 ⋯ −𝑎 𝑛 1 
 
 
 
 

 is a lower triangular Toeplitz matrix. 

Step 6. Estimate the initial state vector 𝒙0: 

𝒙 0 =  𝑫𝑇𝑫 −1𝑫𝑇 𝒚1 − 𝑸𝒖1 =  𝑥 01 𝑥 02 ⋯ 𝑥 0𝑛 
𝑇  

(applicable only in case that 𝑑𝑒𝑡 𝑫𝑇𝑫 ≠ 0), where: 

𝑫 =

 
 
 
 
 

𝒄𝑇

𝒄𝑇𝑨 

𝒄𝑇𝑨 2

⋮
𝒄𝑇𝑨  𝑁−1  

 
 
 
 

 𝑁×𝑛 

; 𝑸 =

 
 
 
 
 

0 0 ⋯ 0
𝒄𝑇𝒃 0 ⋯ 0
𝒄𝑇𝑨 𝒃 𝒄𝑇𝒃 ⋯ 0

⋮ ⋮ ⋱ ⋮
𝒄𝑇𝑨  𝑁−2 𝒃 𝒄𝑇𝑨  𝑁−3 𝒃 ⋯ 𝒄𝑇𝒃  

 
 
 
 

 𝑁× 𝑁−1  

 

Step 7.Calculate the estimate of the output variable 𝑦 𝑘 : 

𝒙  𝑘 + 1 = 𝑨 𝒙  𝑘 + 𝒃 𝑢 𝑘 ,              𝒙  0 = 𝒙 0

𝑦  𝑘 = 𝒄𝑻𝒙  𝑘                                        𝑘 = 0,1,2, … , 𝑁 − 1
 

𝑭 = 𝑨 − 𝒈𝒄𝑻 

Step 8.For the instrumental matrices 𝑽11 , 𝑽21: 
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𝑽11 =

 
 
 
 
 
 

−𝑦  𝑛 − 1 −𝑦  𝑛 − 2 ⋯ −𝑦  0 

−𝑦  𝑛 −𝑦  𝑛 − 1 ⋯ −𝑦  1 

−𝑦  𝑛 + 1 −𝑦  𝑛 ⋯ −𝑦  2 
⋮ ⋮ ⋱ ⋮

−𝑦  
𝑁 − 𝑛

2
+ 𝑛 − 2 −𝑦  

𝑁 − 𝑛

2
+ 𝑛 − 3 ⋯ −𝑦  

𝑁 − 𝑛

2
− 1  

 
 
 
 
 

 

𝑽21 =

 
 
 
 
 
 
 
 −𝑦  

𝑁 − 𝑛

2
+ 𝑛 − 1 −𝑦  

𝑁 − 𝑛

2
+ 𝑛 − 2 ⋯ −𝑦  

𝑁 − 𝑛

2
 

−𝑦  
𝑁 − 𝑛

2
+ 𝑛 −𝑦  

𝑁 − 𝑛

2
+ 𝑛 − 1 ⋯ −𝑦  

𝑁 − 𝑛

2
+ 1 

−𝑦  
𝑁 − 𝑛

2
+ 𝑛 + 1 −𝑦  

𝑁 − 𝑛

2
+ 𝑛 ⋯ −𝑦  

𝑁 − 𝑛

2
+ 2 

⋮ ⋮ ⋱ ⋮
−𝑦  𝑁 − 2 −𝑦  𝑁 − 3 ⋯ −𝑦  𝑁 − 𝑛 − 1  

 
 
 
 
 
 
 

 

Step 9.Recalculate the submatrices 𝑮11and 𝑮12: 

𝑮11 = 𝑽11
𝑇 𝒀11 + 𝑽21

𝑇 𝒀21; 𝑮12 = 𝑽11
𝑇 𝑼12 + 𝑽21

𝑇 𝑼22  

Step 10.Recalculate the parameters vector 𝒑: 

𝑴1 = 𝑮11
−1;𝑴2 =  𝑮22 − 𝑮21𝑴1𝑮12 

−1 

𝑪 =  
−𝑴2𝑮22𝑴1 ⋮ 𝑴2

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ⋯ ⋯⋯⋯⋯⋯
𝑴1 + 𝑴1𝑮11𝑴2𝑮22𝑴1 ⋮ −𝑴1𝑮11𝑴2

 ; 𝒑 = 𝑪  
𝑽11
𝑇 𝒚2+𝑽21

𝑇 𝒚3

𝑼12
𝑇 𝒚2+𝑼22

𝑇 𝒚3
  

𝒉 =  𝑕 1 𝑕 2 ⋯ 𝑕 𝑛  
𝑇 =  𝑝 𝑛+1 𝑝 𝑛+2 ⋯ 𝑝 2𝑛 

𝑇 ; 𝒂 =  𝑎 1 𝑎 2 ⋯ 𝑎 𝑛  
𝑇 =  −𝑝 𝑛 −𝑝 𝑛−2 ⋯ −𝑝 1 

𝑇 

𝑨 =  
𝟎 ⋮ 𝑰𝒏−𝟏

⋯ ⋯ ⋯
𝒂 𝑻

  

Step 11.Repeat steps 7 to 10 four times 

Step 12.Estimate the current state vector 𝒙 𝑘 : 

𝒙  𝑘 + 1 = 𝑭 𝒙  𝑘 + 𝒃 𝑢 𝑘 + 𝒈𝑦 𝑘 , 𝒙  0 = 𝒙 0; 𝑭 = 𝑨 − 𝒈𝒄𝑇  

Vector 𝒈 can be easily obtained by solving the pole placement problem (PPP) also known as pole assignment problem 

(PAP). The synthesis of vector 𝒈 must take into consideration the following options: the eigen values of the matrix 𝑭  should 

be zeros or should be spread into the unit circle closer to the origin than the matrix 𝑨  eigenvalues. The implementation of the 

above listed options ensures good dynamic characteristics of the observer synthesized. 

IV. SIMULATION RESULTS 

The simulation is held in MATLAB programming environment under the below conditions: 

 For a given transfer function of  the system under investigation, with input signal 𝑢 𝑘  and the respective output 

signal 𝑦 𝑘 ; 

 Added colored noise signal 𝑓 𝑘  is applied to the system output; 

 The input signal 𝑢 𝑘  and the noise-corrupted output signal 𝑦 𝑘  are used as an input data for the observation algorithm; 

 Based on the input-output data massive, the algorithm developed calculates the estimates of the open loop system and the 

state vector.  

The discrete transfer function of the system investigated, used for the simulations is presented as follows:  

𝑊 𝑧 =
0.6𝑧−1 + 0.56𝑧−2 + 0.2125𝑧−3 + 0.308𝑧−4 + 0.5488𝑧−5 + 0.7221𝑧−6

1 − 1.4𝑧−1 + 0.7875𝑧−2 − 0.2275𝑧−3 + 0.035525𝑧−4 − 0.002835𝑧−5 + 0.00009𝑧−6
 

and its corresponding representation in state space: 
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 𝒂 =

 
 
 
 
 
 
−0.00009
0.002835

−0.035525
0.2275
−0.7875

1.4  
 
 
 
 
 

;  𝒃 =

 
 
 
 
 
 
0.6
0.2
0.1
0.3
0.4
0.5 

 
 
 
 
 

;  𝒄 =

 
 
 
 
 
 
1
0
0
0
0
0 
 
 
 
 
 

; 𝒙 0 =

 
 
 
 
 
 
1
1
1
1
1
1 
 
 
 
 
 

 

The matrix 𝑨 eigenvalues are obtained by using eig(.) function in MATLAB: 

 𝑒𝑖𝑔 𝑨 =  0.4 0.3 0.25 0.2 0.15 0.1 𝑇  

Pseudo-random binary sequence (PRBS) is used as an input signal 𝑢 𝑘  which is generated in MATLAB by using the 

following functions: 𝑢 =  𝑠𝑖𝑔𝑛 𝑟𝑎𝑛𝑑𝑛 127,1   ∗ 10.  

The output signal 𝑦 𝑘  is noise-corrupted by adding a color noise 𝑓 𝑘 . The colored noise is obtained by filtering of white 

noise through filter with the following transfer function: 

𝑊𝑓 𝑧 =
1

1 − 1.4𝑧−1 + 0.7875𝑧−2 − 0.2275𝑧−3 + 0.035525𝑧−4 − 0.002835𝑧−5 + 0.00009𝑧−6
 

The noise level 𝜂 is calculated mathematically by division of the noise standard deviation 𝜎𝑓  to the output signal standard 

deviation 𝜎𝑦  in accordance with the equation given below: 

𝜂 =  
𝜎𝑓

𝜎𝑦

. 100 =  0 ÷ 10 % 

Vector 𝒂 estimation error 𝑒𝑎 , vector 𝒃 estimation error 𝑒𝑏  and the state vector 𝒙 𝑘  estimation error 𝑒𝑥  are relative mean 

squared errors (RMSE) and could be determined by the following equations: 

𝑒𝑎 𝑘 = − 
  𝑎𝑖 𝑘 −𝑎 𝑖 𝑘  

2𝑛
𝑖=1

 𝑎𝑖 𝑘 𝑛
𝑖=1

; 𝑒𝑏 𝑘 = − 
  𝑏𝑖 𝑘 −𝑏 𝑖 𝑘  

2
𝑛
𝑖=1

 𝑏𝑖 𝑘 𝑛
𝑖=1

; 𝑒𝑥 𝑘 = − 
  𝑥𝑖 𝑘 −𝑥 𝑖 𝑘  

2𝑛
𝑖=1

 𝑥𝑖 𝑘 𝑛
𝑖=1

 

The results for the case of noise-free output signal (i.e. 𝑓 𝑘 = 0) and 𝑙 = 0 (i.e. minimum number of the input-output 

measurements: 𝑁 = 3𝑛 = 18) are shown in Fig.1. In accordance with the initial settings the algorithm will start working at 

the 18
th

 step of the calculations and in this case in particular the observation errors 𝑒𝑎 𝑘 , 𝑒𝑏 𝑘  and 𝑒𝑥 𝑘  are zeros. 

 
FIGURE 1. RMSE FOR THE CASE OF NOISE-FREE OUTPUT SIGNAL 
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In the case of noise-corrupted output signal an experiment is carried out for noise level 𝜂 = 10.018% and 𝑙 = 40 (i.e. 

𝑁 = 3𝑛 + 2𝑙 = 98). The results are shown in Fig.2. Under the above described initial settings the algorithm will start 

working at the 98
th

 step of the calculations and the RMSE are as follows: 𝑒𝑎 𝑘 < 0.033, 𝑒𝑏 𝑘 < 0.010, 𝑒𝑥 𝑘 < 0.065. 

 
FIGURE 2. RMSE FOR THE CASE OF NOISE-CORRUPTED OUTPUT SIGNAL,𝜼 = 𝟏𝟎. 𝟎𝟏𝟖%, 𝑵 = 𝟑𝒏 + 𝟐𝒍 = 𝟗𝟖 

An additional experiment is carried out for the provisions of noise-corrupted output signal analysis for noise level 𝜂 =

10.014% and 𝑙 = 100 (i.e. 𝑁 = 3𝑛 + 2𝑙 = 218). The results show that the algorithm starts working at the 218
th

 step of the 

calculations and the RMSE are as follows: 𝑒𝑎 𝑘 < 0.017, 𝑒𝑏 𝑘 < 0.0057,𝑒𝑥 𝑘 < 0.024, under the condition:218 < 𝑘 >

400 ⇒  𝑒𝑥 𝑘 = 0.01 (see Fig.3). 

 
FIGURE 3. RMSE FOR THE CASE OF NOISE-CORRUPTED OUTPUT SIGNAL,𝜼 = 𝟏𝟎. 𝟎𝟏𝟒%,𝑵 = 𝟑𝒏 + 𝟐𝒍 = 𝟐𝟏𝟖 
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The simulation results delivered and graph analysis show that with the increase in number of the input-output measurements 

(𝑁), the algorithm invariance to added noises increases proportionally however the time needed for collection of initial 

information rises. 

V. CONCLUSIONS 

The algorithm suggested for open loop system parameter estimations which serve as a basis for further reconstruction of the 

current state vector implements the method of the instrumental variables excluding the zero iteration which only uses the 

least squares method (steps 1 to 4 of the suggested calculation procedure). 

The algorithm proposed estimates as well the initial state vector 𝒙0 which allows the forming of the instrumental variables 

matrix even for nonzero initial conditions. 

The results delivered show that the number of the input output data measurements (𝑁) is of high significance in relation to 

accuracy of estimations in the case of noise corrupted output. The highest accuracy is to be expected for highest counts of 𝑁 

(see Fig.2 and Fig.3). 

The method of the IV method gives best results in case of estimation of a-priori collection of data [3,8], however in relation 

to the closed loop system the added noise 𝑓 𝑘  is transferred to the input signal through the feedback channel. Thus 

invariance between the instrumental matrices and the added noise is not possible; it is only possible that the estimates are 

unbiased and significant in presence of a white noise however the real systems do not allow such solution of the problem. 

The used of IV method for investigation of the closed loop system is only applicable if additional input signal is implemented 

[8]. For this reason the implementation of the algorithm suggested above is not recommended for closed systems 

implications. 

The algorithm for adaptive observation based on the instrumental variables (IV) method introduced in the present paper is 

developed on the basis of non-recurrent method which ensures the convergence of the iterative procedure [1,2]. 

The most positive feature of this algorithm however is related to the method used for informative matrix formation. It is 

formed through the four sub-matrices 𝒀11 , 𝒀21 , 𝑼12  and 𝑼22  which reduces the calculation complexity of the procedure for 

inversion of matrix 𝑮 formed by the sub-matrices 𝑮11 , 𝑮12 , 𝑮21 , 𝑮22 .  Independently of the 𝑁 count in numbers for the 

estimation of the coefficients 𝑕𝑖  and𝑎𝑖 is only needed to be inverted the matrices 𝑮11  and  𝑮22 − 𝑮21𝑴1𝑮12  which are 

always guaranteed  𝑛 × 𝑛  dimensions. In all other cases this procedure is related to inversion of a matrix at least  𝑁 − 𝑛 ×

 𝑁 − 𝑛  dimensional. 
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