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Abstract—Many real-world systems such as manufacturing systems, transportation systems and logistics/distribution 

systems that play important roles in our modern society can be regarded as multicommodity flow networks whose 

arcs have independent, finite and multi-valued random capacities. Such a flow network is a multistate system with 

multistate components and its reliability for level (d;c), i.e., the probability that k different types of commodity can be 

transmitted from the source node to the sink node such that the demand level ),...,,( 21 kdddd  is satisfied and the total 

transmission cost is less than or equal to c, can be evaluated in terms of minimal path vectors to level (d;c) (named (d;c)-

MPs here). The main objective of this paper is to present an intuitive algorithm to generate all (d;c)-MPs of such a 

flow network for each level (d;c) in terms of minimal pathsets. Two examples are given to illustrate how all (d;c)-MPs are 

generated by our algorithm and then the reliability of one example is computed. 

Keywords— Reliability, limited-flow network, multicommodity, multistate system, (d;c)-MP. 

I. INTRODUCTION 

Reliability is an important performance indicator in the planning, designing, and operation of a real-world system. 

Traditionally, it is assumed that the system under study is represented by a probabilistic graph in a binary-state model, 

and the system operates successfully if there exists one or more paths from the source node s to the sink node t. In such a 

case, reliability is considered as a matter of connectivity only and so it does not seem to be reasonable as a model for some real-

world systems. Many physical systems such as manufacturing systems, transportation systems, and logistics/distribution 

systems can be regarded as flow networks in which arcs have independent, finite, and integer-valued random capacities. To 

evaluate the system reliability of such a flow network, different approaches have been presented [7, 9, 14-23, 26-28].. 

However, these models have assumed that the flow along any arc consisted of a single commodity only. For such a 

flow network with multicommodity, it is very practical and desirable to compute its reliability for level (d;c), i.e., the 

probability that k different types of commodity can be transmitted from the source node to the sink node in the way that 

the demand level ),...,,( 21 kdddd  is satisfied and the total transmission cost is less than or equal to c. 

In general, reliability evaluation can be carried out in terms of minimal pathsets (MPs) in the binary state model case and 

(d;c)-MPs (i.e., minimal path vectors to level (d;c) [3], lower boundary points of level (d;c) [12], or upper critical 

connection vector to level (d;c) [7]) for each level (d;c) in the multistate model case. The multicommodity limited-flow 

network with budget constraints here can be treated as a multistate system of multistate components and so the need of 

an efficient algorithm to search for all of its (d;c)-MPs arises. The main purpose of this article is to present a simple 

algorithm to generate all (d;c)-MPs of such a network in terms of minimal pathsets. Two examples are given to illustrate how all 

(d;c)-MPs are generated and the reliability of one example is calculated by further applying the state-space decomposition method 

[4]. 

II. BASIC ASSUMPTIONS 

Let ),,( UANG   be a directed limited-flow network with the unique source s and the unique sink t, where N is the set of 

nodes, }1|{ niaA i   is the set of arcs, and ),...,,( 21 nuuuU  , where iu  denotes the maximum capacity of each 

arc ia  for .,...,2,1 ni   Such a flow network is assumed to further satisfy the following assumptions: 

1. Each node is perfectly reliable. Otherwise, the network will be enlarged by treating each of such nodes as an arc 

[1]. 

2. The capacity of each arc ia  is an integer-valued random variable that takes integer values from 0 to iu  

according to a given distribution. 
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3. Every unit flow of commodity   consumes a given amount 
  of the capacity associated with each arc. 

4. The capacities of different arcs are statistically independent.  

5. Flow in the network must be integer-valued and satisfy the so-called flow-conservation law [10]. This 

means that no flow will disappear or be created during the transmission. 

Assumption 4 is made just for convenience. If it fails in practice, the proposed algorithm to search for all (d;c)-MPs is 

still valid except that the reliability computation in terms of such (d;c)-MPs should take the joint probability 

distributions of all arc capacities into account. 

Since there are k different types of commodity within the network, the system demand level can be represented as a k-tuple 

vector ),...,,( 21 kdddd  where 
jd  is the demand level of commodity j for .,...,2,1 kj   Let ),...,( 2,1 nxxxX   be a 

system-state vector (i.e., the current capacity of each arc ia  under X is ix , where ix  takes integer values iu,...,2,1,0 ), and 

))(,...,)(,)(()( 21 kXVXVXVXV  , the system maximal flow vector under X where 
jXV )(  denotes the maximal flow 

of commodity j under X. (Whenever ,2k there may be more than one maximal flow vector for each X. See the Appendix 

for more details.) Under the system-state vector ),...,( 2,1 nxxxX  , the arc set A has the following three important subsets: 

}0|{  iiX xAaN , },0|{  iiX xAaZ  and )},()(|{ XVeXVNaS iXiX   where ),,...,,( 21 iniiie   with 

1ij  if ij   and 0 if ij  . In fact, 
XXXX ZSNSA  )\(  is a disjoint union of A under X. 

A system-state vector X is said to be a (d;c)-MP if and only if: (1) its system capacity level is d (i.e., V(X)=d), (2) each 

nonzero-capacity arc under X is sensitive (i.e., Nx = Sx ), and (3) the total transmission cost is less than or equal to c. If 

level (d;c) is given, then the probability that k different types of commodity can be transmitted from the source node 

to the sink node in the way that the demand level ),...,,( 21 kdddd  is satisfied and the total transmission cost is less than 

or equal to c, is taken as the system reliability. 

III. MODEL BUILDING 

Suppose that mPPP ,...,, 21  are the collection of all MPs of the system, and let 

),...,,,...,,...,,,,...,,( 21

2

2

2

1

21

2

1

1

1

k

nnn

kk cccccccccC   denote the transmission cost vector where 

ic  is the unit transmission cost 

of commodity   through arc ia . For each 
jP ,  

i

j

iij PacW }|{   and }|min{ j

iij PauL   are taken as the 

unit transmission cost of commodity   and maximum capacity through it, respectively. Under the flow-

conservation law, any feasible flow pattern from s to t should satisfy that (1) the total flow-in and the total 

flow-out of each commodity for any given node (except for s and t) are equal, and (2) every unit flow of each 

commodity from s to t should travel through one of the MPs. Hence, under the system -state vector 

),...,( 2,1 nxxxX   with ),...,,()( 21 kdddXV  , any feasible flow pattern that the total transmission cost is less than or 

equal to c can be represented as a flow vector ),...,,,...,,...,,,,...,,( 21

2

2

2

1

21

2

1

1

1

k

mmm

kk fffffffff  where 

jf  is the flow of 

commodity   transmitted through 
jP  such that the following four conditions are satisfied: 





m

j

j df
1


  for each k,...,2,1         (1) 

j
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j Lf 

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k m

j
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 

}|{
1 1





  for each ni ,...,2,1        (3) 

cfW j

k m

j
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1 1
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Note that }|{
1 1

j

i

k m

j

j Paf 
 





  is the least amount of capacity needed for ia  under such a flow pattern 

),,...,,,...,,...,,,,...,,( 21

2

2

2

1

21

2

1

1

1

k

mmm

kk fffffffff  and so, under the system-state vector X, }|{
1 1

j

i

k m

j

j Paf 
 





  

does not exceed the current capacity ix  of ia . This fact is given in the following theorem. 

Theorem 1. Let ),...,,( 21 nxxxX   be any system-state vector for which )(XV d. Then, the following is a necessary 

condition for the flow-conservation law to hold under X: 

}|{
1 1

j

i

k m

j

ji Pafx 
 





  for each ni ,...,2,1       (5) 

for any ),...,,,...,,...,,,,...,,( 21

2

2

2

1

21

2

1

1

1

k

mmm

kk fffffffff  which is a feasible flow pattern of flow d under X. 

Theorem 2. Let X be a (d;c)-MP. Then, the following is a necessary condition for the flow-conservation law to hold under X: 

}|{
1 1

j

i

k m

j

ji Pafx 
 





  for each ni ,...,2,1        (6) 

for any ),...,,,...,,...,,,,...,,( 21

2

2

2

1

21

2

1

1

1

k

mmm

kk fffffffff  which is a feasible flow pattern of flow d under X. 

Proof . By Theorem 1, }|{
1 1

j

i

k m

j

ji Pafx 
 





  for each .,...,2,1 ni   

1. For each Xi Za  , 0ix  and so (6) holds. 

2. It remains to show that (6) holds for each Xi Na  . Suppose, on the contrary, that there exists an arc Xi Na   such that 

i

j

i

k m

j

j xPaf 
 

}|{
1 1





 . Then, 1}|{
1 1


 

i

j

i

k m

j

j xPaf 



 .  In particular, )()( XVeXV i  d , and so 

Xi Sa  , which contradicts to the fact that X is a (d.c)-MP. Hence, }|{
1 1

j

i

k m

j

ji Pafx 
 





  for each .Xi Na             

The vector ),...,,( 21 nxxxX   obtained by first solving  ),...,,,...,,...,,,,...,,( 21

2

2

2

1

21

2

1

1

1

k

mmm

kk fffffffffF   subject 

to constraints (1) - (4) and then transforming such ),...,,,...,,...,,,,...,,( 21

2

2

2

1

21

2

1

1

1

k

mmm

kk fffffffffF   to 

),...,,( 21 nxxxX   by applying the relationship in (6), will be taken as a (d;c)-MP candidate. To make it clearer that all 

(d;c)-MPs can be generated by the proposed method, the following theorem is necessary. 

Theorem 3. Every (d;c)-MP is a (d;c)-MP candidate. 

Proof. Let ),...,,( 21 nxxxX   be any (d;c)-MP. By definition, we know that the maximal flow from s to t under X is d (i.e., 

d)(XV ) and the total transmission cost is less than or equal to c. Hence, under the system-state vector X, there exists at 

least one feasible flow pattern ),...,,,...,,...,,,,...,,( 21

2

2

2

1

21

2

1

1

1

k

mmm

kk fffffffffF   of flow ),...,,( 21 kdddd  such that 

conditions (1) - (4) are satisfied. As ),...,,( 21 nxxxX   is a (d;c)-MP, we thus conclude, by Theorem 2, that 

}|{
1 1

j

i

k m

j

ji Pafx 
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



  for each ni ,...,2,1 . This means that X is a (d;c)-MP candidate. Hence, every (d;c)-MP is a 

(d;c)-MP candidate. 
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In this article, we first find feasible solutions ),...,,,...,,...,,,,...,,( 21

2

2

2

1

21

2

1

1

1

k

mmm

kk fffffffffF   subject to constraints 

(1) - (4) by applying an implicit enumeration method (e.g., backtracking or branch-and-bound [11]) and then transform such 

integer-valued solutions into (d;c)-MP candidates ),...,,( 21 nxxx  via the relationship in (6). Each (d;c)-MP candidate X 

must be checked whether all nonzero-capacity arcs under X (i.e., XNarc ) belong to XS . If the answer is “yes”, then X 

is a (d;c)-MP. Otherwise, X is not a (d;c)-MP. The following two theorems play the crucial roles in checking whether a 

(d;c)-MP candidate is a (d;c)-MP. 

Theorem 4. For each (d;c)-MP candidate X, there exists at least one (d;c)-MP Y such that XY  . In particular, X is not 

a (d;c)-MP if such a Y satisfies Y < X (where XY   if and only if ii xy   for i=1, 2, ..., n and XY   if and 

only if XY   and ii xy   for at least one i). 

Proof. If X is a (d;c)-MP, then Y must be taken as X. Suppose that X is not a (d;c)-MP; then there exists a nonzero-capacity 

arc ia  ).,.( Xi Naei   such that d )()( XVeXV i . Let 
ieXX 1
. Suppose that 

1X  is a (d;c)-MP; then Y is taken 

as 
1X . Otherwise, the same procedure may be repeated for 

1X . However, this procedure will stop in finite steps, i.e., there 

exists an integer p  such that XXXX pp   11 ...  with d)( pXV  and 
pp XX

SN  . The proof is thus concluded 

by letting 
pXY  .   

Theorem 5. If the network is acyclic (i.e., contains no directed cycle), then each (d;c)-MP candidate is a (d;c)-MP. 

Proof. Let ),...,,( 21 nxxxX   be any (d;c)-MP candidate. By Theorem 4, we know that there exists a (d;c)-MP 

),...,,( 21 nyyyY   such that XY  . Since ,0)(  ddYXV  no flow is transmitted from s to t under 

),...,,( 2211 nn yxyxyxYX  . Hence, in case YX  , }0|{  ii yxiI  is not empty and so }|{ Iiai  , which 

is a subset of 
XN , must form cycles since the flow conserves at each node (except for s and t) and there is no other sink 

except t (see Ford and Fulkerson [10] or Ahuja et al. [2] for more details). This means that if the network is acyclic, then 

I  and so YX  , i.e., each (d;c)-MP candidate X is a (d;c)-MP .  

Suppose that qXXX ,...,, 21  are total (d;c)-MP candidates. We can thus conclude, by Theorem 4, that 
jX  is a (d;c)-MP if 

ij XX   for all qj ,....,2,1  but ij  . 

IV. ALGORITHM 

Suppose that all MPs, 
mPPP ,...,, 21

, have been stipulated in advance [5-6, 24-25], the family of all (d;c)-MPs can then be 

derived by the following steps: 

Step 1. For  each ),...,2,1( mjP j  , calculate }|min{ j

iij PauL   and  
i

j

iij PacW }|{ 
 

Step 2.  Find all feasible solutions ),...,,,...,,...,,,,...,,( 21
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kk fffffffffF   subject to the following 

constraints by applying an implicit enumeration method: 
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where 

jf  is a nonnegative integer for mj ,...,2,1  and .,...,2,1 k  

Step 3. Transform the solutions ),...,,,...,,...,,,,...,,( 21

2

2

2

1

21

2

1

1

1

k

mmm

kk fffffffff  into (d;c)-MP candidates 

),...,,( 21 nxxxX   via }|{
1 1

j

i

k m

j

ji Pafx 
 





  for .,...,2,1 ni   

Step 4.  Check each candidate X one at a time whether it is a (d;c)-MP: 

(A) If the network is acyclic, then each candidate is a (d;c)-MP. 

(B) If the network is cyclic, and suppose },...,,{ 21 qXXX  is the family of all such (d;c)-MP candidates, then iX  

is a (d;c)-MP if 
ij XX   for all qj ,...,2,1  but ij  . 

V. EXAMPLES 

The following two examples are used to illustrate the proposed algorithm:  

Example 1. 

 

FIG. 1. A SERIES-PARALLEL NETWORK. 

Consider the network in Fig. 1. It is known that )1,2,2,2,1(),,,,( 54321  uuuuuU , )3,2,3,2,6,5,3,2,3,2(C , 

),2,1(),( 21  ρ  and there exists three MPs; }.,{},{},,{ 54

3

3

2

21

1 aaPaPaaP   Given )1,1(d  and 12c , the 

family of (d;c)-MPs is derived as follows: 

Step 1. ,1}2,1min{1 L  ,2}2min{2 L ,1}1,2min{3 L  ,4221

1 W  ,6332

1 W  ,51

2 W  ,62

2 W  

,4221
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3 W  

Step 2. Find all feasible solutions ),,,,,( 2
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1 ffffff  subject to the following constraints by applying an implicit 

enumeration method: 
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12646564 2

3

1
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2

1
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1

1

1  ffffff  

where 

jf  is a nonnegative integer for 3,2,1j  and .2,1  

Total feasible solutions are )0,0,1,0,0,1(1 F  and  ).0,1,1,0,0,0(2 F   

s 
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Step 3. Transform such feasible solutions into (d;c)-MP candidates ),,,,( 54321 xxxxxX   via 

}|{
3

1

j

i

j

ji Pafx 






  for .5,...,2,1i  Then )0,0,2,1,1(1 X  and )1,1,2,0,0(2 X  are total (d;c)-MP 

candidates. 

Step 4. The network is acyclic, and },{ 21 XX  is the family of all (d;c)-MP candidates. Since 
ji XX  , 

)0,0,2,1,1(1 X  and )1,1,2,0,0(2 X  are total (d;c)-MP 

Example 2. 

 

 
 

FIG. 2. A BRIDGE NETWORK. 

TABLE 1 

PROBABILITY DISTRIBUTIONS OF ARC CAPACITIES IN EXAMPLE 2 

Arc Capacity Probability Arc Capacity Probability 

1a  

3 0.60 
4a  

1 0.90 

2 0.25 0 0.10 

1 0.10 

5a  

2 0.80 

0 0.05 1 0.15 

2a  

2 0.70 0 0.05 

1 0.20 

6a  

3 0.65 

0 0.10 2 0.20 

3a  
1 0.90 1 0.10 

0 0.10 0 0.05 

 

TABLE 2 

UNIT TRANSMISSION COST ON EACH ARC IN EXAMPLE 2 

Arc Commodity Cost Arc Commodity Cost 

1a  

1 2 

4a  

1 1 

2 2 2 1 

3 3 3 2 

2a  

1 2 

5a  

1 2 

2 3 2 3 

3 3 3 3 

3a  

1 1 

6a  

1 2 

2 1 2 2 

3 2 3 3 

 

Consider the network in Fig. 2. It is known that )3,2,1,1,2,3(),,,,,( 654321  uuuuuuU , ),1,2,1(),,( 321  ρ  and there 

exists four MPs; }.,{},,,{},,,{},,{ 65

4

542

3

631

2

21

1 aaPaaaPaaaPaaP   Given )1,1,1(d  and 16c , the 

family of (d;c)-MPs is derived as follows: 

s 
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Step 1.  ,2}2,3min{1 L  ,1}3,1,3min{2 L ,1}2,1,2min{3 L ,2}3,2min{4 L  

,4221

1 W  ,5322

1 W  ,6333
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2 W  ,83233

2 W  
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3 W ,4221

4 W  ,5232

4 W   

and .6333

4 W  

Step 2.  Find all feasible solutions ),,,,,,,,,,,( 3

4

2

4

1

4

3

3

2

3

1

3

3

2

2

2

1

2

3

1

2

1

1

1 ffffffffffff  subject to the following constraints by 

applying an implicit enumeration method: 
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16654875855654 3

4

2

4

1

4

3

3

2

3

1

3

3

2

2

2

1

2

3

1

2

1

1

1  ffffffffffff  

where 

jf  is a nonnegative integer for 4,3,2,1j  and .3,2,1  

Total feasible solutions are ),0,1,0,0,0,0,0,0,1,1,0,0(1 F  ),1,0,1,0,0,0,0,0,0,0,1,0(2 F  ),1,0,0,0,0,0,0,0,1,0,1,0(3 F  

and ).0,1,0,0,0,0,0,0,0,1,0,1(4 F  

Step 3. Transform such feasible solutions into (d;c)-MP candidates ),,,,,( 654321 xxxxxxX   via 

}|{
3

1

j

i

j

ji Pafx 






  for .6,...,2,1i  Then ),3,2,0,1,1,2(1 X  ),2,2,0,0,2,2(2 X  and 

)2,1,0,1,2,3(3 X  are total (d;c)-MP candidates. 

Step 4. The network is cyclic, and },,{ 321 XXX  is the family of all (d;c)-MP candidates. Since ji XX  , every (d;c)-MP 

candidate is a (d;c)-MP. The result is listed in Table 3. 

TABLE 3 

LIST OF ALL (D;C)-MPS IN EXAMPLE 2 

(d;c)-MP candidate (d;c)-MP? 

)3,2,0,1,1,2(1 X  Yes 

)2,2,0,0,2,2(2 X  Yes 

)2,1,0,1,2,3(3 X  Yes 
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VI. RELIABILITY EVALUATION 

If );(,...,, 21 cm
YYY d  are the collection of all (d;c)-MPs, then the system reliability for level (d;c) is defined as 

}}.|{Pr{ );(

1c;(

im

i YXXR c  
d

)d
 To compute it, several methods such as inclusion-exclusion [8, 12], disjoint subset 

[13], and state-space decomposition [4] are available. Here we apply the state-space decomposition method to Example 2 

and obtain that 53235.0}}|{Pr{ );(

1c;(  

im

i YXXR cd

)d
 for demand level )1,1,1(d  and 16c . 

VII. CONCLUSION 

Given all MPs that are stipulated in advance, the proposed method can generate all (d;c)-MPs of a multicommodity 

limited-flow network under budget constraints for each level (d;c). The system reliability, i.e., the probability that 

k different types of commodity can be transmitted from the source node s to the sink node t  in the way that the 

demand level ),...,,( 21 kdddd  is satisfied and the total transmission cost is less than or equal to c, can then be 

computed in terms of these (d;c)-MPs. This algorithm can also apply to the limited-flow network with single 

commodity. Hence, earlier algorithm [18] is shown to be a special case of this new one.  
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