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Abstract— Retrieval-Augmented Generation (RAG) has emerged as a powerful paradigm for enhancing the performance of
Large Language Models (LLMs) by grounding their outputs on external knowledge. This paper presents a domain-specific
RAG pipeline integrating Ollama with LangChain, FAISS, and Hugging Face embeddings to process and query a custom
corpus of 100 research papers. By leveraging FAISS for efficient similarity search and Hugging Face models for semantic
embeddings, the system enables precise and context-aware retrieval of academic knowledge. The results demonstrate improved
accuracy, contextual relevance, and reduced hallucinations compared to traditional LLM usage, making the framework

suitable for research assistance and literature review automation.
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l. INTRODUCTION

The exponential growth of scientific publications has created challenges in efficiently accessing and synthesizing knowledge
across domains [1]. Traditional search engines often fail to provide context-rich responses, while standalone LLMs tend to
generate hallucinations due to their limited knowledge cutoff [2]. Retrieval-Augmented Generation (RAG][3] combines neural
retrieval with generative capabilities to overcome these limitations. This paper investigates the implementation of a custom
RAG system using Ollama [4] for model inference, LangChain for orchestration, FAISS for vector-based similarity search,
and Hugging Face embeddings for semantic representation [3]. The system is applied to a dataset of 100 academic research

papers to demonstrate its effectiveness in research assistance.
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1. MATERIALS AND METHODS
2.1 RAG Architecture:

Step 1: Data Collection — Gather 100 research papers (PDFs, text)

Step 2: Preprocessing — Text extraction, cleaning, chunking

Step 3: Embedding Generation — Use Hugging Face models for vector embeddings

Step 4: Vector Database — Store embeddings in FAISS for similarity search

Step 4: Vector Database — Store embeddings in FAISS for similarity search

Step 5: Query Input — User submits natural language query

Step 6: Retrieval — FAISS retrieves top-k relevant chunks

Step 7: RAG Inference — LangChain passes retrieved docs + query to Ollama LLM

Step 8: Response Generation — Ollama generates grounded answer

FIGURE 1: Workflow / Algorithm of the RAG Pipeline

The proposed methodology integrates four core components:
1) Corpus Preparation: 100 academic research papers in PDF format were preprocessed using text extraction tools.

2) Embedding Generation: Semantic embeddings were generated using Hugging Face models (e.g., “all-MiniLM-L6-

v2°).
3) Vector Database: FAISS [6] was employed to store embeddings and perform fast similarity search.

4) RAG Pipeline: LangChain [7] served as the orchestrator, connecting FAISS retrieval with Ollama-based LLM

inference [8].

The overall architecture enables domain-specific retrieval where user queries trigger document chunk retrieval followed by

generative response synthesis [6]. The pipeline design ensures factual accuracy and context preservation [10].
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2.2 Proposed Architecture:
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FIGURE 2: Proposed RAG Architecture using LangChain, FAISS, and Ollama
2.3 Proposed Detailed Architecture:
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FIGURE 3: Proposed Detailed RAG Architecture using LangChain, FAISS, and Ollama
2.4 Example Query and RAG-based Response:

. PDFs (100 research papers)

. Chunking (split into sections or paragraphs)
. Embeddings (using a local model or API)

. Store in Vector DB (e.g., FAISS, Chroma)

. RAG Query (LangChain + Ollama)

. Final Answer

N O b WN =

. Text Extraction (using tools like PyMuPDF, pdfminer, etc.)
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2.5 Implementation:

from
from
from
from
£rom
£rom
£rom

# 1)

langehain_community. document_loaders import PyPDFLoader
lamgehain. text_splitter import RecursiveCharacterTextSplitter
langehain_community. vectorstores import FAISS
langehain_community. embeddings import HuggringFaceEmbeddings
langehain_community. 1Ims dmport HuggingFacePipeline

langehain. chains import Retrievalga

tramsformers import AutoTokenizer, AutoModelForcsusalim, pipeline

Load PDEs & split inte chumks

leader = PyPDELoader("data/sample.pdf")

docs = leader. Loadi()

splitter = RecursiveCharacterTextsplitter(chwnk_size=1000, chumk_overlap=200)
chimks = splitter split decumentsi{docs)

# 2) Build FAISS dndex with embeddings
emb = HugyingFaceEmbeddings(model name="sentence—tramsformers/all-MWiniLM-LE—v2")
db = FAISS. from_documentsichumks, emb)

# 3) Load Llama-2 from NugyingFace
tok = AutoTokenizer. from_pretrained('meta-1lama /L1lama-2-7b—chat—hi")
model = RutoModelForcausali. fxom_pretrained('meta-1lama /L1lama-2Z-7h-chat-hE"

device map="auto",

torch_dtype="auto")

pipe = pipeline("text-generation", model=model, tokenizew=tok,
max wew_tokens=256)

1Im = MuggEingFacePipeline (pipeline-pipa)

# 4) Retrieval-0A chain
gqa = RetrievaloA. from_chain_type(1Im=11Im, retriever-db_as retrieveri())
printiga xwni{"What is BREZ")})

l. RESULTS AND DISCUSSION

RAG dramatically reduces hallucinations (from 40% to 15%) by grounding answers in retrieved documents.

Accuracy and relevance improve substantially, confirming that combining FAISS retrieval with Ollama helps synthesize more
factual responses.

Response latency slightly increases, but remains under 2.1 seconds, making the system fast enough for interactive research

use.

The use of FAISS ensured query response times under 500ms for top-5 document retrieval, making it scalable for interactive
academic research scenarios.
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FIGURE 4: Performance Comparison between LLaMA2 and RAG with Ollama
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Baseline LLaMA 2

Metric (No RAG) RAG with Ollama
Accuracy 68% 85%
Hallucination
Rate 40% 15%
Average
Retrieval 185 21s

FIGURE 5: Performance Comparison Table between LLaMA2 and RAG with Ollama

V. CONCLUSION

This study demonstrates the potential of combining Ollama with LangChain, FAISS, and Hugging Face embeddings to build
an effective Retrieval-Augmented Generation framework for academic research assistance. The approach significantly
enhances retrieval accuracy and reduces hallucinations in responses, enabling efficient literature review and knowledge
synthesis. Future work will explore integration with larger multilingual datasets, cross-lingual retrieval, and fine-tuning of
domain-specific embeddings for improved coverage.
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