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Abstract— The article introduces a novel metaheuristic algorithm called the Worker Ant Optimization (WAO) algorithm. 

This algorithm is mathematically modeled based on five natural behaviors of worker ants: avoiding danger, foraging, 

approaching food, decomposing food, and transporting food. The performance of WAO was evaluated using 23 classical test 

functions and compared with results from seven well-known metaheuristic algorithms. Simulation results demonstrate that the 

WAO algorithm exhibits significant advantages in terms of convergence speed, avoidance of local optima, and optimization 

accuracy. To assess the effectiveness of WAO in practical applications, the method was applied to three classical engineering 

design problems, validating the engineering applicability of the WAO optimization algorithm. WAO effectively explores the 

decision space and performs well across various evaluation metrics, demonstrating its capability to effectively address 

challenges in practical applications.  

Keywords— Classical test functions; Constrained optimization; Engineering constraint issues; Swarm optimization; WAO. 

I. INTRODUCTION 

The term "optimization problem" refers to a situation where the goal is to find feasible solutions under given constraints [1]. It 

involves the process of seeking optimal values for specific system parameters within existing solutions, aiming to meet a certain 

criterion at minimal cost [2]. Such criteria could include maximizing profit, minimizing costs, maximizing efficiency, or 

minimizing risks. Optimization problems find widespread applications in fields such as engineering, economics, management, 

and computer science. 

Typically, an optimization problem comprises several elements: decision variables, constraints, and an objective function [3]. 

In practical applications, optimization problems can be highly complex, often involving conflicting objective functions and 

numerous constraints. To address these challenges, enhance system performance, and reduce computational costs, various 

optimization methods have been developed. These methods are generally categorized into two classes: mathematical methods 

and metaheuristic algorithms. 

In academic and applied contexts, optimizing system parameters involves leveraging these methodologies to achieve desired 

outcomes efficiently and effectively. 

In various real-world applications, particularly in fields like artificial intelligence and machine learning, optimization problems 

often exhibit discrete, unconstrained, or non-continuous characteristics [4]. Traditional mathematical programming methods 

rely on gradients, are sensitive to initial conditions, and struggle to solve such complex problems [5]. This limitation has spurred 

the development of metaheuristic algorithms [6]. 

Metaheuristic algorithms simulate the behavior of biological individuals or populations in nature to explore and optimize 

solution spaces. They are based on principles of simulation and natural inspiration for global optimization [7][8]. The 

optimization process begins by initializing a set of random feasible solutions in the problem space. Subsequently, these 

solutions are iteratively updated and improved according to algorithmic instructions. Upon completion, the algorithm identifies 

the optimal solution among the candidate solutions [9]. 

Due to their nature as stochastic searches, metaheuristic algorithms cannot guarantee finding the globally optimal solutions. 

However, they often converge near-optimal solutions that are accepted as quasi-optimal [10]. 

Metaheuristic algorithms draw inspiration from problem-solving methods observed in nature, such as cooperative behaviors 

among fish, birds, and ants. This intelligence emerges from interactions among simple individuals in a group, without the need 

for centralized control. Group members follow basic behavioral rules, exhibiting collective intelligent behavior through 
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interaction. Algorithms based on simulating natural behaviors like population reproduction, hunting, and migration can solve 

complex optimization problems [11]. This research field is known as swarm intelligence [12]. In recent years, these algorithms 

have found wide applications in areas like image processing, path planning, and data mining, yielding significant research 

outcomes. Common swarm intelligence algorithms include Particle Swarm Optimization (PSO) [13], Sine Cosine Algorithm 

(SCA) [14], Raccoon Optimization Algorithm (ROA) [15], Genetic Algorithm (GA) [16], Harris Hawks Optimization (HHO) 

[17], Artificial Bee Colony (ABC) [18], Grey Wolf Optimizer (GWO) [19], and Whale Optimization Algorithm (WOA) [20]. 

This article proposes a novel metaheuristic algorithm—the Worker Ant Optimization (WAO), which simulates natural 

behaviors of worker ants. It evaluates WAO's performance in solving optimization problems using 23 classic test functions and 

compares its optimization results with seven well-known metaheuristic algorithms. The study tests WAO's performance in 

solving practical optimization problems in three engineering design scenarios. 

The article introduces the WAO algorithm and models it in Section 2. Section 3 investigates the efficiency of WAO through 

simulation studies and analysis of practical applications. Section 4 examines WAO's efficiency in addressing real-world 

optimization problems. Finally, conclusions are drawn, and several future research directions are suggested. 

II. WORKER ANT OPTIMIZATION ALGORITHM 

2.1 Source of inspiration: 

Worker ants in the black ant society undertake the crucial task of searching for and transporting food. The foraging behavior 

of worker ants demonstrates a high level of adaptability and intelligence. They are capable of adjusting their foraging strategies 

based on environmental changes, expanding their foraging range in times of food scarcity, and regulating the length and speed 

of foraging queues to meet different foraging needs. 

During the food search process, worker ants release a chemical substance called pheromones to mark their foraging paths, 

which come in two types. When encountering natural enemies, worker ants release an alarm-type pheromone; when discovering 

food, they release a trail-type pheromone to guide other worker ants. 

Other worker ants perceive these pheromones through their sense of smell and respond accordingly to their types. When 

receiving alarm-type pheromones, worker ants will avoid paths marked as dangerous; when receiving trail-type pheromones, 

worker ants will gather along the path indicated to locate the food. In addition to using pheromones to find paths, worker ants 

also observe the surrounding environment, memorize prominent landmarks, and use them to determine their position and 

direction, thereby adjusting their routes to find the optimal path. 

After finding food, worker ants transport it back to the nest. If the food is too large, worker ants employ a decomposition 

strategy, cutting off and carrying back parts of the food until the task is completed. 

Through this division of labor and pheromone communication system, worker ants in the black ant colony efficiently search 

for and transport food, ensuring the survival and reproduction of the entire ant colony. This behavioral strategy enables worker 

ants to cooperate to accomplish complex tasks and respond appropriately to different situations. 

2.2 Algorithm initialization process: 

The Ant Colony Optimization algorithm is based on the behavior of ants. In the WAO algorithm, ants are candidate solutions 

to the optimization problem, meaning that the position updates of each ant in the search space represent the values of decision 

variables. Therefore, each ant is represented as a vector, and the ant colony is mathematically characterized by a matrix. Similar 

to traditional optimization algorithms, the initialization stage of WAO involves generating random initial solutions. In this step, 

the following formula is used to generate vectors of decision variables: 

𝑥𝑖,𝑗 = 𝑙𝑏𝑗 + 𝑟 ∗ (𝑢𝑏𝑗 − 𝑙𝑏𝑗)，𝑖 = 1,2, . . . , 𝑁，𝑗 = 1,2, . . . , 𝑚
       (1)

 

In this context, 𝑥𝑖,𝑗 represents the value of the 𝑗𝑡ℎ decision variable of the 𝑖𝑡ℎ candidate solution, 𝑟 is a random number within 

the range of 0 to 1, and 𝑙𝑏 and 𝑢𝑏 denote the lower and upper bounds, respectively, of the 𝑗𝑡ℎ decision variable. The ant colony 

population can be mathematically represented by the matrix hh, referred to as the population matrix. 
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2.3 Mathematical model: 

In WAO, the process of updating the position of worker ants (candidate solutions) is based on modeling four natural behaviors 

of the ants. These behaviors include: 

a) Avoidance of danger behavior 

b) Foraging behavior 

c) Attraction to food behavior 

d) Decomposition and transport of food behavior 

2.3.1 Avoidance of danger behavior 

This stage is modeled based on the danger avoidance behavior of worker ants. If a worker ant encounters a predator while 

searching for food, it releases an alarm pheromone. When other worker ants detect this alarm pheromone, they will avoid the 

route. The route where the predator is encountered is assumed to be the position of the best member. To simulate the behavior 

of the ants moving away in the opposite direction, an inverse learning update strategy based on the principle of convex lens 

imaging is used. 

Inverse learning, proposed by Tizhoosh, is an optimization mechanism that expands the search range by calculating an inverse 

solution based on the current solution during the population optimization process. The current solution and the inverse 

solution's objective function values are compared, and the better solution is selected for the next iteration [21]. However, the 

inverse solution generated by the inverse learning strategy is at a fixed distance from the current solution, lacking randomness, 

and thus cannot effectively enhance the diversity of the population within the search space. Combining optimization algorithms 

with inverse learning can effectively improve the optimization performance of the algorithm. However, since the value 

generated by the inverse learning strategy is fixed, it cannot effectively help the algorithm escape local optima in the later 

stages of iteration and lacks randomness. Therefore, the lens imaging principle is introduced into the inverse learning strategy. 

As shown in the figure below, taking a two-dimensional space as an example, [𝑎, 𝑏]
 
represents the search range of the solution, 

and the 𝑦 axis represents the convex lens. Suppose there is an object 𝑝 with height ℎ and a projection on the 𝑥axis of 𝑥∗; this 

object is imaged by the convex lens on the other side as an inverted real image 𝑝∗with height ℎ
∗
and a projection on the axis of 

𝑥∗. According to the principle of convex lens imaging: 

 

FIGURE 1: Schematic Diagram of the Reverse Learning Strategy for Lens Imaging 

𝑎+𝑏

2
−𝑥
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2

=
ℎ
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            (3) 

Let 𝑛 =
ℎ

ℎ
′, then the equation can be rewritten as: 

𝑥 ′ =
𝑎+𝑏

2
+

𝑎+𝑏

2𝑛
−

𝑥

𝑛
           (4) 

 

Further, the equation can be rewritten as the optimization algorithm update strategy: 

𝑛 =
5

𝑒
−5.5∗

𝑡
𝑡𝑚𝑎𝑥

            (5) 
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𝑋𝑖
𝑡+1 =

𝑙𝑏+𝑢𝑏

2
+

𝑙𝑏+𝑢𝑏

2𝑛
−

𝑋𝑏𝑒𝑠𝑡
𝑡

𝑛
           (6) 

2.3.2 Foraging behavior: 

𝑋𝑖
𝑡+1 = {

𝑟1 ∗ 𝑙𝑏 + 𝑟2 ∗ (𝑢𝑏 − 𝑋𝑖
𝑡)，𝑝 < 0.5

𝑋𝑖
𝑡 ∗ 𝑒

−(
𝑡

𝑟3∗𝑡𝑚𝑎𝑥
()𝑎)

         (7) 

During foraging, worker ants adjust their strategies and intensity based on food availability. When food is scarce, they expand 

their foraging range and adjust their foraging intensity according to the length and speed of the foraging trail. The random walk 

strategy simulates the ants' behavior of randomly searching for food, while adaptive weights model the changes in foraging 

speed and intensity. The random walk strategy moves randomly within the search space to find the optimal solution. In each 

update, two random numbers within the interval [0,1] are generated to adjust the current solution's position, aiming to find 

better solutions. This randomness enhances the global search capability of the algorithm and helps avoid local optima. The 

adaptive weight strategy decreases exponentially with the number of iterations, allowing strong global search capabilities in 

the early stages and improving local search capabilities as the algorithm approaches the optimal solution. Here, 𝑡 is the current 

iteration count, 𝑡𝑚𝑎𝑥 
is the maximum number of iterations, 𝑟1, 𝑟2, and 𝑟3are random numbers within the range of 0 to 1, 𝑙𝑏and 

𝑢𝑏are the bounds of the search space representing the ants' activity range, and 𝑎is a constant. 

2.3.3 Approach behavior: 

𝐶1 = (3 − 𝑒
(

𝑡

𝑡𝑚𝑎𝑥
()3)

()4)           (8) 

𝐶2 =
𝑋𝑔_𝑏𝑒𝑠𝑡+𝑋𝑏𝑒𝑠𝑡

𝑡

2
            (9) 

𝐸 = 𝑙𝑏 + 𝑟5 ∗ (𝑢𝑏 − 𝑙𝑏)           (10) 

𝑋𝑖
𝑡+1 = {

𝑋𝑖
𝑡 + 𝐶1 ∗ (𝐶2 − 𝑋𝑖

𝑡)，𝑝 < 0.5

𝑋𝑖
𝑡 + 𝑟6 ∗ (𝑋𝑖

𝑡 − 𝐸)，𝑒𝑙𝑠𝑒
         (11) 

In this section, the behavior of worker ants approaching the food source is simulated. The ants use pheromones to follow and 

approach the food location denoted by 𝐶2, and move with a step size determined by a nonlinear parameter 𝐶1to get closer to 

the food source. The formula dynamically transitions the population from global search to local exploitation. In the early stages 

of the algorithm, a larger step size is maintained to enhance global search capability, while in the later stages, a smaller step 

size improves the precision of local development. In addition to using pheromones, ants also adjust their direction based on 

environmental observations and noticeable landmarks to find the best route to the food. Here, 𝑋𝑏𝑒𝑠𝑡
𝑡 represents the position of 

the best individual in the population at the 𝑡𝑡ℎ iteration, 𝑋𝑔_𝑏𝑒𝑠𝑡is the position of the globally best individual so far, 𝑟4is a 

random number within the 2D [0,1] range, 𝑟5is a random number between 0 and 1, and 𝑟6is a random number following a 

standard normal distribution. 

2.3.4 Food decomposition and transport: 

𝐷 = 0.2 ∗ (1 − 𝑒
−5∗(

𝑡

𝑡𝑚𝑎𝑥
)3

)           (12) 

𝑋𝑖
𝑡+1 = {

𝐷 ∗ 𝑋𝑖
𝑡 − 𝑟7，𝑝 < 0.5

𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝑟8 ∗ (𝑋𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑖
𝑡)，𝑒𝑙𝑠𝑒

         (13) 

When the food is large, worker ants choose to cut it into smaller pieces for easier transport. The parameter 𝐷represents the 

proportion of food cut by the ants relative to the current food volume. Initially, when the food is large, the cutting proportion 

is small. As the cutting progresses and the food volume decreases, the cutting proportion increases until the remaining food 

can be transported directly. The mathematical formula representing the ants' behavior in transporting food to the nest 

approaches the optimal value. Random perturbations, generated by a normal distribution, are applied to the current optimal 

solution, with the perturbation magnitude determined by the difference between the current optimal solution and the current 

solution. This strategy leverages information from the current optimal solution and introduces randomness to increase diversity 

in the search process, preventing convergence to local optima and enhancing global search convergence and robustness. Here, 

𝑋𝑏𝑒𝑠𝑡
𝑡 represents the position of the best individual in the population at the 𝑡𝑡ℎ iteration, 𝑟7is a random number in the [0,1] 
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interval, 𝑟8is a random number following a standard normal distribution, 𝑡is the current iteration count, and 𝑡𝑚𝑎𝑥is the 

maximum number of iterations. 

2.3.5 Repetition process and flowchart of WAO: 

The specific optimization scheme is shown in Figure 2. After updating the positions of all the ants in the search space based on 

the first and second stages, the WAO iteration is completed. The population update process is repeated using equations (4), (5), 

(9) and (11) until the final iteration of the algorithm. Once a WAO run is completed, the best solutions obtained throughout all 

iterations of the algorithm are returned as output. 

Calculate Xnew 

using Eq. (5).

Input information of optimization problem.

Set parameters of N and T. Set i =t = 1.

i<3*N/8

t<T
t=t+1

i=1

End

Start

Calculate Xnew 

using Eq. (11).

i<N*5/8

Yes

i<N i=i+1

Save the best candidate solution found so far.

Sort X in ascending order based on fitness.

No

Output the best solution of the objective 

function found by WAO

No

i<N/10

Update Xi =Xnew

No

Yes

Calculate Xnew 

using Eq. (4).

Yes

Calculate Xnew 

using Eq. (9).

Yes No

Yes No

Create the initial population and evaluate 

the objective function.

fitnessxbesT<fitnessi 

Yes

No

 

FIGURE 2: Flowchart of the worker ant optimization algorithm 

III. EXPERIMENT SIMULATION AND ANALYSIS 

To thoroughly validate the superiority of the WAO algorithm, this study tests it using 23 classical test functions, which 

effectively demonstrate the algorithm's optimization capability. Functions F1-F7 are unimodal test functions with a single 

theoretical optimal solution, used to assess the algorithm's convergence speed and accuracy. Functions F8-F23 are multimodal 

test functions with multiple local optima and one theoretical global optimum, used to evaluate the algorithm's global search 

capability and its ability to avoid local optima. Tables 1-3 provide the specific function forms, while Fig. 3 shows the function 

plots for F1-F23. 
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TABLE 1 

UNIMODAL BENCHMARK FUNCTIONS 

Function Dim Range fmin 

𝐹1(𝑥) = ∑𝑥𝑖
2

𝑛

𝑖=1

 50 [−100,100] 0 

𝐹2(𝑥) = ∑|𝑥𝑖| + ∏|𝑥𝑖|

𝑛

𝑖=1

𝑛

𝑖=1

 50 [−10,10] 0 

𝐹3(𝑥) = ∑(∑𝑥𝑖

𝑖

𝑗=1

)

𝑛

𝑖=1

2

 50 [−100,100] 0 

𝐹4(𝑥) = 𝑚𝑎𝑥{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛} 50 [−100,100] 0 

𝐹5(𝑥) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)

2
+ (𝑥𝑖 − 1)2]

𝑛−1

𝑖=1

 50 [−30,30] 0 

𝐹6(𝑥) = ∑([𝑥𝑖 + 0.5])2

𝑛

𝑖=1

 50 [−100,100] 0 

𝐹7(𝑥) = ∑𝑖𝑥𝑖
4

𝑛

𝑖=1

+ 𝑟𝑎𝑛𝑑𝑜𝑚0,1) 50 [−1.28,1.28] 0 

 

TABLE 2 

MULTIMODAL BENCHMARK FUNCTIONS 
Function Dim Range fmin 

𝐹8(𝑥) = ∑−𝑥𝑖𝑠𝑖𝑛 (√|𝑥𝑖|)

𝑛

𝑖=1

 50 [−500,500] -20949 

𝐹9(𝑥) = ∑[𝑥𝑖
2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10]

𝑛

𝑖=1

 50 [−5.12,5.12] 0 

𝐹10(𝑥) = −20𝑒𝑥𝑝 (−0.2√
1

𝑛
∑𝑥𝑖

2

𝑛

𝑖=1

) − 

𝑒𝑥𝑝 (
1

𝑛
∑𝑐𝑜𝑠(2𝜋𝑥𝑖)

𝑛

𝑖=1

) + 20 + 𝑒

 

50 [−32,32] 0 

𝐹11(𝑥) =
1

4000
∑𝑥𝑖

2

𝑛

𝑖=1

− ∏𝑐𝑜𝑠 (
𝑥𝑖

√(𝑖)
)

𝑛

𝑖=1

+ 1 50 [−600,600] 0 

𝐹12(𝑥) =
𝜋

𝑛
{10𝑠𝑖𝑛(𝜋𝑦𝑖) + ∑(𝑦𝑖 − 1)2[1

𝑛−1

𝑖=1

+ 

+10𝑠𝑖𝑛2(𝜋𝑦𝑖+1)] + (𝑦𝑛 − 1)2} + ∑𝜇

𝑛

𝑖=1

(𝑥𝑖 , 10,100,4) 

𝑦𝑖 = 1 +
𝑥𝑖 + 1

4
 

𝜇(𝑥𝑖 , 𝑎, 𝑘,𝑚) = {

𝑘(𝑥𝑖 − 𝑎)𝑚, 𝑥𝑖 > 𝑎
0,−𝑎 ≤ 𝑥𝑖 ≤ 𝑎

𝑘(−𝑥𝑖 − 𝑎)𝑚, 𝑥𝑖 < −𝑎
 

50 [−50,50] 0 

𝐹13(𝑥) = 0.1 {𝑠𝑖𝑛2(3𝜋𝑥𝑖) + ∑(𝑥𝑖 − 1)2[1 +

𝑛

𝑖=1

 

𝑠𝑖𝑛2(3𝜋𝑥𝑖 + 1)] + (𝑥𝑛 − 1)2[1 + 𝑠𝑖𝑛2(2𝜋𝑥𝑛)]} + 

∑𝜇

𝑛

𝑖=1

(𝑥𝑖 , 5,100,4) 

50 [−50,50] 0 
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To better assess the improved algorithm's performance, comparisons are made with currently mainstream and newly emerging 

optimization algorithms, including COA, GSA, WOA, GWO, GA, PSO, and HHO. For fairness, all algorithms are tested with 

the same dimensionality, a population size of 50, and each function is solved independently 30 times. 

TABLE 3 

FIXED-DIMENSION MULTIMODAL BENCHMARK FUNCTIONS 

Function Dim Range fmin 

𝐹14(𝑥) = (
1

500
+ ∑

1

𝑗 + ∑ (𝑥𝑖 − 𝑎𝑖𝑗)
62

𝑖=1

25

𝑗=1

)

−1

 2 [−65,65] 1 

𝐹15(𝑥) = ∑[𝑎𝑖 −
𝑥1(𝑏𝑖

2 + 𝑏𝑖𝑥2)

𝑏𝑖
2 + 𝑏𝑖

2𝑥3 + 𝑥4

]

211

𝑗=1

 4 [−5,5] 0.0003075 

𝐹16(𝑥) = 4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1

6 + 𝑥1𝑥2 − 4𝑥1
2 + 4𝑥1

4 2 [−5,5] -1.0316285 

𝐹17(𝑥) = (𝑥2 −
5.1

4𝜋2 𝑥1
2 +

5

𝜋
𝑥1 − 6) + 

10(1 −
1

8𝜋
) 𝑐𝑜𝑠 𝑥1 + 10 

2 [−5,5] 0.398 

𝐹18(𝑥) = [1 + (𝑥1 + 𝑥2 + 1)2(19 − 14𝑥1 + 3𝑥1
2 − 

14𝑥2 + 16𝑥1𝑥2 + 32
2)] ∗ [30 + (2𝑥1 − 3𝑥2)

2 ∗ 
(18 − 32𝑥1 + 12𝑥1

2 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2
2)] 

2 [−2,2] 3 

𝐹19(𝑥) = −∑𝑐𝑖𝑒𝑥𝑝(− ∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2

3

𝑗3=1

)

4

𝑖=1

 3 [1,3] -3.86 

𝐹20(𝑥) = −∑𝑐𝑖𝑒𝑥𝑝(− ∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2

6

𝑗3=1

)

4

𝑖=1

 6 [0,1] -3.32 

𝐹21(𝑥) = −∑[(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−1

5

𝑖=1  
4 [0,10] -10.1532 

𝐹22(𝑥) = −∑[(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−1

7

𝑖=1

 4 [0,10] -10.4028 
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FIGURE 3: Classical function images 

3.1 Comparison of different algorithms on classical test functions: 

3.1.1 Analysis of solution accuracy: 

The maximum iteration count is set to 300, and the test results are shown in Table 4, with the optimal results highlighted in 

bold. It is evident that WAO outperforms all comparison algorithms on unimodal test functions, indicating its superior 

development capability and fast convergence speed. For multimodal functions, WAO performs well on F12-F15 and F21-F23, 

demonstrating its ability to maintain good population diversity and avoid local optima. For functions F9-F12, F17, and F18, 

WAO's results are comparable to those of other algorithms. Overall, WAO shows better or comparable average optimization 

results across all 23 classic functions. However, it has slightly higher variance on F8, F16, F19, and F29 compared to other 

algorithms, and is slightly less effective than COA on F7, suggesting areas for further improvement. 
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TABLE 4 

RESULT OF FIXED-DIMENSION MULTIMODAL BENCHMARK FUNCTIONS 

 

3.1.2 Convergence analysis: 

Comparing algorithm performance solely based on average values is not sufficient. To more intuitively demonstrate the 

performance of the WAO algorithm compared to other algorithms in terms of convergence accuracy and speed, Fig. 4 displays 

the convergence curves of each algorithm on the test functions. The horizontal axis represents the number of iterations, while 

the vertical axis reflects the convergence accuracy of the algorithm, i.e., the final fitness value. By comparing the evolutionary 

curves and convergence accuracy of seven algorithms on each test function, a detailed analysis of the experimental results was 

conducted. The results indicate that WAO outperforms other algorithms in most test functions. For single-peak functions F1-F6, 

WAO shows exceptional convergence speed and search capability compared to other optimization algorithms. For multi-peak 

functions, WAO exhibits better convergence accuracy and faster convergence speed on test functions F8-F13. On test functions 

F14-F23, WAO's convergence speed is comparable to that of other individual algorithms, quickly converging to global optima 

Function Item COA GSA WOA GWO GA PSO HHO WAO 

F1 
Mean 4.08E-227 5.99E-124 1.55E-54 9.71E-49 3.03E+02 4.93E+04 4.66E-142 0.00E+00 

STD 0.00E+00 3.28E-123 5.63E-54 2.15E-48 7.26E+01 2.02E+04 2.29E-141 0.00E+00 

F2 
Mean 3.15E-115 1.41E-79 5.87E-34 1.69E-31 6.77E+00 3.10E+19 5.00E-73 0.00E+00 

STD 1.01E-114 7.65E-79 2.76E-33 4.24E-31 9.38E-01 1.06E+20 2.57E-72 0.00E+00 

F3 
Mean 3.77E-228 1.06E-109 1.42E+05 3.68E+04 4.44E+04 1.35E+05 1.87E-85 0.00E+00 

STD 0.00E+00 5.83E-109 3.40E+04 1.24E+04 7.86E+03 6.03E+04 1.01E-84 0.00E+00 

F4 
Mean 1.38E-114 1.03E-82 8.78E+01 2.06E-10 2.44E+01 8.82E+01 3.98E-72 0.00E+00 

STD 6.20E-114 5.63E-82 4.02E+00 6.49E-10 2.64E+00 9.01E+00 1.42E-71 0.00E+00 

F5 
Mean 1.39E+00 1.02E-02 4.84E+01 4.86E+01 1.36E+04 3.40E+08 3.33E-04 1.74E-07 

STD 2.17E+00 2.28E-02 2.51E-01 4.88E-02 6.00E+03 1.70E+08 5.96E-04 6.03E-07 

F6 
Mean 7.49E-02 7.10E-04 1.61E+00 2.82E+00 3.02E+02 5.07E+04 2.85E-06 1.22E-07 

STD 4.72E-02 1.69E-03 5.57E-01 5.95E-01 7.51E+01 3.09E+04 3.68E-06 2.51E-07 

F7 
Mean 1.31E-04 1.46E-04 5.14E-03 8.41E-04 2.86E-01 1.74E+02 1.59E-04 1.93E-04 

STD 1.05E-04 1.13E-04 6.93E-03 5.39E-04 6.08E-02 1.29E+02 1.54E-04 1.58E-04 

F8 
Mean -1.13E+04 -2.09E+04 -1.45E+04 -1.48E+04 -2.04E+04 -5.11E+03 -1.96E+04 -2.09E+04 

STD 1.63E+03 4.19E-01 5.24E+02 4.55E+02 1.00E+02 1.19E+03 2.72E+03 5.95E+01 

F9 
Mean 0.00E+00 0.00E+00 9.30E+01 0.00E+00 3.51E+01 6.53E+02 0.00E+00 0.00E+00 

STD 0.00E+00 0.00E+00 1.44E+02 0.00E+00 2.94E+00 8.14E+01 0.00E+00 0.00E+00 

F10 
Mean 4.44E-16 4.44E-16 4.00E-15 3.88E-15 4.51E+00 2.00E+01 4.44E-16 4.44E-16 

STD 0.00E+00 0.00E+00 2.59E-15 6.38E-16 3.67E-01 1.06E-03 0.00E+00 0.00E+00 

F11 
Mean 0.00E+00 0.00E+00 5.80E-03 0.00E+00 3.90E+00 5.14E+02 0.00E+00 0.00E+00 

STD 0.00E+00 0.00E+00 1.59E-02 0.00E+00 5.98E-01 2.57E+02 0.00E+00 0.00E+00 

F12 
Mean 1.83E-03 1.17E-05 9.54E-01 8.51E-02 2.22E+00 6.83E+08 2.91E-07 1.11E-08 

STD 1.48E-03 3.31E-05 3.48E+00 2.86E-02 6.86E-01 4.27E+08 3.02E-07 1.97E-08 

F13 
Mean 7.43E-02 7.34E-05 1.84E+00 1.32E+00 2.31E+01 1.40E+09 5.00E-06 4.20E-07 

STD 5.20E-02 1.07E-04 2.93E+00 2.87E-01 7.48E+00 7.74E+08 5.24E-06 8.42E-07 

F14 
Mean 1.03E+00 1.10E+00 2.70E+00 3.56E+00 1.04E+00 2.11E+00 3.16E+00 9.98E-01 

STD 1.82E-01 3.24E-01 2.92E+00 2.73E+00 1.91E-01 1.61E+00 2.69E+00 1.25E-16 

F15 
Mean 1.00E-03 3.74E-04 9.59E-04 6.57E-04 6.47E-03 1.13E-02 1.10E-03 3.07E-04 

STD 4.74E-04 6.53E-05 1.48E-03 4.20E-04 7.48E-03 9.41E-03 2.38E-03 9.57E-19 

F16 
Mean -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 

STD 6.09E-07 7.95E-03 4.85E-16 2.25E-07 4.60E-03 5.26E-03 6.42E-16 5.80E-16 

F17 
Mean 3.98E-01 4.02E-01 3.98E-01 4.23E-01 4.17E-01 4.52E-01 3.98E-01 3.98E-01 

STD 9.77E-10 9.73E-03 9.03E-15 1.03E-01 3.90E-02 2.77E-01 2.34E-06 0.00E+00 

F18 
Mean 3.00E+00 6.81E+00 3.00E+00 6.60E+00 1.13E+01 3.00E+00 3.00E+00 3.00E+00 

STD 3.77E-06 9.69E+00 3.61E-15 9.18E+00 1.76E+01 5.49E-04 6.56E-15 2.24E-15 

F19 
Mean -3.86E+00 -3.82E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.85E+00 -3.86E+00 -3.86E+00 

STD 3.67E-04 6.68E-02 1.91E-15 7.90E-04 6.04E-04 6.14E-02 1.44E-07 2.44E-15 

F20 
Mean -3.25E+00 -3.06E+00 -3.27E+00 -3.25E+00 -3.29E+00 -2.85E+00 -3.25E+00 -3.30E+00 

STD 4.73E-02 1.00E-01 5.89E-02 7.38E-02 5.25E-02 2.87E-01 7.54E-02 4.76E-02 

F21 
Mean -9.79E+00 -1.01E+01 -8.05E+00 -8.62E+00 -6.32E+00 -5.94E+00 -6.24E+00 -1.02E+01 

STD 3.48E-01 6.60E-03 3.06E+00 2.43E+00 3.50E+00 2.96E+00 2.16E+00 5.39E-15 

F22 
Mean -1.01E+01 -1.04E+01 -8.53E+00 -8.01E+00 -5.01E+00 -5.17E+00 -6.51E+00 -1.04E+01 

STD 3.89E-01 8.25E-03 2.92E+00 2.96E+00 3.19E+00 3.58E+00 2.35E+00 7.25E-16 

F23 
Mean -1.00E+01 -1.05E+01 -6.47E+00 -8.30E+00 -5.63E+00 -5.43E+00 -7.11E+00 -1.05E+01 

STD 7.92E-01 4.67E-03 3.68E+00 2.92E+00 3.62E+00 3.53E+00 2.61E+00 2.00E-15 
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and demonstrating good capability in escaping local optima. However, WAO's convergence speed on test function F7 is slightly 

inferior to COA, indicating room for improvement. All algorithms achieved optimal or near-optimal solutions. Overall, 

compared to other established optimization algorithms, WAO performs well on both single-peak and multi-peak test functions, 

confirming its robustness across various function types and its applicability in solving complex optimization problems. 

 

FIGURE 4: Comparison of convergence rates for different algorithms 
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3.2 Rank sum test: 

This section employs the Wilcoxon signed-rank test to determine if there are statistically significant differences between the 

improved algorithm and the comparison algorithms, reducing the influence of chance in the tests. A significance level of 5% 

is set; if 𝑝is less than 5%, the null hypothesis is rejected, indicating a significant difference between the two algorithms; 

otherwise, the performance difference is not substantial. Results from 23 test functions are compared to assess WAO's statistical 

advantage. Table 5 displays the experimental results. Since the algorithm cannot be compared with itself, WAO's 𝑝 are not 

included. Values in the table greater than 5% are bolded, and it is evident that most 𝑝 are below 5%, indicating significant 

differences between WAO and the other seven comparison algorithms, suggesting that WAO has superior search capability. 

TABLE 5 

WILCOXON SIGNED-RANK TEST RESULTS 

 

IV. ENGINEERING DESIGN OPTIMIZATION PROBLEMS 

The experimental parameter settings and test functions are the same. The engineering problems include the welding beam 

design optimization problem and the gearbox design problem, both using the same number of iterations (300) and population 

size (100) for optimization. The optimization results are compared with those obtained using COA, GSA, WOA, GWO, GA, 

PSO, and HHO algorithms. 

4.1 Welded beam design problem: 

The Welded beam design problem, as shown in Fig.5, is a minimization problem aimed at reducing manufacturing costs. The 

optimization algorithm focuses on minimizing the cost of manufacturing the welding beam by optimizing the beam's length 𝑙, 

height 𝑡, thickness 𝑏, and weld seam thickness ℎ. Consequently, this problem is a classic nonlinear programming problem. Set 

𝑋 = [𝑥1, 𝑥2, 𝑥3, 𝑥4] = [ℎ, 𝑙, 𝑡, 𝑏], the corresponding objective function 𝑓, constraints 𝑔, and the ranges of the design variables are 

as follows: 

 

Function COA GSA WOA GWO GA PSO HHO 

F1 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 

F2 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 

F3 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 

F4 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 

F5 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 

F6 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 9.31323E-09 

F7 0.556113275 0.370740607 3.72529E-09 8.32602E-07 1.86265E-09 1.86265E-09 0.452164343 

F8 1.86265E-09 0.000152871 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 0.164184082 

F9 1 1 0.00352902 1 1.86265E-09 1.86265E-09 1 

F10 1 1.86265E-09 7.24259E-06 7.25244E-08 1.86265E-09 1.86265E-09 1 

F11 1 1 0.022010526 1 1.86265E-09 1.86265E-09 1 

F12 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 3.72529E-09 

F13 1.86265E-09 5.58794E-09 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 6.91041E-07 

F14 1.82537E-06 1.86265E-09 5.99237E-05 1.86265E-09 1.86265E-09 1.86265E-09 6.71136E-06 

F15 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 

F16 1.82537E-06 1.86265E-09 0.202112635 1.86265E-09 1.86265E-09 1.86265E-09 0.000499647 

F17 1.86265E-09 1.86265E-09 0.000563755 1.86265E-09 1.86265E-09 1.86265E-09 0.000102642 

F18 1.86265E-09 1.86265E-09 0.040256192 1.86265E-09 1.86265E-09 1.86265E-09 0.00041528 

F19 1.86265E-09 1.86265E-09 0.000461595 1.86265E-09 1.86265E-09 1.86265E-09 1.82537E-06 

F20 0.000283264 1.86265E-09 0.000460107 0.001232104 0.00256009 1.86265E-09 1.06096E-05 

F21 1.86265E-09 1.86265E-09 2.73906E-06 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 

F22 1.86265E-09 1.86265E-09 3.65907E-05 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 

F23 1.86265E-09 1.86265E-09 3.43673E-06 1.86265E-09 1.86265E-09 1.86265E-09 1.86265E-09 
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FIGURE 5: Schematic diagram of welded beam design 

𝑚𝑖𝑛 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 1.1047𝑥1
2𝑥2 + 0.04811𝑥3𝑥4(14 + 𝑥2)      (14) 

Subject to 

𝑔1(𝑋) = 𝜏(𝑋) − 𝜏𝑚𝑎𝑥 ≤ 0 

𝑔2(𝑋) = 𝜎(𝑋) − 𝜎𝑚𝑎𝑥 ≤ 0
 

𝑔3(𝑋) = 𝛿(𝑋) − 𝛿𝑚𝑎𝑥 ≤ 0
 

𝑔4(𝑋) = 𝑥1 − 𝑥4 ≤ 0
 

𝑔5(𝑋) = 𝑃 − 𝑃𝑐(𝑋) ≤ 0
 

𝑔6(𝑋) = 0.125 − 𝑥1 ≤ 0
 

𝑔7(𝑋) = 1.10471𝑥1
2 + 0.04811𝑥4𝑥3(14.0 + 𝑥2) − 5.0 ≤ 0

 

0.1 < 𝑥1 < 2
 

0.1 < 𝑥2 < 10
 

0.1 < 𝑥3 < 10
 

0.1 < 𝑥4 < 2
 

In the constraints, the expressions for each function can be referenced using the following formulas:  

𝜏(𝑋) = √(𝜏 ′)2 + 2𝜏 ′𝜏 ′′
𝑥2

2𝑅
+ (𝜏 ′′)2

 

𝜏 ′ =
𝑃

√2𝑥1𝑥2
 

𝜏 ′′ =
𝑀𝑅

𝐽
 

𝑀 = 𝑃 (𝐿 +
𝑥2

2
)

 

𝑅 = √
𝑥2

2

4
+ (

𝑥1 + 𝑥2

2
)

2

 

𝐽 = 2 {√2𝑥1𝑥2 [
𝑥2

2

4
+ (

𝑥1 + 𝑥2

2
)

2

]}

 

𝜎(𝑋) =
6𝑃𝐿

𝑥4𝑥3
2

 



International Journal of Engineering Research & Science (IJOER)                   ISSN:[2395-6992]                  [Vol-10, Issue-9, September- 2024] 

Page | 20  

𝛿(𝑋) =
6𝑃𝐿3

𝐸𝑥4𝑥3
2

 

𝑃𝑐(𝑋) =
4.013𝐸√𝑥3

2𝑥4
6

36
𝐿2

(1 −
𝑥3

2𝐿
√

𝐸

4𝐺
)

 

𝜎𝑚𝑎𝑥 = 30000𝑝𝑠𝑖

 𝑃 = 6000𝑙𝑏

 𝛿𝑚𝑎𝑥 = 0.25𝑖𝑛

 𝐿 = 14𝑖

 𝐸 = 3 ∗ 106𝑝𝑠𝑖

 𝜏𝑚𝑎𝑥 = 136000𝑝𝑠𝑖

 𝐺 = 1.2 ∗ 107𝑝𝑠𝑖

 Set the population size to 100 and the number of iterations to 300. The results of each algorithm are shown in Tables 6 and 

7. 

TABLE 6 

PERFORMANCE OF OPTIMIZATION ALGORITHMS ON THE WELDED BEAM DESIGN PROBLEM 

Algorithm 
Optimum variables 

Optimum cost 
X1  X2  X3 X4 

WAO 0.2057 3.2349 9.0366 0.2057 1.6928 

COA 0.2019 3.3597 9.0366 0.2057 1.7041 

GSA 0.2061 3.3923 9.0805 0.2065 1.7285 

WOA 0.143 5.0461 9.4019 0.204 1.8713 

GWO 0.2004 3.3447 9.0441 0.2059 1.7024 

GA 0.2077 3.4654 8.4791 0.2404 1.8779 

PSO 0.1722 4.1204 9.0456 0.2058 1.7577 

HHO 0.1577 4.6585 9.0493 0.2057 1.7986 

 

TABLE 7 

STATISTICAL RESULTS OF OPTIMIZATION ALGORITHMS ON WELDED BEAM DESIGN PROBLEM. 

Algorithm Best Worst Mean Std Median 

WAO 1.6928 2.3649 1.7512 0.1595 1.6935 

COA 1.7041 1.8995 1.7814 0.047 1.7787 

GSA 1.7285 3.7164 1.9276 0.3626 1.8221 

WOA 1.8713 4.961 2.9542 0.8289 2.7298 

GWO 1.7024 3.1509 1.9544 0.3537 1.8016 

GA 1.8779 3.777 2.4613 0.4042 2.3894 

PSO 1.7577 2.6159 2.1221 0.247 2.0264 

HHO 1.7986 3.9132 2.4908 0.4976 2.338 

 

4.2 Speed reducer design problem: 

In a mechanical system, the reducer is a crucial component of the gearbox. The optimization problem involves minimizing 

the weight of the reducer while adhering to constraints related to gear root bending stress, surface stress, shaft lateral 

deflection, and shaft stress. The variables to be optimized include the gear face width 𝑏, gear module 𝑚, number of teeth in 
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the small gear 𝑝, length of the first shaft between bearings 𝑙1, length of the second shaft between bearings 𝑙2, diameter of 

the first shaft 𝑑1, and diameter of the second shaft 𝑑2. The integer variable 𝑝is specified with 𝑋 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7] =

[𝑏,𝑚, 𝑝, 𝑙1, 𝑙2, 𝑑1, 𝑑2], while the remaining variables are continuous. 

 
FIGURE 6: Schematic diagram of speed reducer design 

The corresponding objective function 𝑓, constraints 𝑔, and variable ranges are as follows: 

𝑚𝑖𝑛 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7) = 0.7854𝑥1𝑥2
2(3.3333𝑥3

2 + 14.9334𝑥3 − 43.0934) − 1.508𝑥1(𝑥6
2 + 𝑥7

2) + 7.4777(𝑥6
3 +

𝑥7
3) + 0.7854(𝑥4𝑥6

2 + 𝑥5𝑥7
2)（15） 

Subject to 

𝑔1(𝑋) =
27

𝑥1𝑥2
2𝑥3

− 1 ≤ 0 

𝑔2(𝑋) =
397.5

𝑥1𝑥2
2𝑥3

2 − 1 ≤ 0 

𝑔3(𝑋) =
1.93𝑥4

3

𝑥2𝑥3𝑥6
2 − 1 ≤ 0 

𝑔4(𝑋) =
1.93𝑥5

3

𝑥2𝑥3𝑥7
2 − 1 ≤ 0 

𝑔5(𝑋) =

√(
754𝑥4

𝑥2𝑥3
)

2

+ 16.9𝑒6

110𝑥6
3 − 1 ≤ 0 

𝑔6(𝑋) =

√(
754𝑥5

𝑥2𝑥3
)

2

+ 157.5𝑒6

85𝑥7
3 − 1 ≤ 0 

𝑔7(𝑋) =
𝑥2𝑥3

40
− 1 ≤ 0 

𝑔8(𝑋) =
5𝑥2

𝑥1

− 1 ≤ 0 

𝑔9(𝑋) =
𝑥1

12𝑥2

− 1 ≤ 0 

𝑔10(𝑋) =
1.5𝑥6 + 1.9

𝑥4

− 1 ≤ 0 

𝑔11(𝑋) =
1.1𝑥6 + 1.9

𝑥5

− 1 ≤ 0 

2.6 < 𝑥1 < 3.6 
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0.7 < 𝑥2 < 0.8 

17 < 𝑥3 < 28 

7.3 < 𝑥4 < 8.3 

7.8 < 𝑥5 < 8.3 

2.9 < 𝑥6 < 3.9 

5.0 < 𝑥7 < 5.5
 

The optimization results for each algorithm are presented in the following table:  

TABLE 8 

PERFORMANCE OF OPTIMIZATION ALGORITHMS ON SPEED REDUCER DESIGN PROBLEM. 

Algorithm 
Optimum variables 

Optimum cost 
x1 x2 x3 x4 x5 x6 x7 

WAO 3.5 0.7 17 7.3 7.7153 3.3502 5.2867 2994.4711 

COA 3.506 0.7 17 7.3 7.8226 3.3542 5.2867 3000.22 

GSA 3.5054 0.7 17 8.0664 8.0664 3.4445 5.2869 3036.2795 

WOA 3.5 0.7 17 7.7858 7.7858 3.3512 5.2868 3000.66 

GWO 3.5001 0.7 17 7.3 7.9708 3.3502 5.2911 3003.06 

GA 3.5008 0.7001 17.0012 7.3036 7.7288 3.3504 5.2867 2996.0666 

PSO 3.6 0.7 17 7.3 8.3 3.3535 5.2874 3047.89 

HHO 3.5067 0.7 17 7.3 7.7521 3.3502 5.2868 2997.9701 

 

TABLE 9 

STATISTICAL RESULTS OF OPTIMIZATION ALGORITHMS ON SPEED REDUCER DESIGN PROBLEM 

Algorithm Best Worst Mean Std Median 

WAO 2994.4711 3007.8428 2997.0406 4.4774 2994.4809 

COA 3000.2235 3050.3287 3020.9087 12.102 3017.5886 

GSA 3036.2795 5296.003 3312.7957 581.8437 3143.7067 

WOA 3000.6616 5285.8882 3518.3961 594.6483 3241.1305 

GWO 3003.0627 5278.9856 3337.8872 650.8056 3128.7551 

GA 2996.0666 3549.0969 3018.3054 98.6448 2999.037 

PSO 3047.8934 3222.3128 3096.4834 65.7039 3058.8795 

HHO 2997.9701 5105.7952 3691.6963 703.4508 3503.2547 

 

4.3 Pressure vessel design problem: 

In the pressure vessel design problem, the goal is to minimize the cost while meeting production requirements. The pressure 

vessel has covers at both ends, with one end featuring a hemispherical head. The design involves four optimization variables:  

𝐿is the length of the cylindrical section of the vessel, 𝑅is the internal diameter, 𝑇𝑠is the thickness of the vessel wall, and 

𝑇ℎis the thickness of the head. Let 𝑋 = [𝑥1, 𝑥2, 𝑥3, 𝑥4] = [𝑇𝑠 , 𝑇ℎ, 𝑅, 𝐿]. The objective function 𝑓, constraints 𝑔, and the range 

of the design variables are specified as follows: 
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FIGURE 7: Schematic diagram of pressure vessel design 

𝑚𝑖𝑛 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 0.6224𝑥1𝑥3𝑥4 + 1.7781𝑥2𝑥3
2 + 3.1661𝑥1

2𝑥4 + 19.84𝑥1
2𝑥3    (16) 

Subject to 

𝑔1(𝑋) = −𝑥1 + 0.0193𝑥3 ≤ 0 

𝑔2(𝑋) = −𝑥2 + 0.00954𝑥3 ≤ 0 

𝑔3(𝑋) = −𝜋𝑥3
2𝑥4 −

4𝜋𝑥3
3

3
+ 1296000 ≤ 0 

𝑔4(𝑋) = 𝑥4 − 240 ≤ 0 

0.0625 < 𝑥1 < 99.999 

0.0625 < 𝑥2 < 99.999 

10 < 𝑥3 < 200 

10 < 𝑥4 < 200 

The optimization results for each algorithm are presented in the following table:  

TABLE 10 

PERFORMANCE OF OPTIMIZATION ALGORITHMS ON THE PRESSURE VESSEL DESIGN PROBLEM 

Algorithm 

Optimum variables 

Optimum cost 

x1 x2 x3 x4 

WAO 0.7782 0.3846 40.3196 200 5885.3379 

COA 0.8274 0.4589 42.8696 167.3251 6138.5222 

GSA 1.0935 0.5401 55.7566 58.7088 6758.2153 

WOA 0.9177 0.4504 47.2075 122.1683 6193.3793 

GWO 0.8598 0.425 44.4798 149.2101 6048.4539 

GA 1.0668 0.5797 53.7254 71.5534 6998.602 

PSO 1.4299 0.6468 65.3164 10 8201.8786 

HHO 0.8533 0.4366 44.2053 152.201 6078.8689 
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TABLE 11 

STATISTICAL RESULTS OF OPTIMIZATION ALGORITHMS ON THE PRESSURE VESSEL DESIGN PROBLEM. 

Algorithm Best Worst Mean Std Median 

WAO 5885.3379 7319.007 6433.909 514.0014 6261.0542 

COA 6138.5222 12346.614 7755.2197 1376.762 7317.44 

GSA 6758.2153 26704.47 11746.118 6174.4435 9119.3473 

WOA 6193.3793 437875.79 105923.96 131415.26 45444.839 

GWO 6048.4539 10080.049 6788.6016 751.3376 6725.7667 

GA 6998.602 13656.272 8624.9883 1344.316 8481.7794 

PSO 8201.8786 68129.769 23515.66 15195.015 14875.789 

HHO 6078.8689 138840.5 11210.103 23706.136 6805.7329 

 

V. CONCLUSION AND FUTURE WORK  

This paper presents a novel metaheuristic optimization algorithm called the Worker Ant Optimization (WAO) algorithm, 

designed to simulate various activities of worker ants in nature, including behaviors such as avoiding danger, foraging, 

approaching food, and decomposing and transporting food. The paper develops a mathematical optimization model based on 

these natural activities of worker ants and rigorously evaluates the convergence speed and search accuracy of WAO across 23 

classic test functions. The quality of WAO optimization results is compared with the performance of seven well-known 

algorithms. Simulation results show that WAO exhibits excellent convergence speed, achieves a suitable balance between 

exploration in global search and exploitation in local search, and demonstrates a strong ability to escape local optima, providing 

effective solutions for optimization problems. Additionally, the WAO method is applied to three engineering design 

optimization problems, and its applicability to engineering optimization is validated. The comparisons with seven well-known 

optimization algorithms further demonstrate the advantages of the WAO algorithm in optimizing complex global optimization 

problems. 

However, it is worth noting that there is still room for improvement in the convergence speed of WAO. While the algorithm 

shows strong performance in other aspects, optimizing its convergence rate could further enhance its overall efficiency and 

effectiveness in solving complex optimization problems. Future research could focus on refining the algorithm’s parameters and 

exploring hybrid approaches to accelerate convergence without compromising its robustness and solution quality. 
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