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Abstract— The Egrets Swarm Optimization Algorithm is a recently proposed heuristic algorithm that simulates the hunting 

behavior of egrets. To address the limitations of the original algorithm, such as insufficient development capability and 

decreased population diversity, a multi-strategy improved Egrets Swarm Optimization Algorithm is proposed. First, in the 

population initialization phase, Logistic chaotic mapping is introduced to generate chaotic sequences, enriching population 

diversity. Next, a dynamic perception factor is introduced to replace the step size factor in the idle strategy, which allows for 

more effective exploration and discovery of potential optimal solutions. Furthermore, to increase the breadth and depth of 

exploration, a crayfish foraging strategy is incorporated into the random walk strategy, and a roulette wheel strategy is added 

to the encircling mechanism to enhance the algorithm’s search ability and avoid ineffective actions. Additionally, a distribution 

estimation strategy and a new exploration and exploitation strategy based on whale spiral ascent are introduced to improve 

the overall efficiency and functionality of the algorithm. Finally, testing on 20 classical functions shows that the improved 

algorithm enhances optimization performance. The algorithm is also applied to solve engineering constraint problems, 

demonstrating its practicality.  

Keywords— Egret Optimization Algorithm; Roulette Wheel Strategy; Distribution Estimation Strategy; Spiral Ascent 

Strategy; Crayfish Foraging Strategy. 

I. INTRODUCTION 

In recent years, with the increasing complexity of problems and the ambiguity of the final results, the demand for optimization 

algorithms has grown. Optimization problems can be represented as a continuous or combinatorial design search space, where 

the process involves finding the maximum or minimum of a function. 

Metaheuristic algorithms are a class of heuristic methods based on natural phenomena or species behaviors [1], designed to 

solve optimization problems by simulating the behaviors of organisms or species in nature [2]. These algorithms typically exhibit 

some degree of randomness and adaptability, enabling them to search for optimal or near-optimal solutions within the search 

space [3]. Their inspiration comes from various biological phenomena, such as animal collective behavior, plant growth patterns, 

and microbial reproduction methods. According to the No Free Lunch theorem [4], many metaheuristic algorithms have 

emerged, including the Zunhai Qiao algorithm [5], Artificial Bee Colony algorithm [6], Butterfly Optimization Algorithm [7], 

Grasshopper Optimization Algorithm [8], Golden Sine Algorithm [9], Slime Mold Optimization Algorithm [10], Seagull 

Optimization Algorithm [11], Sparrow Search Algorithm [12], and Teaching-Learning-Based Optimization Algorithm [13]. 

Optimization problems are widespread across various fields, including engineering optimization, economics, logistics 

planning, machine learning, and artificial intelligence. Traditional optimization methods often face difficulties in solving 

complex high-dimensional, nonlinear, multimodal problems, whereas metaheuristic algorithms can effectively address various 

complex issues in the real world. 

The Egret Swarm Intelligence Optimization Algorithm is an optimization algorithm designed based on the foraging behavior 

of egrets [14], simulating the collaborative and competitive behaviors of egret flocks during foraging to achieve optimization 

search. However, the Egret Swarm Intelligence Optimization Algorithm has some drawbacks, such as strong local convergence, 
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sensitivity to parameters, and slow convergence speed. To address these issues, scholars have proposed improvements, such 

as the Sine-Cosine Egret Swarm Optimization Algorithm [15]. To enhance the ESOA algorithm, this paper combines strategies 

from the Whale Optimization Algorithm [16] and the Crawfish Optimization Algorithm [17], as well as strategies from the Hybrid 

Artificial Bee Colony Algorithm [18], to improve its search efficiency and optimization performance. The aim is to make the 

Egret Swarm Intelligence Optimization Algorithm more robust and efficient, thereby better applying it to practical engineering 

and scientific problems. This paper will present our improvement plan for the Egret Swarm Intelligence Optimization 

Algorithm and validate the effectiveness and performance advantages of the improved algorithm through a series of test 

functions [18][19][20] and experimental comparative analysis. 

II. EGRETS SWARM OPTIMIZATION ALGORITHM 

The Egrets Swarm Optimization Algorithm (ESOA) is an intelligent optimization algorithm introduced by Zuyan Chen and 

colleagues in 2022. It simulates the collective behavior of egrets during their hunting process. Egrets typically forage in groups, 

collaborating and competing in wetland environments to capture food, aiming to achieve the best foraging outcome. In the 

Egrets Swarm Optimization Algorithm, there are two main strategies: waiting and attacking. Suppose an egret team consists 

of three egrets: Egret A employs a guiding mechanism, Egret B uses random walk, and Egret C adopts an encircling mechanism. 

The behaviors of these egrets are quantified using corresponding mathematical models, as follows: 

2.1 Waiting Strategy: 

The observation equation for the i-th egret A can be described as: , where  represents the current position of the 

egret, and  denotes the assessment of potential prey at this position by Egret A. The parameterized assessment equation is 

given by Equation (1), where  is the weight of the assessment method, updated according to Equation (4).  represents the 

assessment error, and 𝑔
𝛬

𝑖
 is obtained by taking the partial derivative of  through Equation (2), representing the actual gradient 

of . 
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Egret A achieves more stable rewards with lower energy consumption by constructing a pseudo-gradient estimator and 

updating its position based on historical experience. In Equation (3),  denotes the optimal direction within the team,  

represents the optimal direction of all teams, while  is the directional correction for the best position within the team, and 

 is the directional correction for the best position among all teams. Subsequently, the pseudo-gradient of the observation 

equation weight is calculated using Equation (5), and finally, Egret A’s position and fitness are updated based on Equation (6). 
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Here,  is the current iteration count,  is the maximum iteration count,  is the range of the solution space (i.e., the 

difference between upper and lower bounds),  is the step size factor for Egret A, set to 0.1, and  is the expected next 

position of Egret B. 

𝑔𝑖 = (1 − 𝑟ℎ − 𝑟𝑔) ⋅ 𝑑
Λ

𝑖 + 𝑟ℎ ⋅ 𝑑ℎ,𝑟 + 𝑟𝑔 ⋅ 𝑑𝑔,𝑖         (5) 

𝑥𝑎,𝑖 = 𝑥𝑖 + 𝑠𝑡𝑒𝑝𝑎 ⋅ 𝑒𝑥𝑝( − 𝑡/(0.1 ⋅ 𝑡𝑖𝑚𝑎𝑥         (6) 

𝑦𝑎,𝑖 = 𝑓(𝑥𝑎,𝑖)            (7) 

2.2 Attacking Strategy: 

Egret B uses a high-energy-consuming random search strategy, which results in higher potential rewards. Its position and 

fitness are updated according to Equation (9), where  is a random number in ,  is the step size factor for Egret 

B, and  is the expected next position of Egret B. Egret C employs an encircling mechanism; once it locates prey, it will 

pursue it until captured. The position and fitness updates are given by Equation (12), where  is the difference matrix between 

the team’s optimal position and the current position,  is the difference matrix between the optimal position of all teams and 

the current position, and  and  are random numbers in , with  being the expected next position of Egret B. 
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2.3 Discrimination Conditions: 

After the egret team members compute their expected positions, they will determine the updated positions of the egret team 

based on the discrimination condition in Equation (10). Specifically, the expected positions and fitness of the four egrets are 

compared with their positions and fitness from the previous iteration. If any egret’s expected position has better fitness than 

the previous iteration, it will be adopted for updating. Conversely, if all egrets' expected positions have worse fitness than 

before, a response is made based on a random number . If  is less than 0.3, there is a 30% chance of accepting a worse 

solution for position updating. 
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III. IMPROVED EGRET SWARM OPTIMIZATION ALGORITHM 

Through the analysis of the ESOA algorithm, it is evident that within an egret team comprising Egret A, Egret B, and Egret C, 

each egret employs a different strategy for hunting activities. Egret A uses a waiting strategy, where each position update 

depends on changes in fitness values and is largely influenced by the optimal values of the egret team and the egret population. 

Egret B, which employs a random walk, symbolizes the aggressive predatory behavior of egrets in nature. While it has a higher 
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probability of achieving greater rewards, it also consumes a significant amount of energy. Egret C, which uses an encircling 

mechanism, is also prone to getting trapped in local optima.  

Therefore, in the ESOA algorithm, the strategies of the egret team members exhibit a degree of blindness, which restricts the 

range of optimization results. The algorithm suffers from insufficient development capability, slow convergence speed, and a 

decline in population diversity. 

To address these issues, this paper proposes multi-strategy improvements to the parallel framework of the ESOA algorithm, 

with the aim of enhancing the search capability of the improved Egret Swarm Optimization Algorithm (IESOA) and effectively 

balancing global and local search abilities. 

3.1 Chaotic Local Search Strategy: 

Logistic chaotic mapping is one of the simplest and most effective chaotic systems, easy to implement and apply. In this paper, 

Logistic chaotic mapping is introduced during the initialization of the population in the IESOA algorithm. The output of the 

Logistic chaotic mapping is used as a random factor to guide the search direction and strategy of the population, increasing the 

algorithm's randomness and diversity. As shown in Equation (11), where  is a control parameter with a value of 3.9, the 

Logistic chaotic mapping exhibits high randomness and can generate high-quality random number sequences. 

𝑥(𝑖 + 1) = 𝜇𝑥(𝑖)(1 − 𝑥(𝑖))           (11) 

3.2 Dynamic Perception Factor: 

The step size factor is crucial for finding the optimal solution. Therefore, this paper introduces a Dynamic Perception (DP) 

factor into the step size of the waiting strategy in the ESOA algorithm. The DP factor changes with each iteration of the 

algorithm, as described in Equation (12). It can enhance the global search capability of the algorithm in the early stages, 

expanding the search space, and improve the local search capability in the later stages, thereby enhancing the algorithm's ability 

to find the optimal solution. 
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3.3 Crayfish Foraging Strategy: 

In the crayfish foraging strategy, the mathematical model is as follows: crayfish calculate the size of food  according to 

Equation (13) and choose different foraging methods. Food  represents the optimal solution. When the size of  is suitable 

for the crayfish, it will move closer to the food. Equation (15) uses a combination of sine and cosine functions to simulate the 

alternating process. When  is too large and there is a significant difference between the crayfish and the optimal solution, the 

size of  should be reduced to bring it closer to the food and control the crayfish's feeding amount. Given the asynchronous 

nature of the egret swarm, the crayfish foraging phase strategy is introduced into the random walk strategy of the ESOA 

algorithm with a probability of . Specifically, the egret swarm selects different approaches based on the fitness of the optimal 

individual, as described in Equations (15) or (16), to approach the optimal solution, thereby updating the expected position and 

fitness of Egret B. 

Including the crayfish foraging phase strategy in the random walk strategy of the ESOA algorithm ensures that during the 

search process, individuals randomly choose a new position to move with a certain probability. This preserves the randomness 

and exploratory nature of the search process, allowing individuals to escape from local optima and find better solutions. It also 

enables the IESOA algorithm to progressively approach the optimal solution, enhancing its development capability and 

convergence ability. 

𝑞 = 𝑐3 × 𝑟𝑎𝑛𝑑 ∗ (
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𝑥𝑏,𝑖 = 𝑥𝑖 + 𝑥𝑏𝑒𝑠𝑡 × 𝑙 × (𝑐𝑜𝑠( 2 × 𝜋 × 𝑟𝑎𝑛𝑑) − 𝑠𝑖𝑛( 2 × 𝜋 × 𝑟𝑎𝑛𝑑))       (15) 

𝑥𝑏,𝑖 = (𝑥𝑖 − 𝑥𝑏𝑒𝑠𝑡) × 𝑙 + 𝑝 × 𝑟𝑎𝑛𝑑 × 𝑥𝑖          (16) 

𝑦𝑏,𝑖 = 𝑓(𝑥𝑏,𝑖)             (17) 

3.4 Roulette Wheel Strategy: 

The roulette wheel strategy, originating from genetic algorithms, essentially simulates the process of "survival of the fittest" in 

biological evolution. The fitness value of an individual serves as an indicator of how well the individual "adapts." Considering 

a population of  individuals, each with its own fitness function value, the probability of an individual being selected is 

defined by Equation (18). The higher the fitness value of an individual, the greater its probability of being selected, which is 

the principle behind the roulette wheel strategy. Compared to pure random search algorithms, this strategy has the advantage 

of more effectively utilizing the fitness information of individuals, thereby improving the algorithm's search efficiency and 

quality. 

In the ESOA algorithm, for egret C when searching for prey, individuals adjust their speed and position based on the 

information of the global optimal position and their own optimal position to approach the optimal solution. This encircling 

mechanism helps the algorithm better balance exploration and the use of existing information during the search process, 

improving both global search capability and convergence speed. In the IESOA algorithm presented in this paper, the roulette 

wheel strategy with a stochastic element is introduced with a probability of  during the position update process of egret C. 

This increases the likelihood of selecting individuals with higher fitness, making the IESOA algorithm more targeted, aiding 

in retaining high-quality individuals, enhancing the algorithm's convergence and global search capability, while also 

introducing some randomness to maintain population diversity and avoid local optima. 

𝑝𝑖 =
𝑓𝑖

∑ 𝑓𝑘
𝑛𝑝
𝑘=1

             (18) 

3.5 Distribution Estimation Strategy: 

The distribution estimation strategy is a random optimization algorithm based on experimental analysis, guiding population 

evolution through the construction of probabilistic models, sampling, and updating operations. Its main idea is to guide the 

search process by estimating the distribution of solutions in the problem space. Specifically, the strategy dynamically adjusts 

the search direction and strategy based on the known distribution of solutions to explore the solution space more effectively. 

This accelerates the algorithm's convergence speed, improves its global search capability, and enhances the algorithm's 

adaptability and robustness. 

In the ESOA algorithm, the distribution estimation strategy is introduced with a probability of  to simulate the position update 

process of egret D. During this process, the top  individuals from the advantageous population are selected, avoiding the 

reduction in population diversity and the risk of falling into local optima caused by various strategies aimed at approaching the 

optimal solution. Additionally, a normal distribution estimate is incorporated into the distribution estimation strategy to further 

reduce the likelihood of the IESOA algorithm falling into local optima. Overall, introducing the distribution estimation strategy 

into the IESOA algorithm helps avoid local optima, enhances global search capability, and speeds up the convergence rate by 

facilitating quicker identification of regions close to the optimal solution, thus improving the algorithm's efficiency and 

performance and making it more suitable for complex optimization problems. 
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The mathematical model of this strategy is as follows:  represents the population size, and  denotes the top promising 

solutions ranked by fitness values from high to low. In Equation (19), represents the weight coefficients in descending order 

of fitness values in the advantageous population, with larger weights indicating higher ranks. In Equation (20),  is the 

weighted average of the solutions from the top  advantageous individuals. According to Equation (21), 𝑐𝑜𝑣 represents the 

weighted covariance matrix of the advantageous population, while Equation (22)  represents a random number that follows 

a normal distribution with mean . Finally, Equation (22) is used to update the expected position and fitness of egret D. 

𝜔𝑖 =
𝑙𝑛(𝑛𝑝/2+0.5)−𝑙𝑛(𝑖)

∑ (𝑙𝑛(𝑛𝑝/2+0.5)−𝑙𝑛(𝑗))
𝑛𝑝/2
𝑗=1

           (19) 

𝑥𝑚𝑒𝑎𝑛 = ∑ (𝜔𝑗 ⋅ 𝑥𝑖)
𝑛𝑝/2
𝑗=1             (20) 
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3.6 Spiral Ascending Strategy: 

The spiral ascending strategy is used in the whale optimization algorithm for spiral position updates during bubble-net attacks, 

where whales continuously approach the optimal position through spiral swimming. In the IESOA algorithm, the spiral 

ascending strategy is introduced with a probability of  to simulate the position update process of egret D, enhancing the 

algorithm's global search capability and aiding in finding the global optimal solution. This strategy combines attraction and 

repulsion behavior patterns. In the attraction mode, the strategy aims to move towards the global optimal solution, while in the 

repulsion mode, it attempts to avoid local optima, balancing exploration and exploitation during the search process. This 

improves the algorithm's convergence speed, increases search diversity, and enhances its robustness and global search 

capability. 

The mathematical model of this strategy is as follows:  represents the distance between the whale's current position and the 

optimal value,  is a constant describing the logarithmic spiral shape, and  is a random number within the range of . 

Finally, Equation (23) is used to update the expected position and fitness of egret D. 
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IV. FLOWCHART OF THE MULTI-STRATEGY IMPROVED EGRET SWARM OPTIMIZATION ALGORITHM 

For the original ESOA algorithm, the improvements in the IESOA algorithm described in this paper mainly include: 

1) In the ESOA algorithm, Egret A constructs a pseudo-gradient estimator to estimate the descending plane and searches 

based on the gradient of the cutting plane parameters. In the IESOA algorithm, a dynamic perception factor replaces 

the original step size factor of 0.1 in the waiting strategy of Egret A. 

2) In the ESOA algorithm, Egret B performs global roaming. The IESOA algorithm introduces a shrimp foraging phase 

strategy with a certain probability to speed up convergence and efficiency. 

3) In the ESOA algorithm, Egret C uses an enclosing mechanism for selective search based on better egret positions. 

The IESOA algorithm introduces a roulette strategy with a certain probability to avoid local optima. 
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4) The IESOA algorithm introduces distribution estimation and spiral ascent strategies with a probability of 1/2, simulating 

the position update process of Egret D to reduce the blindness in the actions of individual egrets in the original ESOA 

algorithm. 

 

FIGURE 1: Flowchart of the IESOA Algorithm 

V. SIMULATION EXPERIMENTS AND RESULTS ANALYSIS 

This paper evaluates the convergence speed, solution accuracy, global search capability, and ability to avoid local optima of 

the multi-strategy improved Egret Swarm Optimization Algorithm (IESOA) using 20 classic test functions. Among these 

functions, F1 to F7 are single-peak functions used to assess convergence speed and solution accuracy; F8 to F19 and F21 are 

multi-peak functions containing multiple local optima and one theoretical optimum, used to evaluate global search capability 

and the ability to avoid local optima. 
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First, the IESOA algorithm was compared with the original ESOA algorithm using the 20 classic test functions, as shown in 

Figure 2. The results indicate that there is significant room for improvement in the original ESOA algorithm, with the IESOA 

algorithm demonstrating superior convergence speed and solution accuracy. 

Next, the improved IESOA algorithm was independently tested 50 times on the 20 classic functions, alongside algorithms like 

BOA, GOA, GSA, and SOA. The average and standard deviation of 50 iterations for functions F1—F19 and F21 were 

calculated for each algorithm, and rankings for these 8 algorithms across the 20 functions were compared. As shown in Table-

1, the IESOA algorithm achieved the best results for all 20 functions. For single-peak functions, the IESOA algorithm 

outperformed all other algorithms, showing strong development capability. For multi-peak functions, the IESOA algorithm 

maintained good population diversity and effectively avoided local optima, indicating its strong performance and potential for 

solving complex real-world problems. 

Finally, to more intuitively demonstrate the performance or convergence of the IESOA algorithm, Figure 3 presents 

convergence curve plots of IESOA and nine other algorithms for the 20 classic test functions, analyzing convergence accuracy 

and efficiency. It can be seen that for single-peak functions F1-F7, the other nine algorithms prematurely fell into local optima, 

while the IESOA algorithm gradually converged to the global optimum. For multi-peak functions F8-F19 and F21, some 

functions showed multi-gradient descent trends, indicating the IESOA algorithm's excellent ability to escape local optima, and 

even exhibited unique local search or optimization performance in the early stages of iterations for some functions like F9. In 

summary, both in terms of convergence accuracy and speed, the IESOA algorithm demonstrates the best efficiency and 

performance. 

 

FIGURE 2: Convergence Curves of ESOA and IESOA Algorithms on 20 Classic Functions 
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TABLE 1 

STATISTICAL RESULTS OF EIGHT ALGORITHMS ON 20 CLASSIC FUNCTIONS 

    BOA GOA GSA MFO SOA TLBO WOA IESOA 

F1  
Mean 0.000741 1910 2.46E-49 109000 2.91E-35 1910 0.0108 9.26E-200 

Std 0.0000529 649 1.28E-48 5900 1.97E-34 518 0.0245 0 

F2 
Mean 5.92E+23 42.8 8.75E-22 3.63E+19 2.09E-22 24 0.0101 3.47E-97 

Std 4.1E+24 28 6.11E-21 1.05E+20 1.3E-21 3.43 0.00712 2.43E-96 

F3 
Mean 0.000727 13600 3.48E-37 211000 245000 19600 2350 3.04E-177 

Std 0.000102 7850 2.44E-36 28600 81800 5070 2280 0 

F4 
Mean 0.0193 17.2 7.67E-23 88.5 0.915 21.8 4.26 5.97E-93 

Std 0.00136 2.93 4.96E-22 1.74 5.3 2.47 2.43 4.18E-92 

F5 
Mean 48.9 202000 0.204 410000000 18.3 276000 49.8 9.68 

Std 0.0309 119000 0.491 38700000 21.6 105000 1.67 19.4 

F6 
Mean 10.4 1730 0.00417 108000 0.635 2030 2.76 3.75E-12 

Std 0.715 679 0.00728 7740 0.561 495 0.647 9.79E-12 

F7 
Mean 0.000504 0.595 0.000525 327 0.000563 0.567 0.00638 0.0000672 

Std 0.000392 0.24 0.000496 32.9 0.000423 0.211 0.0049 0.0000626 

F8 
Mean -3220 -10400 -20900 -6480 -20700 -6980 -11800 -19100 

Std 626 917 37.5 884 262 1010 515 3640 

F9  
Mean 191 270 0 721 0 174 16.8 0 

Std 174 50.3 0 24.1 0 40.5 15.2 0 

F10 
Mean 0.0136 9.17 4.44E-16 20.2 6.57E-16 9.59 0.196 4.44E-16 

Std 0.00076 1.17 9.86E-32 0.0993 8.44E-16 0.982 0.684 0 

F11 
Mean 0.00387 19 0 979 0.0195 19.3 0.0396 0 

Std 0.000452 5.47 0 67.1 0.136 4.25 0.0589 0 

F12 
Mean 0.906 21 0.000126 889000000 0.0176 30 0.19 0.000145 

Std 0.152 10.5 0.0002 129000000 0.0179 71.9 0.171 0.000946 

F13 
Mean 5.02 11200 0.000872 1770000000 0.281 50500 2.43 5.69E-12 

Std 0.158 22000 0.00144 198000000 0.189 83800 0.406 1.28E-11 

F14 
Mean 1.56 1.08 1.43 1.58 3.16 0.998 1 0.998 

Std 0.676 0.335 1.03 0.655 3.33 0.000116 0.0102 1.8E-14 

F15 
Mean 0.00058 0.00708 0.000448 0.00223 0.00149 0.000902 0.000645 0.000437 

Std 0.000319 0.011 0.00021 0.000707 0.00106 0.000318 0.000396 0.000179 

F16 
Mean -0.609 -1.03 -1.02 -1.03 -1.03 -1.03 -1.03 -1.03 

Std 0.157 2.22E-16 0.0102 0.00494 0.0000237 0.000326 3.78E-08 2.93E-16 

F17 
Mean 0.403 0.398 0.404 0.403 0.402 0.398 0.398 0.398 

Std 0.0058 1.4E-09 0.0111 0.00974 0.0101 0.000362 0.00000428 0.000000095 

F18 
Mean 3.52 3 7.67 3.19 7.6 3 3 3 

Std 1.38 4.8E-09 10.1 0.432 10.6 0.0081 0.00000495 6.79E-15 

F19 
Mean -3.42 -3.7 -3.77 -3.86 -3.75 -3.86 -3.86 -3.86 

Std 0.305 0.196 0.0791 0.00301 0.173 0.00086 0.00312 1.14E-09 

F21 
Mean -0.588 -6.29 -10.1 -2.44 -6.85 -6.14 -5.35 -8.73 

Std 0.268 3.29 0.0364 0.988 3.04 2.4 1.12 2.29 
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FIGURE 3: Convergence Curves of Eight Algorithms on 20 Classic 

5.1 Engineering Constraint Problems: 

5.1.1 Gearbox Design Problem: 

In mechanical systems, a gearbox is one of the crucial components of a gear train and can be used in various applications. In 

this optimization problem, the goal is to minimize the weight of the gearbox under 11 constraints. This problem involves seven 

variables: face width , gear module , , the length of the first shaft between bearings , and the 

diameter of the bearings and the first shaft ， . The mathematical model for this problem is expressed as 

follows: 

a) Objective function: 

2 2 2 2

1 2 3 3 1 6 7

3 3 2 2

6 7 4 6 5 7

( ) 0.7854 (3.3333 14.9334 43.0934) 1.508 ( )

7.4777( ) 0.7854( )

f X x x x x x x x

x x x x x x

    

   
 

b) Constraints: 

𝑔1(𝑋) =
27

𝑥1𝑥2
2𝑥3

− 1 ≤ 0 

𝑔2(𝑋) =
397.5

𝑥1𝑥2
2𝑥3

2 − 1 ≤ 0 

𝑔3(𝑋) =
1.93𝑥4

3

𝑥2𝑥6
4𝑥3

− 1 ≤ 0 

)( 1xb  )( 2xm  )( 3xz  )( 41 xl 

)( 41 xl  61 xd  72 xd 
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𝑔4(𝑋) =
1.93𝑥5

3

𝑥2𝑥7
4𝑥3

− 1 ≤ 0 

𝑔5(𝑋) =
√(

745𝑥4
𝑥2𝑥3

)2 + 16.9 × 106

110𝑥6
3 − 1 ≤ 0

 

𝑔6(𝑋) =
√(

745𝑥5
𝑥2𝑥3

)2 + 157.5 × 106

85𝑥7
3 − 1 ≤ 0

 

𝑔7(𝑋) =
𝑥2𝑥3
40

− 1 ≤ 0 

𝑔8(𝑋) =
5𝑥2
𝑥1

− 1 ≤ 0 

𝑔9(𝑋) =
𝑥1

12𝑥2
− 1 ≤ 0 

𝑔10(𝑋) =
1.1𝑥7 + 1.9

𝑥5
− 1 ≤ 0 

c) Range of Values: 

2.6 ≤ 𝑥1 ≤ 3.6 

0.7 ≤ 𝑥2 ≤ 0.8 

𝑥3 ∈ {17,18,19, . . . ,28} 

7.3 ≤ 𝑥4 

𝑥5 ≤ 8.3 

2.9 ≤ 𝑥6 ≤ 3.9 

5 ≤ 𝑥7 ≤ 5.5 

The optimization results of various algorithms are shown in Figure 4. It can be observed that, compared to the other seven 

optimization algorithms, the IESOA algorithm has the best accuracy and stability in solving the gearbox design problem. The 

optimal value obtained by the IESOA algorithm is approximately 2996.86, and the best solution provided by the IESOA 

algorithm is [3.500, 0.700, 17.000, 7.300, 7.800, 3.350, 5.287]. Therefore, IESOA achieves the best results in addressing this 

engineering problem. 

 
FIGURE 4: Comparison of Eight Optimization Algorithms in Solving the Gearbox Design Problem 
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TABLE 2 

COMPARISON OF OPTIMAL SOLUTIONS FOR THE GEARBOX DESIGN PROBLEM 

Algorithm x1 x2 x3 x4 x5 x6 x7 Optimal weight 

IESOA 3.5 0.7 17 7.3 7.8 3.35 5.287 2996.86 

WOA 3.508 0.7 17 7.396 7.887 3.353 5.289 3004.73 

TLBO 3.527 0.7 17 8.3 8.118 3.369 5.287 3027.89 

SOA 3.501 0.7 17 7.398 7.864 3.565 5.299 3011 

MFO 3.6 0.704 17.021 8.232 8.272 3.427 5.333 3124.31 

GSA 3.502 0.7 17 8.125 7.8 3.794 5.311 3150.23 

GOA 3.5 0.7 17 7.32 7.904 3.35 5.337 3031.02 

BOA 3.54 0.701 25.862 7.931 7.916 3.744 5.354 5095.34 

 

5.1.2 Tension/Compression Spring Design Problem: 

In the tension/compression spring design problem, the optimization goal is to achieve the minimum spring mass using three 

variables and four constraints. The problem requires solving under constraints such as shear force, deflection, vibration 

frequency, and outer diameter. There are three design variables: coil diameter , mean coil diameter , and number of coils

. The variables in the design problem are coil diameter , mean coil diameter , and the number of effective coils . The 

constraints include minimum deviation , shear stress , impact frequency , and outer diameter limits . By 

incorporating each variable into the constraints, the goal is to determine the minimum spring mass .The mathematical 

model for this problem is given by equations (27)–(29): 

d) Objective function: 

𝑓(𝑥) = (𝑥3 + 2)𝑥2𝑥1
2 

e) Constraints: 

𝑔1(𝑥) = 1 −
𝑥2
3𝑥3

71785𝑥1
4 ≤ 0 

𝑔2(𝑥) =
4𝑥2

2 − 𝑥1𝑥2

12566(𝑥2𝑥1
3 − 𝑥4)

+
1

5108𝑥1
2 − 1 ≤ 0 

𝑔3(𝑥) = 1 −
140.45𝑥1

𝑥2
2𝑥3

≤ 0 

𝑔4(𝑥) =
𝑥1 + 𝑥2
1.5

− 1 ≤ 0 

f) Range of Values: 

0.05 ≤ 𝑥1 ≤ 2,0.25 ≤ 𝑥2 ≤ 1.3,2.0 ≤ 𝑥3 ≤ 15 

The optimization results of various algorithms are shown below in Figure 5. It can be observed that, compared to the other 

seven optimization algorithms, the IESOA algorithm has the best accuracy and stability when solving the tension/compression 

spring design problem. The best result obtained by the IESOA algorithm is approximately 0.0127, with the optimal solution 

being [0.050, 0.317, 14.087]. Therefore, IESOA achieves the best results in addressing this engineering problem. 

 

d D

N d D N

)( 1g )( 2g )( 3g )( 4g

)(xf
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FIGURE 5: Comparison of Eight Optimization Algorithms in Solving the Tension Spring Design Problem 

TABLE 3 

COMPARISON OF OPTIMAL SOLUTIONS FOR THE TENSION SPRING DESIGN PROBLEM 

Algorithm x1 x2 x3 Optimal Cost 

IESOA 0.05 0.317 14.087 0.0127 

WOA 0.055 0.453 7.346 0.013 

TLBO 0.05 0.31 15 0.0132 

SOA 0.056 0.48 6.573 0.0131 

MFO 0.05 0.314 15 0.0134 

GSA 0.058 0.519 5.881 0.0137 

GOA 0.064 0.738 6.481 0.0258 

BOA 0.068 0.867 5.802 0.031 

 

VI. CONCLUSION 

The Egrets Swarm Optimization Algorithm (ESOA) is a new metaheuristic algorithm introduced in recent years. It features a 

straightforward and easy-to-understand principle, is user-friendly, and is suitable for integration with other metaheuristic 

algorithms to address complex problems involving high dimensions or multiple optima. To enhance the efficiency of this 

algorithm, this paper proposes an improved version of the Egrets Swarm Optimization Algorithm, known as the Improved 

Egrets Swarm Optimization Algorithm (IESOA).  

This improvement incorporates a chaotic local search strategy to boost the performance of the original ESOA algorithm. To 

address the issue of single strategy blindness in parallel algorithms, it introduces the "lost phase" and "roulette wheel" strategies 

from the crayfish algorithm. Additionally, to increase population diversity, a new parallel strategy is added to the original  

ESOA algorithm, which includes distribution estimation algorithms and spiral ascent strategies. This new strategy helps better 

guide the population towards more optimal solutions. 

Comparative experiments with 20 classic benchmark functions and nine other intelligent optimization algorithms demonstrate 

that the performance of the IESOA algorithm has significantly improved over the ESOA algorithm. It is hoped that the IESOA 

algorithm can be applied to more engineering problems in the future, providing a feasible solution approach for addressing 

various practical issues. 
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