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Abstract— This article deals with the effects of different structural arrangements inside a heat exchanger made of 

polypropylene tubes on the overall heat transfer coefficient. The experiments indicated that overall heat transfer coefficient k 

with stretched tubes was lower than the value observed when the tubes were slightly loosened. Tubes should not be loosened 

by more than 5 % of their length. If this value is exceeded, tubes may accumulate near the wall and their contact with water 

is insufficient; this results in reduced heat transfer. Equally important is to prevent tubes from attaching to each other. This 

may be achieved with a variety of turbulators. A turbulator may be any small object, metal or plastic, which is inserted 

among the tubes. Laboratory investigation indicated that turbulators can increase overall heat transfer coefficient by as 

much as 54 %compared to heat exchangers without turbulators, in identical operating conditions. 

Keywords— Heat exchanger, atypical structure, polypropylene tube, turbulators. 

I. INTRODUCTION 

Heat exchangers which are primarily intended for the use with low-potential heat sources have been described in paper [1]. 

Heat-transfer surfaces in such heat exchangers are on polypropylene tubes and they may be either absolutely smooth and gas-

proof or porous. Polypropylene tubes in these exchanges are hollow. A required amount of tube ends are sealed into a 

polyurethane tube approximately 35 mm long to form a potting. A fluid (water) which absorbs heat from the surrounding 

environment (a low-potential heat source) flows through these tubes sealed in the potting. An identical potting is on the 

outflow end of the heat exchanger. A length of tubes between the pottings ranges from approximately 400 mm to max. 

1,000 mm. A heat-transfer surface area S is calculated using the amount and dimensions of the used tubes and it determines 

the heat output of a heat exchanger. An inner diameter of a capillary tube usually ranges between approximately 0.15 

and0.30 mm. Heat exchangers of this type, with simple designs, have been subjected to experimental research aimed at 

obtaining information on the overall heat transfer coefficient k, as presented in the quoted literature. 

The heat exchangers presented in this article consisted of the same tubes as described above, but with a special feature, i.e. 

the arrangement of tubes between the two pottings. The article describes an analysis of three different designs of a heat 

exchanger. 

II. SHELL AND TUBE HEAT EXCHANGER 

A heat exchanger of this type consisted of a cylindrical shell with a diameter of 60 mm. The shell was made of a PVC tube 

(Fig. 1). Both tube ends (2) contained a sealed-in potting of capillary tubes (1). The tubes inside the shell were arranged so 

that they crossed the baffles. The purpose of the ring-shaped baffles (3) was to direct the fluid stream into the tube bundle 

and across the whole heat exchanger. The baffles were designed so that all tubes in the bundle are evenly distributed along 

their outer circumference and that a baffle gently pushes the tubes against the inner wall of the heat exchanger shell. The 

fluid stream had to cross the freely placed tubes in order to return to the axis of the heat exchanger. The same principle was 

applied to the installation of the smaller ring-shaped baffles (4). Their purpose was again to ensure that the tubes are evenly 

distributed along their circumference. These smaller baffles were also intended to push the fluid stream away from the heat 

exchanger axis towards the walls; therefore, the stream had to cross the tubes in the bundle again. The effect of alternating 

Received: 02 June 2022/ Revised: 12 June 2022/ Accepted: 19 June 2022/ Published: 30-06-2022 
Copyright @ 2021 International Journal of Engineering Research and Science  
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positions of the small and large baffles was that the stream repeatedly crossed the tubes. The baffles were made of toughened 

polystyrene and the tubes were attached to them with silicone seal and water-proof sealing tape. 

 

FIGURE 1: Shell and tube heat exchanger 

The red arrows in Fig. 1 indicate the fluid stream flowing around the tubes and the blue arrow indicates the fluid stream 

flowing though the tubes. Fig. 2 shows a tube bundle with all baffles glued to it and Fig. 3 shows a detail of a small and a 

large baffle. The tube bundle with such an arrangement was inserted into a cylindrical body of a heat exchanger. To avoid 

damage to the baffles during insertion, the body was heated in a water bath to the temperature of 80 °C and the tube bundle 

was cooled to the temperature of 5 °C. This was carried out while using a relatively high expansibility of the used plastic 

materials. The parameters of the experimentally examined shell and tube heat exchanger are listed in Table. 1. 

  

FIGURE 2: The adjusted bundle FIGURE 3: A detail of the inner and outer baffles 

 

TABLE 1 

PARAMETERS OF THE SHELL AND TUBE HEAT EXCHANGER 

Number of tubes 1,400 pieces Outer diameter of the tube 0.275 mm 

Tube length 550 mm Heat-transfer surface area 0.665 m2 

 

During the experiment, the heat exchanger was in operation for approximately 10 minutes in a horizontal position. The 

obtained values of the parameters, which were necessary to calculate overall heat transfer coefficient k at a flow rate of fluid 

inside the tubes was Vin = 200 L∙hr-1, were used to plot a curve of a correlation between the overall heat transfer coefficient k 

and the time τ (Fig. 4). 

 

FIGURE 4: Overall heat transfer coefficient for a shell and tube heat exchanger 
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A maximum mean value of overall heat transfer coefficient k was 780 W∙m-2·K-1. The method used for expressing this 

parameter is described in detail in paper [1]. Due to the fact that the obtained values of overall heat transfer coefficient were 

low, no further measurements were carried out on this type of heat exchanger. 

III. HEAT EXCHANGER WITH TURBULATORS IN THE TUBE BUNDLE 

In this type of heat exchanger, turbulators were inserted into the tube bundle. Turbulators were various small metal and 

plastic objects (nuts, bolts etc.). A detailed image of the bundle adjusted as described above is shown in Fig. 5. Parameters of 

the examined tube bundle are listed in Table2. 

TABLE 2 

PARAMETERS OF HEAT EXCHANGER WITH TURBULATORS 

Number of tubes 1,400 pieces Outer diameter of the tube 0.275 mm 

Tube length 680 mm Heat-transfer surface area 0.68 m2 

 

An inlet of the low-potential fluid into the heat exchanger was tangential (a yellow arrow in Fig. 6). During the experiment, 

the heat exchanger was positioned vertically. 

  

FIGURE 5: A detailed image of turbulators 
FIGURE 6: Heat exchanger arrangement during 

the experiment 

 

Prior to the experiment, the tubes in the heat exchanger were loosened by3.7 %. This means that a tube with a length of 

680 mm (Table 2) was placed inside a cylindrical shell of the heat exchanger with a length of only 655 mm. The overall heat 

transfer coefficient k was identified while applying the same method as before, as described in paper [1]. During the 

experiment, a flow rate of the fluid inside the tubes Vin was increased from 30 L·hr-1to 200 L·hr-1. The heat exchanger was in 

operation in a vertical position. The fluid exited the heat exchanger through two tangential outlets (red arrows in Fig. 6). The 

curve of a correlation between the overall heat transfer coefficient and the flow rate inside the tubes Vin is shown in Fig. 7. 

 

FIGURE 7: Overall heat transfer coefficient for heat exchanger with turbulators in the tube bundle 
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The curve indicates that optimal loosening of the tubes in the bundle and the use of turbulators may facilitate achieving a 

value of overall heat transfer coefficient as much as 1,200 W∙m-2·K-1. 

IV. HEAT EXCHANGER WITH TUBES WITH HINDERED TRANSVERSE MOTIONS 

Laboratory tests were also performed with heat exchangers which were filled up with tubes so that their transverse motions 

were impossible. The body of such exchangers was made of a PVC tube. Parameters of the tested heat exchanger are listed in 

Table 3. The inner diameter of the PVC tube in this heat exchanger was 25 mm, and the number of tubes inside was 400. As 

the whole flow cross-section of the heat exchanger was filled up with tubes, the motions of the tubes were significantly 

hindered. The inlet and outlet for the fluid (low-potential water) were tangential (yellow arrows in Fig. 8). Therefore, in the 

heat exchanger with the parameters specified in Table 3, the fluid flew around the tubes in an oblique, lengthwise direction.  

 

FIGURE 8: Heat exchanger with tubes with hindered transverse motions 

TABLE 3 

PARAMETERS OF HEAT EXCHANGER V001 

Number of tubes 400 pieces Outer diameter of the tube 0.6 mm 

Tube length 260 mm Heat-transfer surface area 0.196 m2 

 

The tubes in the bundle were loosened before they were sealed in a potting. Due to a diameter of the tubes, the loosening rate 

was only 0.5 %. This procedure was based on the knowledge obtained in experiments with a heat exchanger with turbulators. 

The temperature of fluid entering the heat exchanger was 50 °C. Flow rates inside the tubes were of three different values 

(150 L∙hr-1, 300 L∙hr-1 and 600 L∙hr-1).A decisive factor was the flow rate of the fluid flowing outside the tubes, which 

amounted to950 L∙hr-1 and 1,200 L∙hr-1. Measurements were also made for a pressure drop in the heat exchanger; the 

measured values ranged from 30 to 150 kPa, depending on the flow rate (Fig. 9). Increased flow rates were reflected in 

increased values of overall heat transfer coefficient k, with a maximum value of 1,875 W∙m-2·K-1. With regard to the fact that 

the fluid used in the experiment was pure water, such a value of overall heat transfer coefficient will not be feasible in real 

conditions. Water that will enter a heat exchanger will be polluted; therefore, there will have to be some free space among the 

tubes to avoid clogging of the heat exchanger with impurities, as this would reduce the k value. 

 
FIGURE 9: Values of overall heat transfer coefficient k and pressure drop p at different flow rates inside 

the tubes Vin and around the tubes Vout 
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V. CONCLUSION 

The article describes three different designs of heat exchangers made of propylene capillary tubes. Results of this 

experimental laboratory investigation indicated that the most optimal design of a heat exchanger for achieving maximum 

values of overall heat transfer coefficient is the heat exchanger with tubes that are prevented from transverse motions and 

only slightly loosened (max 0.5 %). This type of heat exchanger meets the requirement of providing sufficient heat transfer 

from a heat-transfer fluid. However, it is necessary to bear in mind that these experiments were carried out with pure water. 

With polluted water, it is necessary to count with reduced amounts of transferred heat. In this investigation, with pure water, 

a maximum heat output of the heat exchanger was 4,450 W.  
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Abstract— The paper continues study of dipole-exchange spin waves in a two-dimensional magnonic crystal (a thin 

ferromagnetic film with a periodic system of circular antidots) started by the author in the previous paper. The proposed 

model considers the magnetic dipole-dipole interaction, the exchange interaction and the anisotropy effects. An improved 

method of obtaining the dispersion relation as well as the values’ spectra of the frequencies and wavenumbers for the 

investigated spin waves – the method based on using the Bloch-type solutions of the Landau-Lifshitz equation for the spin 

waves together with the Born–von Karman boundary conditions – is proposed. Exploitation of the above-mentioned method 

essentially extends the area of application of the obtained results compared to the previous paper. Newly obtained spectral 

characteristics are shown to exhibit crystal-type band structure with band gaps. The wave vector component that correspond 

to the wave propagating orthogonally to the film plane is shown to have narrow allowed bands, so its values' spectrum is 

near discrete. 

Keywords— Magnetic dynamics, Spin wave, Dipole-exchange theory, Ferromagnetic antidot, Magnonic crystal. 

I. INTRODUCTION 

Spin waves in nanosystems become an actual and promising topic of research because of their numerous applications - both 

current and prospective - in different fields of technology. These applications include mostly new devices for data storage, 

transfer and processing [1-4]. Such applications require precise theoretical models of excitation and propagation of spin 

waves in nanosystems of different configurations, thus causing these models to be extensively developed recently. 

Prospective materials for applications in spin-wave technologies include, in particular, magnonic crystals [5,6] - composite 

materials whose magnetic properties change periodically along one, two or three directions. They are known to exhibit 

unique magnetic properties [5] making them prospective for creating novel magnonic devices [5,6]. As a result, spin waves 

in magnonic crystals of different configurations are studied extensively, both theoretically and experimentally [7-9]. 

Because of the parameters' periodicity, magnonic crystals often exhibit properties similar to those observed in crystals, such 

as appearance of crystal-like band structure in the spin waves' spectrum (see, e.g., [8]). Therefore, elements of crystals theory 

can be used in a theory of spin waves in such nanosystems in order to refine corresponding models and, therefore, obtain 

more precise results. 

The paper extends theoretical study of dipole-exchange spin waves in a two-dimensional magnonic crystal (a thin 

ferromagnetic film with a two-dimensional periodic system of circular antidots) started by the author in the previous paper 

[10].The magnetic dipole-dipole interaction, the exchange interaction and the anisotropy effects are considered. Unlike in the 

previous paper, periodicity of the system is taking into account by applying the Bloch theorem and using the Bloch-type 

solutions of the Landau-Lifshitz equations for a spin wave together with Born–von Karman boundary condition. As a result, 

a refined dispersion relation and the wave vector components' spectrum of such waves is obtained. Analysis shows that a 

crystal-type band structure with band gaps appears in the resulting spectral characteristics. 
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II. PROBLEM STATEMENT: MODEL DESCRIPTION 

Let us consider a ferromagnetic film with the thickness l composed of a uniaxial ferromagnet of the "easy axis" type 

containing a periodic two-dimensional system of identical circular antidots with the distances between the centers of 

neighboring antidots a and the radii R (see Fig. 1). Let us denote the ferromagnet parameters as follows: the exchange 

constant α, the uniaxial anisotropy parameter β (is considered constant), the gyromagnetic ratio γ (is considered constant). 

The easy magnetization axis of the ferromagnet (and hence the ground state magnetization 
0M


, which is considered constant 

in the entire volume of the film) is directed orthogonally to the film and the Oz axis is chosen in this direction. The external 

magnetic field  eH0


 is assumed to be homogeneous and directed along the Oz axis.  

If the film is thin enough or the outer field is strong enough (l~lex where lex is the exchange length of the ferromagnet, l<<R 

or 
0

)(

0 4 MH e  ), the ground state magnetization vector has an approximately uniform distribution, and the internal 

magnetic field of the film is also directed along the Oz axis and is approximately equal to the field inside a continuous film 

(without antidots) subjected to the same external magnetic field: 
0

)(

0

)(

0 4 MHH ei


 . (To be exact, the condition of the 

film thinness compared to the characteristic size of the antidot system should include not the antidot radius R, but the 

minimal distance d=2(a –R) between the antidots: l<<d=2(a –R)). 

 

FIGURE 1: The considered antidot system. 

Note that such system can be considered as an example of a two-dimensional magnonic crystal as its magnetic properties 

change periodically along 2 dimensions. 

Let us consider a spin wave propagating in the above-described film and take into account both the magnetic dipole-dipole 

and exchange interaction as well as the anisotropy in the Landau-Lifshitz equation. The wave is considered linear so that the 

magnetization m


 and the magnetic field h


 of the wave are small perturbations of the overall magnetization M


 and the 

magnetic field inside the ferromagnet 
 iH


, correspondingly. Thus, the relations 

0Mm


 , )(

0

iHh


  fulfill, where 

)(

0

iH


 is the ground state internal magnetic field (so that mMM


 0
, 

    hHH ii


 0
). 

Let us note that the spin wave pattern in the system depends significantly on the minimum distance between adjacent antidots 

d. From the properties of the exchange length lex implies the fact that when d< lex, the studied system actually splits into a 

system of separate magnetic quantum dots and the spin wave propagates in directions orthogonal to vectors that connect 

neighboring antidots and in narrow adjacent sectors. Let us investigate spin waves in the system for the case d>> lex, so that 

these spin waves can be described similarly to spin waves in a continuous film. The task of the paper is to find the dispersion 

relation, the wavenumber values’ spectrum and the frequency values' spectrum for the above-described spin waves.  

A linearized Landau-Lifshitz equation (see, e.g., [11]) for such film together with the Maxwell equation mdivhdiv


 4  

in a magnetostatic approximation (see, e.g., [11]) – where h


 is an internal magnetic field perturbation and m


 is a 

magnetization perturbation – forms a system of equations in which the spin wave magnetization vector can be eliminated. 

Therefore, the following equation for the amplitude Φ0 of the magnetic potential Φ (so that Φ= Φ0exp(iωt)) can be obtained:  
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

     (1) 

here ω is the spin wave frequency (see, e.g., [10]). 

III. SPECTRAL CHARACTERISTICS OF THE SPIN WAVES 

First, similarly to [10] let us seek a solution of (1) that corresponds to the system symmetry. After choosing the orthogonal 

(in-plane) part of the solution in the form of a combination of the Bessel and Neumann functions and considering the system 

symmetry relative to the rotation transformation one can obtain:  

               

nj

jjnnjnnsym inrrkNBrrkJAzkzkti
,

0404| |2| |1 4expsincosexp 


    (2) 

here the radius vector r


 lies in the plane normal to 
0M


 (xOy plane), j is the antidot number, θj is the polar angle measured 

from the center of the antidot number j, k and k|| are the wavenumbers that correspond to propagation of the spin wave in the 

plane xOy and in the ortogonal direction, correspondingly, Jn and Nn are the Bessel and Neumann functions of the order n, 

correspondingly, while Γ1, Γ2, An and Bjn are constants. For every wave that enters the superposition (2) (and, therefore, for 

the entire superposition (2)) the Laplace equation   

2

| |

2 kksym
 fulfills. After substituting this solution into the 

equation (1), one can obtain a dispersion relation (presented in [10]). 

Now, let us take advantage of the fact that the considered system possesses space periodicity, so conditions of the Bloch 

theorem formally fulfill for the equation (1). Therefore, its solution can be chosen as a combination of the Bloch-type 

functions for the magnetic potential. Such solution can be written in the form      rtitr


0exp,    with the following 

expression for Φ0: 

                 rkFrkizkzkrzkzk per


,'expsincos,sincos | |2| |10| |2| |10     (3) 

where 
k


 and 'k


 are in-plane wave vectors (
k


corresponds to the symmetrical solution),  is a total in-plane wavenumber 

and the relation ΔΦ0= –2Φ0 (where the operator 2222 // yx 
) fulfills. The function Fper has in-plane 

periodicity - but nevertheless, substitution of Φ0 into the relation ΔΦ0= –2Φ0 shows that the function Fper doesn't 

coincide with the corresponding function in (2). After substituting (3) into (2) one can obtain the following dispersion 

relation: 

   















2

2

| |

242

0

~

4
~

4
~~

22
k

kkkM


       (4) 

where   0

)(

0 /
~

MH i  (so for the considered thin film   0

)(

000

)(

0 44
~

MHMMH ee   ) and the 

total wavenumber 2

| |

22 kk   . The dispersion relation is expressed by a formula similar to the one obtained in [10], 

however, an expression for the total wavenumber k that enters these dispersion relations differ and moreover, the parameter  

that enters k depends on both 
k


 and 'k


 for Bloch-type solutions, thus making these dispersion relations essentially 

different. 

As the wave vector of the investigated spin waves has both longitudinal and orthogonal components, for more complete 

specification of the spin wave pattern the dispersion relation (4) must be supplemented by either a spectrum of values of at 

least one of these components or a relation between them. The spectrum of values of the longitudinal wave number can be 

found from the condition of limited film thickness, of the orthogonal wave number - either from the periodicity feature of the 

system or from boundary conditions.  

The cylindrical functions that enter (2) are not periodical, but they asymptotically tend to periodical functions when the 

distance to the chosen central antidot increases (see [10]). As the considered system possess the translational symmetry, the 

resulting harmonical functions' phase change on the translation period of the system should be a multiple of 2π. The same 

considerations can be applied to the symmetrical part of the Bloch-type solutions (3) regardless of the exact form of the 
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function Fper. Therefore, the "symmetrical" orthogonal wavenumber k should have the same form as the single orthogonal 

wavenumber found in [10]: 

 
a

s
sk

2


            (5) 

with }0{s  being a number of the orthogonal mode. As the film is considered large (in Ox and Oy directions) and the 

total antidot number is considered big, spectral characteristics of the spin wave should not be sensitive to the exact form of 

boundary conditions, so Born–von Karman boundary conditions from the crystal electronic band theory can be used. Let us 

choose the ferromagnetic film to be a rectangle whose sides are parallel to the Ox and Oy axes and contain N1 antidots along 

the Ox axis, N2 antidots along the Oy axis. Then, using two-dimensional Born–von Karman boundary conditions at the 

boundaries of the rectangle, one can obtain 
yx eq

aN
eq

aN
k


2

2

1

1

22
'




, where q1 and q2 are arbitrary integers. To obtain the 

total in-plane wavenumber , let us expand the function Fper into the Fourier series:    



 

K
Ksym rKiArF





exp , where 

yx ep
a

ep
a

K


21

22 


 are the reciprocal lattice vectors (p1, p2 are arbitrary integers). After substituting Fper in this form 

into the ΔΦ0= –2Φ0 one can obtain the expression known from the theory of crystal solids  22 '  kK


 . Therefore, 

the sought spectrum of values of can be written as follows: 
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After applying the standard magnetic boundary conditions together with the magnetic potential continuity condition (that 

should be applied twice - on the film boundary and on the antidots' boundaries) and substituting the solutions of the Laplace 

equations for the magnetic potential outside the film and inside the antidots, after some transformations one can obtain 

=k||tg(k||l/2), Γ1Γ2=0. Therefore, the spin wave frequencies' spectrum is determined implicitly by the following system of 

conditions: 
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    (7) 

Let us note that band gaps (associated with the diffraction of the wave on the lattice of antidots) may appear in the 

frequencies' spectrum of the investigated spin waves. Such gaps may appear near the edges of the Brillouin zones (
  Kk


'

), so in these areas of the spectrum the dispersion relation (4) and the spin wave frequencies' spectrum (7) should be refined. 

For this, let us note that the magnetic potential both inside the film and inside an antidot satisfy the equation 

       0

2

| |

22

0 rfk R


 (the function      

j

jR rrRrf 0


  takes into account the periodic structure 

of the antidots, here χ is the Heaviside function) that is mathematically similar to the two - dimensional Schrödinger equation 

  )(
2

2   rUE
m 


 for the electron (with the energy E) wave function  in a two - dimensional periodic crystal 
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lattice potential  rU


 after the following replacements: 
m

E
2

22
 ,  

 
 


 rf

m

k
rU R



2

2

| |

22 
. In the first zone of k|| 

values - where k|| is less than or of the same order with  - a simple model of the theory of crystal solids can be used to take 

into account this diffraction. Namely, let us make the following replacement (taken from the above-mentioned theory) in the 

dispersion relation (4) near the boundary of the Brillouin zone: 
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 with the substitution of the 

constant value  2/| |
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2 lktgk . After some transformations, one can obtain the following expressions in the vicinity of 

the edge of the first Brillouin zone: 
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For the higher Brillouin zones, the spin wave spectrum near the zones edge can be described by the same relations (9), (10) 

but with another values of 
2,1K


 that correspond to the investigated zone. 

IV. DISCUSSION 

Let us make a graphical representation of the obtained results in the absence of an external magnetic field. Dependence of the 

spin wave frequency on the longitudinal wave number k|| (that implies from the dispersion relation (4) for the Bloch solution 

taking into account the relation =k||tg(k||l/2)) for l=10 nm is given on the Fig. 2. Dependence of the spin wave frequency on 

the in-plane wave vector (that implies from the refined relations (9), (10)) for l=10 nm, a=50 nm, R=20 nm (so that the value 

  ~2,1KB


0.4) for the first interval of values of k|| (according to the Fig. 2) and the analogues of the first and the second 

Brillouin zones are shown on the Fig. 3. Both graphs are plotted for typical values of the ferromagnet parameters (presented 

in the captions). Numerical estimations for these nanosystem parameters show that the band gap for the boundaries of the 

first Brillouin zone is approximately 21010 Hz. The width of the allowed bands is of the same order of magnitude (31010 

Hz). 

As it can be seen from the graphs, the values' spectrum of k|| contains band gaps. They correspond to the values of k|| for 

which the boundary conditions for the magnetization cannot be satisfied. They are not a classic analogue of the Brillouin 

band gaps. Their presence causes the values' spectrum of k|| to be near discrete one-dimensional   lppk 2| |   (with 
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}0{p  being a number of the longitudinal mode). As it can be seen from the graph, this approximate discreteness 

becomes more pronounced with increasing number of the longitudinal mode (branches of the dependence ω(k||)). On the 

other hand, band gaps in the dependence ω( 'k


) are analogous to the Brillouin band gaps of crystal solids theory. The band 

gap becomes significant starting from the second longitudinal mode of the dependence ω(k||), and the spin wave frequencies' 

spectrum becomes a set of narrow bands. For the first branch, however, one can use the spectrum (7). 

 

FIGURE 2: Dependence of the spin wave frequency on the longitudinal wavenumber k|| for the following 

nanosystem parameters: =10
-12

 cm
-2

, =1, =10
5
 Hz/Gs, M0=10

3
 Gs and l=10 nm. 

 

FIGURE 3. Dependence of the spin wave frequency on the in-plane wave vector 'k


 for the first branch of the 

dependence shown on the Fig.2 and the following nanosystem parameters: =10
-12

 cm
-2

, =1, =10
5
 Hz/Gs, M0=10

3
 Gs, 

l=10 nm, a=50 nm and R=20 nm. The area represented on the graph corresponds to analogues of the first and the 

second Brillouin zones. 

V. CONCLUSION 

Therefore, the paper extends the study of the dipole-exchange linear spin waves in a thin ferromagnetic film with a two-

dimensional periodic system of identical circular antidots started by the author in the previous paper [10]. The film is 

assumed to be composed of the uniaxial "easy axis"-type ferromagnet, with the axis of easy magnetization directed 

orthogonally to the film plane. For such waves, the differential equation for the magnetic potential in the magnetostatic 

approximation is written. The equation is solved for the case when either the external magnetic field is strong enough or the 

film is thin enough (l<<2(a–R)) to ignore the inhomogeneity of the equilibrium magnetization and magnetic field - and, 

additionally, the antidots are far enough from each other, so the minimum distance between them is much bigger than the 

exchange length. 
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Unlike the previous paper [10], the solution of the Landau-Lifshitz equations for the above-described spin wave in this paper 

is sought in the form of a two-dimensional function of Bloch type (for the in-plane wave propagation). For such solution, the 

dispersion relation and the relation between planar and longitudinal wavenumbers are obtained. Then, the crystal solid state 

formalism is used to obtain the values' spectra of the wave vector components and (after combining with the above-

mentioned relations) of the spin waves' frequencies. The obtained results are refined near the edge of the Brillouin zones 

using the electronic band theory.  

It is shown that the values' spectrum of the longitudinal wave numbers has band gaps and is near discrete. It is also shown 

that a band structure - which is analogous to the electronic band structure of a crystal solid - is inherent for the investigated 

spin waves. 
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