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Each article in this issue provides an example of a concrete industrial application or a case study of the 

presented methodology to amplify the impact of the contribution. We are very thankful to everybody within 

that community who supported the idea of creating a new Research with IJOER. We are certain that this 

issue will be followed by many others, reporting new developments in the Engineering and Science field. 

This issue would not have been possible without the great support of the Reviewer, Editorial Board 

members and also with our Advisory Board Members, and we would like to express our sincere thanks to 

all of them. We would also like to express our gratitude to the editorial staff of AD Publications, who 

supported us at every stage of the project. It is our hope that this fine collection of articles will be a valuable 

resource for IJOER readers and will stimulate further research into the vibrant area of Engineering and 

Science Research. 
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Abstract— In recent day modern power, system and industrial application witnessed great interest by engineering and 

scientist. Converters used with these applications also developed leading to improve efficiency, power management, cost, 

reliability and others. Bidirectional dc-dc converters are the base for all electric systems, which depends on dc power flow 

through networks or grids. In this work different kind of bidirectional converter are introduce, As well as the operation 

principle with limitation will propose. This review include several parts covered converter topology, operations, application, 

system storage units and control strategy.  

Keywords— dc-dc converter, Bidirectional converter, renewable energy PV array, electric vehicle. 

I. INTRODUCTION 

Recently the high rates of pollution and carbon emissions resulting from the generation of electrical energy using organic 

sources have led to thinking about relying on other sources. On the other hand, the urban expansion of cities and the wide 

distances between them make the process of delivering electricity to users more difficult and more expensive, Thus, researchers 

and engineers thought about finding other means of generation. Renewable energy sources such as water energy, geothermal 

energy, wind energy, and solar energy, represented the most important of these sustainable sources, and environmentally 

friendly.[1][2][3]][10]. Photo voltaic cells (pv) considered as the major and simplest mean use for generating electricity, it 

convert the solar wave to electric energy during the day, supplying customers with excess energy, through which they charge 

suitable batteries as a storage unit for use during the night as back up sources. Photovoltaic can deliver power to device or 

customer through dc –dc buck –boost, or buck converters to control and regulate both voltage and current feeding dc load. This 

load may be fraction to hundred watt for example motors, light, heating etc...[3][9].that it is innovative, it is used in the section 

"Research Method" to describe the step of research and used in the section "Results and Discussion" to support the analysis of 

the results [3]. Another suggestion of speed control of dc motor presented by Tanjim Tarannum depends on D ANFIS 

controller, by proposed the model he got an efficient speed regulation by increasing the rise time and reduced the peak of ripple 

[11]. Ujjwal Kumar present regulation of separately excited dc motor using different method of Tuning Conventional 

Controllers such as PI, and Z-N method, by using both methods gives a good regulation performance for motor but the second 

considered the better due to its fast response, superior dynamic reaction and minimum overshoot [12]. 

II. PHOTOVOLTAIC ARRAYS 

Photovoltaic system is a system that change the sunlight into electricity using many of solar Cells, each cell consist of 

semiconductor switches. The electrical energy generated from a single Photovoltaic cell may be sufficient to supply a small 

load, such as a simple lighting element or a voltage regulator for a specific circuit, but in loads with a high demand for power, 

this cell is unable to supply enough energy, so many of these cells are assembled in what is called a module to be later in arrays. 

Photovoltaic, which includes a group of WHICH produces a few tens or hundreds of watts, Fig (1) shown the construction of 

Photovoltaic array [1] [8] [9]. 

Received: 24 December 2024/ Revised: 07 January 2025/ Accepted: 16 January 2025/ Published: 31-01-2025 
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FIGURE 1: Construction of photo voltaic 

2.1 Characteristic of solar cell: 

Understanding the work of a photocell requires studying its equivalent circuit and its properties, as shown in Fig 2.(a, b, c), 

which shows the relationship between both voltage and current and the greatest power resulting that can be obtained due to 

them, which is called maximum power point ( MPP). [3][5][9] 

 

 

(a) (b) 

 
(c) 

FIGURE 2: (a) Equivalent circuit of solar cell, (b) V-I characteristics of solar cell, (c) MPP characteristic 

[3][5][9] 

V: Isvoltage across cell terminal  

Voc: is open circuit voltage  

Isc: Short circuit current  

I: is diode current  

Iph: Photovoltaic current  

III. DC-DC BUCK CONVERTER 

It is defines power electronics converters that chopping dc power wave. It can be consider as small power supply for light load, 

this type of converter based on power semiconductor switches that characterize with rapid response at normal state operation 

condition. Buck converter includes transistor as on / off switches functioning at high switching frequency, additionally dc 

power supply as input sources then control scheme to regulate the operation state.[1] [5]. 
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FIGURE 3: Shown the dc-dc buck converter scheme 

Buck converter can describe using equations written as shown [3] [5] [6] 

 Vo= D*Vin             (1)  

Vo is output voltage of converter  

Vin is input voltage supplied by any source across converter  

D=ton/T             (2)  

D is duty cycle  

ton is on time operation of converter  

T is period of operation  

ΔVC=Vo (Vin–Vo)/(8LC f2 Vin)           (3)  

ΔVC is ripple in voltage  

L is circuit inductance  

C is circuit capacitance  

f is switching frequency of transistor (switch) 

IV. SEPARATELY EXCITED DC MOTOR 

Direct current (DC) motors are common type of electrical machine, they used in different field of industrial, transportation, 

traction, robotics etc.... These motors characterized by simple construction, easy control. Different type of dc motors can be 

classified depending on field winding connection such as self and separately excited motor. The later kind is used in this work. 

As it an electrical machine dc motor can realized by mathematical equations in (4 and 5) describing itself to present its 

performance [7] 

𝐿𝑎 𝑑𝑖/𝑑𝑡 =  −𝑖𝑎 𝑅𝑎– 𝐾𝑤 + 𝑣𝑎          (4)  

𝐽
𝑑𝑤

𝑑𝑡 
=  −𝐾𝑖𝑎𝑅𝑎 − 𝐵𝑊𝑇𝐿            (5)  

Where 

𝒗𝒂 : Armature voltage  

𝑖𝑎 : Armature current  

𝑇𝐿 : Load torque 

𝐽: Motor inertia  

𝐵: Damping factor  

𝐿𝑎: Armature inductance  
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V. SYSTEM MODEL AND SIMULATION 

Using Matlab Simulink the suggested case studied in this work-introduced, firstly the system consist of Photovoltaic array as 

a power supply feeding dc-dc buck converter. The buck converter operates as a voltage chopper to regulate the output 

voltage from the photovoltaic (PV) array before delivering it to the separately excited DC motor. The proposed system 

built without any control system, Just for examine the operate of PV array how to generate the voltage that feeds buck converter. 

Fig.4. shows the studied system. 

 
FIGURE 4: Whole system, PV array, buck converter feeding separately excited dc motor without controller 

VI. SIMULATION RESULTS 

The operation principle of this circuit described as follow. A lot of number of photo voltaic cell connected together as an array, 

they collect the energy from solar wave then converting it to electrical energy. To supply this power to motor (load) it passes 

through power electronic device (IGBT) that operates as switch controlling the power flow depending on the duty cycle. The 

latter represent the signal applied on transistor gate through specific time called ton, then voltage will be chopped according to 

the way used for firing gate. The new output voltage waveform delivered from switch then is feeding a separately excited dc 

motor riding light load. The following figures describe the system performance without controller 

At beginning, the first result tested was to achieve the performance operation characteristic of solar pv array (V-I) and (P-V) 

in figure (5). 

 
FIGURE 5: Characteristic of PV Array 

6.1 Operation without controller for system: 

The following results describe the motor performance of motor under uncontrolled status for normal condition of operation, 

Fig.6 shows the motor speed at uncontrolled status. 
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FIGURE 6: Motor speed (RPM) of motor without controller 

 
FIGURE 7:  Motor torque (N.M) of motor without controller 

 
Figure 8: Motor armature current (A) of motor without controller 
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6.2 Operation with controller for system: 

Adding control circuit to the system represent next step for building the whole structure needed to regulate the motor speed. 

Proportional –Integral-derivative (PID) considered the common methods used in control system. This controller characterized 

by simplicity in operation, additionally no need to understanding the control theory deeply. Figure 5 shown the whole scheme 

of system controller [10]. 

 

FIGURE 9: Scheme of system controller 

In addition, PI offers a minimum value of steady state error (SSE) of system adding to eliminating the offset SSE leading to 

reach it at zero value. PI can describe its operation using the following equation 

𝑼(𝒕) =  (𝒆(𝒕) + ∫ 𝒆(𝒕) 𝒅𝒕) (6)  

𝑼(𝒕) = 𝑲𝒑 ∗ 𝒆(𝒕) + 𝑲𝒊+∫ 𝒆(𝒕)𝒅𝒕) (7)  

ki: Refers to integral gain constant.  

kp: refers to proportional gain constant 

*The higher proportional gain the faster system response 

The designed control scheme connected to the suggested system to adjust the buck converter output to achieve target speed at 

sudden load change as shown in figure (10)  

In fig.11, system performance will be presented at case when PID controller connected to buck converter for adjusting its 

operation duties for abnormal status. 

FIGURE 10: Whole system, PV array, buck converter feeding separately excited dc motor with controller 
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FIGURE 11: Motor speed (RPM) of motor with PI controller 

Figure (12) and (13) show the torque and armature current of motor with controller circuit. 

 

FIGURE 12: Motor torque (N.M) of motor with controller 

 
FIGURE 13: Motor armature current (A) of motor with controller 
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VII. CONCLUSION 

In this work, an examination of proportional –integral (PI) controller presented. It shows its effects on system performance of 

separately excited dc motor speed fed from photo voltaic (PV). The search pointed to show the effect of controller on speed 

regulation at sudden change of load. Where dc motor fed from pv its operate normally according to operation principle of 

motor. Controller established strength in keeping motor speed under changing load conditions, as well as minimizing the steady 

state error and over shoot for the targeted value. Using closed loop controller successfully tracked the required speed. In 

summery this work donate in mechatronics and renewable energy systems as a sustainable energy source and automation 

process. 
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Abstract— In response to the growing prevalence of multimodal false information on social media platforms, traditional 

single-modal models and basic feature concatenation approaches in multimodal models exhibit limitations in effectively 

detecting fake news. Therefore, this paper presents a multimodal approach for detecting fake news, integrating a multimodal 

attention mechanism known as MAMFND (Multimodal Attention Mechanism for Fake News Detection). Initially, we utilize 

pretrained BERT (Bidirectional Encoder Representations from Transformers) and Swin Transformer (Swin Transformer: 

Hierarchical Vision Transformer using Shifted Windows) models to extract features from text and images, respectively. 

Subsequently, we introduce a fusion strategy based on attention mechanisms to integrate textual and visual features. To better 

capture the intrinsic relationships between text and images, we also input the textual features into a BiLSTM (Bi-directional 

Long Short-Term Memory) model for temporal sequence modeling, followed by an additional attention-based fusion with visual 

features. Finally, we extract information from the two rounds of feature fusion and input it into a fake news detection model 

for classification. Experimental results demonstrate that, on the Weibo and CCF competition datasets, the MAMFND model 

achieved average accuracy improvements of approximately 9.4% and 5.6%, respectively, compared to baseline models. 

Keywords— Fake News Detection, Multimodal Features Fusion, Multimodal Attention Mechanism, Deep learning. 

I. INTRODUCTION 

Social media serves as a vital daily information source for the public, thereby making fake news detection a crucial task for 

enhancing the credibility of disseminated information. The continuous proliferation of fake news on social media poses a 

significant societal concern, underscoring the pressing need for effective detection methods. The spread of unverified and 

deceptive information on social media, commonly referred to as online fake news, is characterized by falsehood, exaggeration, 

provocation, and malicious intent. This pervasive issue extends beyond the mere disruption of social order, also resulting in 

considerable harm to individuals, businesses, and governments. 

The onset of the COVID-19 pandemic witnessed an alarming surge in the spread of fake news across social media platforms. 

Amid this crisis, individuals and entities spread unsubstantiated claims, such as the efficacy of specific drugs in curing COVID-

19. These claims prompted many to procure and use these drugs without scientific validation, sometimes leading to delays in 

seeking proper medical treatment. Moreover, false assertions circulated, suggesting that the novel coronavirus could be 

transmitted through the air or that consuming highly alcoholic disinfectants could prevent infection. These misleading 

narratives not only lacked a factual and scientific basis but also posed significant threats to public safety. 

However, existing methods that rely on manual labor or single modalities cannot effectively detect fake news in multimodal 

data on social media. In the digital age, the sheer volume of information has reached an unprecedented scale, rendering accurate 

fake news detection through manual identification and single-modal methods increasingly unfeasible. Consequently, there is 

an urgent imperative to develop more effective multimodal models to combat the proliferation of misinformation in this 

complex landscape 

Many studies have made significant progress in the field of fake news detection using multimodal approaches that combine 

text and images. For example, Yaqing et al.[1] employed the Text-CNN (Convolutional Neural Networks for Sentence 

Classification) model to extract text features and the VGG19 (Visual Geometry Group Network 19) model to extract image 
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features, followed by a simple concatenation of these multimodal characteristics applied to fake news detection. Similarly, 

Qipeng et al.[2] enhanced the model's semantic modeling by recognizing visual entities and text. They utilized the ER-NIE 

(Enhanced Representation through Knowledge Integration) model to model text features and combined the VGG19 model for 

image feature extraction, along with incorporating recognized entities and text for semantic enrichment. Likewise, Mengjia et 

al.[3] utilized BiLSTM models and the VGG19 model to separately extract text and image features, and then concatenated 

these multimodal features for fake news detection. In addition, the MVAE[4] model introduced a variational autoencoder, 

learning latent representations of multimodal features by feeding concatenated features into an autoencoder. The MSRD[5] 

model also considered textual information embedded in images, and after concatenating features from both modalities, 

reparameterized the multimodal representation by sampling random variables. However, these studies largely relied on the 

simple concatenation of multimodal features and did not fully exploit text features to understand image features, or they 

unilaterally applied image-based text attention mechanisms, thereby failing to harness the full potential of text features. 

In response to the aforementioned challenges in fake news detection within the realm of social media, this paper introduces an 

approach that incorporates a multimodal attention mechanism. This approach is designed to address the complexities arising 

from the vast and diverse nature of online content. To achieve this, we initially employ pretrained BERT models for the 

extraction of textual features and utilize pretrained Swin Transformer models for the extraction of image features. This strategy 

leverages the strengths of these pretrained models and incorporates multimodal attention mechanisms into image feature 

extraction, thereby compensating for the limitations associated with training data scarcity and producing more effective 

representations for fake news detection. 

Furthermore, we incorporate attention mechanism fusion both before and after the integration of text features into a 

Bidirectional Long Short-Term Memory (BiLSTM) model. The former facilitates the amalgamation of latent information from 

both images and text, while the latter enhances the model's capacity to capture the nuanced temporal aspects of fake news. This 

is particularly important because the BiLSTM model excels in modeling the sequential nature of textual data. Ultimately, the 

resultant multimodal features are channeled into a dedicated fake news detection model for classification. 

In this study, we utilized BERT and Swin Transformer models for feature extraction from different modalities. This approach 

not only enables a more precise capture of features representing text and images but also harnesses dual Transformer encodings, 

thereby enhancing the model's overall performance. Additionally, we introduced an attention mechanism to effectively fuse 

the underlying semantic relationships between text and images, mitigating information loss that might occur with simple feature 

concatenation. Furthermore, by introducing text features into the BiLSTM model and applying an additional fusion step, we 

further strengthen the modeling of the intrinsic semantics of fake news. 

The primary innovative aspects of this research are presented below: 

1.Utilizing pretrained BERT and Swin Transformer models for feature extraction, thereby enhancing the efficiency of the 

process and enabling the seamless integration of features derived from diverse modalities. 

2.Introducing an attention mechanism to amalgamate original text features with those extracted by the BiLSTM model, thereby 

enabling the model to more effectively uncover and exploit the inherent relationships between raw text and features. 

3.The resulting multimodal features comprise a combination of features extracted by the BERT and Swin Transformer models, 

as well as multimodal attention-driven fusion features, which collectively facilitate the enhanced preservation and utilization 

of information gleaned by the feature extractors. 

II. RELATED WORK 

Fake news detection is a task that focuses on analyzing multimedia data, including text, images, and videos, to determine the 

authenticity and credibility of information, thereby distinguishing between real and fake news. Current research in fake news 

detection can be categorized into two main approaches: single-modal and multimodal. 

2.1 Single Modal Approaches: 

Single-modal fake news detection methods rely solely on text data to discern fake news. These methods typically employ 

natural language processing techniques, including sentiment analysis, entity recognition, and keyword extraction.  

For example, Liu et al.[6] used the hidden layers of convolutional neural networks for fake news detection, while Qi et al.[7] 

fused frequency domain and spatial domain information into a CNN (Convolutional Neural Network) model. Song Yurong et 

al.[8] considered events and their relationships and proposed a fake news detection model based on graph convolutional 
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networks. Latif et al.[9] identified key features of text through principal component analysis and then utilized BiLSTM for fake 

news identification. Roshan et al.[10] leveraged text feature extraction techniques such as TF-IDF (Term Frequency-Inverse 

Document Frequency) and hash vectorizers. Zhang et al.[11] identified connections by establishing an internal relationship 

model between circular content and online communities sharing the same topic. The NER-SA[12] combined natural language 

processing and named entity recognition to identify fake information. Yuan et al.[13] presented an interpretable fake news 

analysis method based on stance information. The EBGCN[14] model adaptively controlled message passing based on prior 

beliefs within the observation graph, replacing fixed edge weights in the propagation graph. Song et al. [26] introduced a 

method for detecting fake news based on a dynamic propagation graph to capture missing dynamic propagation information in 

static networks and classify fake news. Truică et al.[15] proposed a novel document embedding method for fake news detection. 

Li Yuechen et al.[16] combined the BERT model with the RCNN model for fake news detection, while Zhou Lina et al.[17] 

constructed convolutional neural networks for food safety fake news detection, considering variations across different domains. 

These studies provide valuable insights and techniques that contribute to the broader understanding of the challenges and 

advancements in the domain of false news detection and information verification. Although these single-modal models are 

research significant and perform well in testing, they fail to fully utilize information from the image modality in fake news, 

thus presenting limitations. 

2.2 Multimodal Approaches: 

With the increasing incorporation of image content in fake news, the use of multimodal techniques for fake news detection has 

gained momentum. Numerous studies have employed various methods and models to extract features from the image modality 

and combine them with diverse text features for fake news detection. For example, Cao Juan et al. [31] used an LSTM model 

for text features extraction and VGG19 for visual characteristic extraction, followed by the fusion of information from these 

two modalities for fake news detection. Meng Jie et al.[18] thoroughly considered the relationship between text and image 

features, employing attention mechanisms for both inter-modal and intra-modal fusion. The MFAN model, as presented in[19], 

notably addresses the crucial factors of complementarity and alignment among various modalities. By effectively integrating 

images, vision, and social commentary, it achieves a superior level of performance. The Att-MFNN model[20] extracted 

sentiment features from text, fused them with text features extracted by the BERT model and image features, and used them 

for fake news detection. Liu et al.[21] integrated image description information into the text to bridge the semantic gap between 

text and images. The MSRD model[5] fully considered textual information embedded in images, concatenated features from 

both modalities, and reparameterized the multimodal representation through sampling random variables. The EANN[1] model 

encoded text and image features separately using the Text-CNN model and VGG19 model and then concatenated the obtained 

features for fake news detection. The MCAN model[22] designed multiple co-attention modules to combine frequency domain 

and spatial domain information in image features for fake news detection. These multimodal models, which take image 

information into account, have performed remarkably well and outperformed single-modal models. 

However, these approaches also have certain limitations. Most of them simply concatenate features extracted from the two 

modalities without deeply considering the underlying connections between text and images. Additionally, in the extraction of 

image features, most models use convolutional neural networks (CNNs) without considering the advantages of extracting 

image features on the basis of the Transformer framework. Recently, the Swin Transformer model has demonstrated 

outstanding performance in image feature extraction and image classification, particularly achieving remarkable results in the 

field of multimodal classification. Therefore, this paper summarizes the aforementioned experiences, overcomes some of the 

limitations in previous studies, and proposes a multimodal attention mechanism fusion-based fake news detection method. 

III. THE PROPOSED MODEL 

In this paper, we propose a multimodal fake news detection model that integrates textual and visual information. The model 

utilizes the BERT model to extract textual features and the Swin Transformer model to extract image features. An attention 

mechanism is employed to fuse features from both modalities. The entire model comprises three main components (as 

illustrated in Fig.1): a multimodal feature extractor, a multimodal attention-based feature fusion module, and a multimodal 

fake news classifier. 
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FIGURE 1: Overall procedure of proposed model 

First, the multimodal feature extractor employs pretrained BERT and Swin Transformer models to extract features from textual 

and image data, respectively. These pretrained models facilitate enhanced and expedited understanding of both textual and 

visual information. Second, the multimodal attention-based feature fusion module is responsible for merging the features 

extracted from both modalities. During this process, the textual features are input into a BiLSTM model to capture temporal 

relationships among the features, thereby enhancing the fusion of latent connections between different modalities. Finally, the 

multimodal fake news classifier receives the processed features and performs fake news classification. The specific operations 

are described as follows. 

3.1 Multimodal Feature Extractors: 

The extractors for multimodal features comprise both text and image feature extractors. To better capture key semantic 

information within text and address issues such as polysemy and parallel training, this study adopts the BERT model, based on 

the Transformer framework, as the text feature extractor. BERT is a bidirectional pre-trained language model based on the 

Transformer architecture. Its core concept involves leveraging a substantial amount of unlabeled text data for pre-training to 

acquire rich language representations. Unlike previous unidirectional pre-training methods, BERT achieves robust natural 

language modeling through innovative techniques, including bidirectional masking, the Transformer architecture, unsupervised 

pre-training, Masked Language Modeling (MLM) tasks, and Next Sentence Prediction (NSP) tasks. 

Initially, the Bert model converts input text into corresponding vector representations. The 𝑖 -th word in the text can be 

represented as 𝑒𝑖 ∈ 𝑅𝑘 , where 𝑘 has a default dimension for feature extraction, typically set at 768. Consequently, text of length 

𝑛 can be transformed into the following representation: 

 𝑒0:𝑛 = [𝑒0, 𝑒1, . . . , 𝑒𝑛] (1) 

Where 𝑒0 is the special symbol [𝐶𝐿𝑆] in front of each text, 𝑒1:𝑛 stands for the feature vector corresponding to the text. 

After undergoing training, the pre-trained Bert model can be referred to as 𝑓𝑏𝑒𝑟𝑡 . After converting the text to vector form and 

inputting it into 𝑓𝑏𝑒𝑟𝑡 , the model can reconstruct each token of word and calculate it as follows: 

𝑡0:𝑛 = 𝑓𝑏𝑒𝑟𝑡(𝑒0:𝑛) (2) 

Where 𝑡0:𝑛 is the output of 𝑒0:𝑛 after passing through the model. 

The presence of fake news in images often includes important details that are misleading. Thus, it becomes crucial to extract 

such features from the images. This has a significant impact on the effectiveness of feature fusion in models. Numerous 

experimental results have demonstrated that the Swin Transformer model has reached remarkable performance within the 

domain of computer vision. Developed by Microsoft Research, this model is a combination of traditional CNNs and 

Transformer architectures, utilizing the latter's powerful modeling able to catch long-distance relationships of dependencies in 

images. Furthermore, the use of pre-trained models can aid in understanding the information present in images. 
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In this study, both the Bert model for text feature extraction and the Swin Transformer model for image feature extraction were 

chosen as Transformer encoders, which facilitate compatibility in subsequent feature fusion. Compared to traditional ViT 

(Vision Transformer) models, the Swin Transformer model offers higher computational efficiency and better image 

representation capabilities. It retains the sensitivity of CNNs to local features while also possessing the strong modeling ability 

of Transformers. (as illustrated in Fig.2): Firstly, the image is partitioned into 56 patches using the patch partition function of 

the model. Each patch then undergoes linear transformation followed by attention mechanisms calculated through conventional 

and sliding windows. Finally, the dimensionality is reduced and the number of features is decreased through fusion and merge 

layers, resulting in the final output of feature representations. 
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FIGURE 2: Overall procedure of Swin Transformer 

The Swin Transformer differs from the traditional Transformer framework in that it employs regular window W-MSA and 

sliding window SW-MSA for attention mechanism computation. (as illustrated in Fig.3): windows are connected by MLP 

layers with activation functions, and residual connections are employed between modules. 
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FIGURE 3: The blocks of Swin Transformer 

The Swin Transformer model employs the local receptive field of convolutional neural networks (CNNs) for attention 

calculation by computing the relationships between each patch within its local window. The formula for calculating the 

window-related quantity is specified as follows: 

𝑍̂𝑙 = 𝑊 −𝑀𝑆𝐴(𝐿𝑁(𝑍𝑙−1)) + 𝑍𝑙−1 

𝑍𝑙 = 𝑀𝐿𝑃(𝐿𝑁(𝑍̂𝑙)) + 𝑍̂𝑙 
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𝑍̂𝑙+1 = 𝑆𝑊 −𝑀𝑆𝐴(𝐿𝑁(𝑍𝑙)) + 𝑍𝑙 

𝑍𝑙+1 = 𝑀𝐿𝑃(𝐿𝑁(𝑍̂𝑙+1)) + 𝑍̂𝑙+1 (3) 

The initial representation of an image is denoted as 𝑣, and after undergoing the effect of the Swin Transformer model, it is 

represented as 𝑓𝑠𝑤𝑖𝑛 . The feature extractor transforms the image into the following representation: 

𝑣0, 𝑣1:49 = 𝑓𝑠𝑤𝑖𝑛(𝑣) (4) 

Where, 𝑣0 ∈ 𝑅𝑘 represents the feature vector employed for classification tasks after passing through the fully connected layer 

of the model, and 𝑣1:49 ∈ 𝑅𝑘 represents the image feature matrix extracted by the model. 

3.2 Multimodal Attention Mechanism based Multimodal Feature Fusion: 

The purpose of the multimodal attention mechanism based multimodal feature fusion module is to fuse the features extracted 

by the feature extractor and explore the potential connections between im-age and text features. In order to achieve deep inter-

action between text information and visual information, this paper calculates the similarity scores between text feature vectors 

and image feature vectors. By using the similarity weights to reconstruct the text features, the final multimodal feature 

representation matrix is obtained by concatenating the two attention mechanisms' fused feature matrices. (as illustrated in 

Fig.4): 

BiLSTM Attention

Attention
Average 
Pooling

Image 
Features

 

FIGURE 4: Overall Fusion Framework 

The multimodal attention mechanism based multimodal feature fusion module proposed in this pa-per is divided into two parts: 

the first part aims to fuse unprocessed text features based on image attention, with the purpose of mining better expressions of 

text features through information from images; the second part involves inputting text features into a BiLSTM model for time 

series modeling and then fusing them again based on image attention. This helps to uncover potential temporal relationships 

between word-level features modeled by Bert and thus better capture text feature matrices through attention mechanisms. The 

specific operations are as follows: 

If the text features are input into a BiLSTM model, they can be represented as 𝑓𝑙𝑠𝑡𝑚. The following mathematical formula can 

be used: 

𝑡𝑚 = 𝑓𝑙𝑠𝑡𝑚(𝑡1:𝑛) (5) 

Where, 𝑡𝑚 ∈ 𝑅𝑛×𝑚 represents the feature matrix obtained after passing through the BiLSTM model, and𝑚 represents the 

dimensionality. 

The formula for fusing the attention mechanism between the textual and modality features is as follows: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇/√𝑑)𝑉 (6) 

Where, 𝑄, 𝐾, and 𝑉 represent the query matrix, key matrix, and value matrix respectively. 𝑑 is a scaling coefficient used to 

prevent the denominator from becoming too large and is typically the dimensionality of the vectors. 

To fuse the attention mechanism across modalities, the following representation can be used: 
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𝛼 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑡1:𝑛𝑊𝑞1 , 𝑣1:49𝑊𝑘1, 𝑣1:49𝑊𝑣1) (7) 

𝛽 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑡𝑚𝑊𝑞2, 𝑣1:49𝑊𝑘2, 𝑣1:49𝑊𝑣2) (8) 

Where, 𝛼, 𝛽 ∈ 𝑅𝑛×𝑘  represents the fused features after fusing modalities, and 𝑊𝑞1 , 𝑊𝑘1, 𝑊𝑣1 , 𝑊𝑞2 , 𝑊𝑘2, 𝑊𝑣2  is the weight 

matrix. To obtain a feature vector that can represent the fused features, average pooling is used for extraction: 

𝛾 = 𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝛼 ⊕ 𝛽) (9) 

Where, 𝛾 ∈ 𝑅1×2𝑘 represents the fused feature matrix after pooling. 

The final multimodal feature representation of the model is: 

𝑠 = 𝑡0 ⊕𝑣0 ⊕ 𝛾̱ (10) 

Where, 𝑡0, 𝑣0 represents the features extracted by the model feature extractor, and 𝛾̱ is a modified version of 𝛾. 

3.3 Multimodal Fake News Detector: 

A multimodal fake news detector takes the final representation of multiple modalities as input, and uses fully connected layers 

and normalization layers to classify fake news into true and false fake news. The normalization formula is as follows: 

𝑦 = 𝜎(𝑤𝑠 + 𝑏) (11) 

Here, 𝑤 is the weight matrix, 𝑏 is the bias, 𝜎 is the normalization function, and 𝑦 is the predicted probability of being fake. 

The cross-entropy function is used as the objective function in this study, with fake news assigned a value of 0 and non-fake 

news assigned a value of 1. The formula is as follows: 

𝐿 = −∑ [𝑦𝑖 𝑙𝑜𝑔 𝑝𝑖 + (1 − 𝑦𝑖) 𝑙𝑜𝑔( 1 − 𝑝𝑖)]
𝑚
𝑖=1  (12) 

IV. EXPERIMENT 

4.1 Experimental Setup: 

In this study, all textual data were tokenized using the Chinese tokenizer provided by BERT. Images underwent scaling and 

normalization procedures to ensure a uniform size of 224×224 pixels. The experimental setup employed a Linux operating 

system, a Tesla P100-PCIE-16GB GPU, and CUDA version 12.0. The model parameters were set as follows: a text sentence 

length with an average value of 120 based on the dataset, a batch size of 12, a learning rate of 0.01, ReLU as the activation 

function, and reconstruction of the text feature with a dimensionality of 768 after modeling. The BiLSTM model comprises 

128 neurons. For image characterization extraction, the input size was set to 224×224×3, and the neural network architecture 

preceding the image feature extractor mirrored that of the Swin Transformer. Finally, the model outputs both extracted image 

features and fully connected classification features. 

4.2 Dataset: 

The experimental datasets used in this study consist of two publicly available social media datasets, as presented in Table 1. 

The Weibo dataset was obtained from the EANN[1] dataset and subsequently cleaned and reorganized for use in this study. 

The CCF competition dataset was collected from the “Internet Fake News Detection during the Epidemic” competition 

organized by the China Computer Federation (CCF). This dataset encompasses eight domains: health, economy, technology, 

entertainment, society, military, politics, and education. The data processing methods applied to both datasets are similar to 

those used for the microblog dataset. 

TABLE 1 

STATISTICS OF THE DATASET 

 Weibo CCF competition 

Non-fake news 3642 7500 

Fake news 4203 7500 

Total 7845 15000 
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4.3 Baseline Model and Evaluation Metrics: 

To evaluate the effectiveness of the model, several common multimodal models were selected for comparison. The specific 

configurations of the models are as follows: 

EANN[1] model: The EANN is an end-to-end adversarial neural network, Composed of three elements: a feature-fetching 

part, a rumor-detecting part, and an event-differentiating part. In this study, the event discriminator module was removed for 

comparison purposes. 

MENG[3] model: The MENG proposed by Meng et al., is a rumor detection model based on adversarial neural networks, 

divided into cross-modal feature extractors, rumor detectors, and event discriminators. Similarly, the event discriminator 

module was removed for comparison purposes. 

att-RNN[23] model: This model fuses features processed by recurrent neural networks and convolutional neural networks. In 

this study, the social context module was removed for comparison purposes. 

MMDF[18] model: The MMDF model aims to fully leverage the temporal nature of features modeled by recurrent neural 

networks and to extract features from corresponding convolutional neural networks. The model performs deep integration of 

these features. 

PTCA[24] model: The model aims to perform modality-specific feature fusion using cross-attention mechanisms. Pre-trained 

models are employed by both the text feature extraction component and the visual characteristic extraction component. 

In this study, the evaluation metrics used were confusion matrices, consist of accuracy, precision, recall, and F1-score. The 

outcomes obtained from the model were used for evaluation. The predicted results were classified into four categories: true 

positive (fake news correctly identified as fake), false negative (fake news incorrectly identified as non-fake), false positive 

(non-fake news incorrectly identified as fake), and true negative (non-fake news correctly identified as non-fake). 

4.4 Experimental Results and Analysis: 

Table 2 presents the performance of the MAM-FND model alongside baseline models on both the Weibo and CCF competition 

datasets. The table highlights the best performance achieved by each model type, indicated in bold. The accuracy and F1 score 

comparison graphs are depicted in Fig.5 and Fig.6. 

TABLE 2 

COMPARISON OF MODEL PERFORMANCE 

Dataset Model Accuracy 
Non-fake news Fake news 

Precision Recall F1 Precision Recall F1 

Weibo 

EANN 0.819 0.778 0.858 0.816 0.858 0.777 0.816 

MENG 0.773 0.758 0.771 0.764 0.787 0.775 0.781 

att-RNN 0.779 0.742 0.824 0.781 0.821 0.738 0.777 

MMDF 0.718 0.689 0.746 0.716 0.749 0.693 0.720 

PTCA 0.850 0.782 0.950 0.858 0.943 0.758 0.841 

MAMFND 0.882 0.837 0.934 0.883 0.932 0.834 0.881 

CCF 

EANN 0.941 0.949 0.933 0.941 0.934 0.950 0.942 

MENG 0.885 0.880 0.891 0.885 0.890 0.878 0.884 

att-RNN 0.904 0.916 0.889 0.902 0.892 0.918 0.905 

MMDF 0.900 0.900 0.895 0.897 0.895 0.901 0.898 

PTCA 0.970 0.977 0.962 0.969 0.963 0.977 0.970 

MAMFND 0.977 0.972 0.982 0.977 0.982 0.971 0.977 

 

The outcome suggests that the PTCA model and our proposed model significantly outperform other multimodal models in 

detecting fake news. The attention mechanism-based multimodal feature fusion is clearly superior to simple feature 

concatenation. Furthermore, attention mechanism fusion for both image and text features can better explore potential 

connections between different modalities. However, the accuracy of the MAMFND model is lower than that of some feature 

concatenation models. This suggests that using a Transformer-based feature extractor can better integrate attention mechanisms 

across modalities and enhance the accuracy of fake news detection. 
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FIGURE 5: Results on Weibo FIGURE 6: Results on CCF 

 

The experimental results presented in Fig.5 and Fig.6, and Table 2 consistently indicate that the proposed model exhibits 

superior performance compared to the baseline models across both datasets. In the Weibo dataset, the proposed model 

outperforms the EANN by about 7.1%, MENG by 10.9%, att-RNN by 10.2%, MMDF by 16.2%, and PTCA by 3% in terms 

of accuracy. In the CCF competition dataset, the accuracy of the proposed model is approximately 3.6%, 8.7%, 7.3%, 7.7%, 

and 0.7% higher than those of the EANN, MENG, att-RNN, MMDF, and PTCA models, respectively. These results further 

identify the effectiveness of the model and indicate the advantageous of multimodal feature attention mechanism fusion. 

4.5 Multimodal Feature Visualization: 

To better demonstrate the effectiveness of the MAMFND model, we perform dimensionality reduction visualization on the 

multimodal final feature representations of relevant models. Fig.7 shows the visualization results of the models using the t-

SNE algorithm on two datasets, where red and blue represent fake news and non-fake news, respectively. Each subfigure 

represents: (a) Visualization of the multimodal final feature representations of the PTCA model on the Weibo dataset. (b) 

Visualization of the multimodal final feature representations of the MAMFND model on the Weibo dataset. (c) Visualization 

of the multimodal final feature representations of the Att-RNN model on the CCF dataset. (d) Visualization of the multimodal 

final feature representations of the MAMFND model on the CCF dataset. 

 

FIGURE 7: Visualization of the multimodal final representations of relevant models on the dataset using t-

SNE algorithm 
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From Fig.7, it can be observed that the reference model has made numerous misclassifications, while the proposed model is 

able to better distinguish between the red and blue regions, resulting in clearer separation and more concentrated clustering. 

This demonstrates that the proposed model outperforms the reference model and further supports the claim that attention 

mechanism fusion can better explore potential connections among modalities. 

4.6 Ablation Experiment: 

To gain a clear understanding of the role of each module in the model, an ablation experiment was conducted on the Weibo 

dataset, and the experimental results are presented in Table 3. In this context, “w/o lstm” represents the removal of attention 

mechanisms in the time series modeled by the LSTM. “w/o att” represents the deletion of the attention mechanism fusion 

module, where image and text features are connected through concatenation instead. “w/o img” stands for the removal of the 

image feature extraction module, retaining only the text feature extraction module. “w/o text” stands for the removal of the text 

feature extraction module, retaining only the image feature extraction module. “MAMFND” represents retaining all modules 

of the model, and the visualization diagram of the ablation experiment is shown in Fig.8. 

TABLE 3 

RESULTS OF THE ABLATION EXPERIMENT 

Dataset Model Accuracy Precision Recall F1 

Weibo 

w/o lstm 0.870 0.929 0.814 0.867 

w/o att 0.861 0.933 0.791 0.856 

w/o img 0.818 0.839 0.807 0.823 

w/o text 0.807 0.808 0.826 0.817 

MAMFND 0.882 0.932 0.834 0.881 

 

 

FIGURE 8: Visualization of the results of the ablation experiment 

The results of the ablation experiment show that when the BiLSTM model's attention mechanism is not fused, the accuracy 

decreases by approximately 1.2%, demonstrating that fusing the attention mechanism with time series on text features is 

capable of enhancing the model's fake news detection capability. When the attention mechanism between text and image 

features is removed, the accuracy of our proposed model decreases by approximately 2%. This indicates that fusing attention 

mechanisms between text and image features can better explore potential correlations between modalities and yields better 

results compared to simple feature concatenation. Compared to unimodal detection of fake news, the accuracy of multimodal 

models decreases by approximately 7%. This demonstrates that multimodal approaches contain more information than 

unimodal ones and are more effective in improving fake news detection, thereby making multimodal approaches of great 

significance. 
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V. CONCLUSION 

The widespread dissemination of fake news can have serious negative impacts on society. Compared to pure text-based fake 

news, multimodal fake news containing both text and images is more likely to have a greater impact, as people are more easily 

attracted by images and tend to overlook the fake news embedded within. This can lead to misunderstandings about certain 

events or issues among the public, potentially causing panic, chaos, and even violent conflicts. Therefore, it is necessary to 

detect fake news using multimodal technology. Within this paper, we introduce a multimodal feature attention mechanism 

fusion model for detecting fake news. The model employs a feature extractor based on the Transformer framework to extract 

image and text information. It captures the interaction between modalities through attention mechanisms and further mines the 

potential correlations between image and text features by modeling time series on text features to enhance the role of attention 

mechanisms. The experimental results on relevant datasets show that the text model outperforms the baseline model in all 

aspects. Relevant data indicate that fake news not only includes text and images but also user comments after browsing, which 

contain authenticity information about fake news. Therefore, in future work, we will combine text, images, and comments to 

verify the authenticity of fake news. 
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